1
|
Harding-Fox SL, Cellek S. The role of cyclic adenosine monophosphate (cAMP) in pathophysiology of fibrosis. Drug Discov Today 2025; 30:104368. [PMID: 40318753 DOI: 10.1016/j.drudis.2025.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Fibrosis, the excessive production and disorganised deposition of extracellular matrix proteins, can occur in any organ system, disrupting functionality and causing fatality. The number, efficacy and safety of antifibrotic drugs are incredibly limited. Therapeutics which elevate intracellular cyclic adenosine monophosphate (cAMP) offer a potential solution. In this review, we present the signalling mechanisms involved in fibrosis pathophysiology, how cAMP and its effectors might interact with these pathways, and the current preclinical and clinical efforts in this field. cAMP elevating agents have the potential to be future antifibrotic drug candidates, but further studies are required, particularly to develop tissue specific therapeutics.
Collapse
Affiliation(s)
- Sophie L Harding-Fox
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health and Social Care, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK.
| | - Selim Cellek
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health and Social Care, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Elnagdy M, Wang Y, Rodriguez W, Zhang J, Bauer P, Wilkey DW, Merchant M, Pan J, Farooqui Z, Cannon R, Rai S, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Increased expression of phosphodiesterase 4 in activated hepatic stellate cells promotes cytoskeleton remodeling and cell migration. J Pathol 2023; 261:361-371. [PMID: 37735782 PMCID: PMC10653049 DOI: 10.1002/path.6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023]
Abstract
Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFβ1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFβ1 levels were highly correlated with PDE4 expression. TGFβ1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFβ1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohamed Elnagdy
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Walter Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Michael Merchant
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Zainab Farooqui
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Shesh Rai
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
4
|
Tao X, Zhang R, Du R, Yu T, Yang H, Li J, Wang Y, Liu Q, Zuo S, Wang X, Lazarus M, Zhou L, Wang B, Yu Y, Shen Y. EP3 enhances adhesion and cytotoxicity of NK cells toward hepatic stellate cells in a murine liver fibrosis model. J Exp Med 2022; 219:213141. [PMID: 35420633 DOI: 10.1084/jem.20212414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells exhibit antifibrotic properties in liver fibrosis (LF) by suppressing activated hepatic stellate cell (HSC) populations. Prostaglandin E2 (PGE2) plays a dual role in innate and adaptive immunity. Here, we found that E-prostanoid 3 receptor (EP3) was markedly downregulated in NK cells from liver fibrosis mice and patients with liver cirrhosis. NK cell-specific deletion of EP3 aggravated hepatic fibrogenesis in mouse models of LF. Loss of EP3 selectively reduced the cytotoxicity of the CD27+CD11b+ double positive (DP) NK subset against activated HSCs. Mechanistically, deletion of EP3 impaired the adhesion and cytotoxicity of DP NK cells toward HSCs through modulation of Itga4-VCAM1 binding. EP3 upregulated Itga4 expression in NK cells through promoting Spic nuclear translocation via PKC-mediated phosphorylation of Spic at T191. Activation of EP3 by sulprostone alleviated CCL4-induced liver fibrosis in mice. Thus, EP3 is required for adhesion and cytotoxicity of NK cells toward HSCs and may serve as a therapeutic target for the management of LF.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiwen Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Salvati A, Poelstra K. Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation. Pharmaceutics 2022; 14:217. [PMID: 35057111 PMCID: PMC8777931 DOI: 10.3390/pharmaceutics14010217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Drug targeting and nanomedicine are different strategies for improving the delivery of drugs to their target. Several antibodies, immuno-drug conjugates and nanomedicines are already approved and used in clinics, demonstrating the potential of such approaches, including the recent examples of the DNA- and RNA-based vaccines against COVID-19 infections. Nevertheless, targeting remains a major challenge in drug delivery and different aspects of how these objects are processed at organism and cell level still remain unclear, hampering the further development of efficient targeted drugs. In this review, we compare properties and advantages of smaller targeted drug constructs on the one hand, and larger nanomedicines carrying higher drug payload on the other hand. With examples from ongoing research in our Department and experiences from drug delivery to liver fibrosis, we illustrate opportunities in drug targeting and nanomedicine and current challenges that the field needs to address in order to further improve their success.
Collapse
Affiliation(s)
- Anna Salvati
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| | - Klaas Poelstra
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| |
Collapse
|
6
|
Chen L, Ji X, Wang M, Liao X, Liang C, Tang J, Wen Z, Dominique F, Li Z. Involvement of TLR4 signaling regulated-COX2/PGE2 axis in liver fibrosis induced by Schistosoma japonicum infection. Parasit Vectors 2021; 14:279. [PMID: 34034779 PMCID: PMC8146234 DOI: 10.1186/s13071-021-04790-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hepatic stellate cell (HSC) activation plays a pivotal role in hepatic inflammation and liver fibrosis. TLR4 pathway activation has been reported to be involved in mice liver fibrosis induced by hepatitis virus infection, alcohol abuse, biliary ligation, carbon tetrachloride 4 treatment, and Schistosoma japonicum (Sj) infection. The effect and mechanisms of the cyclooxygenase 2 (COX2)/prostanoid E2 (PGE2) axis on liver fibrosis induced by Sj are still unclear. Methods Mice liver fibrosis were induced by cutaneous infection of Sj cercariae. COX-2 inhibitor, NS398 were injected from week 5 to week 7, while TLR4 inhibitor TAK242 were injected from week 4 to week 8 post Sj infection. Human HSCs line, LX-2 cells were cultured and exposed to LPS or synthetic PGE2, or pretreated by TAK242, TLR4-siRNA or NS398. Liver tissue and serum or in vitro cultured cell lysaste were collected at indicated time courses for exploring the relationship between TLR4 and COX2-PGE2 axis through qPCR, western blot, immunohistochemical assay, ect. One-way analysis of variance among multiple groups followed by Uncorrected Fisher’s LSD-t test or paired comparisons through t test were performed to tell the statistical differences. Results This study investigated the link between the COX2/PGE2 axis and TLR4 signaling in the induction of liver fibrogenesis in mice during Sj infection and in vitro culture of HSC strain-LX-2. The COX2/PGE2 axis was positively associated with Sj-induced liver fibrosis. TLR4 pathway activation stimulated the COX2/PGE2 axis in Sj-infected mice and in lipopolysaccharide (LPS)-exposed cultured HSCs. Synthetic PGE2 activated cultured HSCs through upregulation of alpha smooth muscle actin (α-SMA) expression. In LPS-triggered HSCs, NS398, a COX2 inhibitor, led to suppression of PGE2 synthesis and reduced expression of α-SMA and type I collagen (COL I). Conclusions These results indicate firstly the positive association of the COX2/PGE2 axis with liver fibrosis induced by Sj infection. TLR4 signaling may at least partially control the COX2/PGE2 axis in Sj-infected mice liver and in vitro cultured HSCs. The COX2/PGE2-EP2/EP4 axis might be a good drug target against liver fibrosis induced by Sj infection. Graphic abstract ![]()
Collapse
Affiliation(s)
- Lan Chen
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaofang Ji
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Manni Wang
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaoyan Liao
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Cuiying Liang
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Juanjuan Tang
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Zhencheng Wen
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Ferrandon Dominique
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.,Université de Strasbourg, M3I UPR9022 du CNRS, 67000, Strasbourg, France
| | - Zi Li
- Sino‑French Hoffmann Institute, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Aguilar Mora FA, Musheshe N, Oun A, Buist-Homan M, Lezoualc'h F, Cheng X, Schmidt M, Moshage H. Elevated cAMP Protects against Diclofenac-Induced Toxicity in Primary Rat Hepatocytes: A Protective Effect Mediated by the Exchange Protein Directly Activated by cAMP/cAMP-Regulated Guanine Nucleotide Exchange Factors. Mol Pharmacol 2021; 99:294-307. [PMID: 33574047 PMCID: PMC11033960 DOI: 10.1124/molpharm.120.000217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic consumption of the nonsteroidal anti-inflammatory drug diclofenac may induce drug-induced liver injury (DILI). The mechanism of diclofenac-induced liver injury is partially elucidated and involves mitochondrial damage. Elevated cAMP protects hepatocytes against bile acid-induced injury. However, it is unknown whether cAMP protects against DILI and, if so, which downstream targets of cAMP are implicated in the protective mechanism, including the classic protein kinase A (PKA) pathway or alternative pathways like the exchange protein directly activated by cAMP (EPAC). The aim of this study was to investigate whether cAMP and/or its downstream targets protect against diclofenac-induced injury in hepatocytes. Rat hepatocytes were exposed to 400 µmol/l diclofenac. Apoptosis and necrosis were measured by caspase-3 activity assay and Sytox green staining, respectively. Mitochondrial membrane potential (MMP) was measured by JC-10 staining. mRNA and protein expression were assessed by quantitative polymerase chain reaction (qPCR) and Western blot, respectively. The cAMP-elevating agent 7β-acetoxy-8,13-epoxy-1α,6β,9α-trihydroxylabd-14-en-11-one (forskolin), the pan-phosphodiesterase inhibitor IBMX, and EPAC inhibitors 5,7-dibromo-6-fluoro-3,4-dihydro-2-methyl-1(2H)-quinoline carboxaldehyde (CE3F4) and ESI-O5 were used to assess the role of cAMP and its effectors, PKA or EPAC. Diclofenac exposure induced apoptotic cell death and loss of MMP in hepatocytes. Both forskolin and IBMX prevented diclofenac-induced apoptosis. EPAC inhibition but not PKA inhibition abolished the protective effect of forskolin and IBMX. Forskolin and IBMX preserved the MMP, whereas both EPAC inhibitors diminished this effect. Both EPAC1 and EPAC2 were expressed in hepatocytes and localized in mitochondria. cAMP elevation protects hepatocytes against diclofenac-induced cell death, a process primarily involving EPACs. The cAMP/EPAC pathway may be a novel target for treatment of DILI. SIGNIFICANCE STATEMENT: This study shows two main highlights. First, elevated cAMP levels protect against diclofenac-induced apoptosis in primary hepatocytes via maintenance of mitochondrial integrity. In addition, this study proposes the existence of mitochondrial cAMP-EPAC microdomains in rat hepatocytes, opening new avenues for targeted therapy in drug-induced liver injury (DILI). Both EPAC1 and EPAC2, but not protein kinase A, are responsible for this protective effect. Our findings present cAMP-EPAC as a potential target for the treatment of DILI and liver injury involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fabio Alejandro Aguilar Mora
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Nshunge Musheshe
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Asmaa Oun
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Manon Buist-Homan
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Frank Lezoualc'h
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Xiaodong Cheng
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Martina Schmidt
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Han Moshage
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| |
Collapse
|
8
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020; 10:biom10101433. [PMID: 33050657 PMCID: PMC7600246 DOI: 10.3390/biom10101433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.
Collapse
|
10
|
Xing L, Chang X, Shen L, Zhang C, Fan Y, Cho C, Zhang Z, Jiang H. Progress in drug delivery system for fibrosis therapy. Asian J Pharm Sci 2020; 16:47-61. [PMID: 33613729 PMCID: PMC7878446 DOI: 10.1016/j.ajps.2020.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/22/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a necessary process in the progression of chronic disease to cirrhosis or even cancer, which is a serious disease threatening human health. Recent studies have shown that the early treatment of fibrosis is turning point and particularly important. Therefore, how to reverse fibrosis has become the focus and research hotspot in recent years. So far, the considerable progress has been made in the development of effective anti-fibrosis drugs and targeted drug delivery. Moreover, the existing research results will lay the foundation for more breakthrough delivery systems to achieve better anti-fibrosis effects. Herein, this review summaries anti-fibrosis delivery systems focused on three major organ fibrotic diseases such as liver, pulmonary, and renal fibrosis accompanied by the elaboration of relevant pathological mechanisms, which will provide inspiration and guidance for the design of fibrosis drugs and therapeutic systems in the future.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lijun Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenglu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yatong Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chongsu Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Corresponding authors.
| | - Zhiqi Zhang
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081 China
- Corresponding authors.
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
11
|
Massimi M, Ragusa F, Cardarelli S, Giorgi M. Targeting Cyclic AMP Signalling in Hepatocellular Carcinoma. Cells 2019; 8:cells8121511. [PMID: 31775395 PMCID: PMC6952960 DOI: 10.3390/cells8121511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major healthcare problem worldwide, representing one of the leading causes of cancer mortality. Since there are currently no predictive biomarkers for early stage diagnosis, HCC is detected only in advanced stages and most patients die within one year, as radical tumour resection is generally performed late during the disease. The development of alternative therapeutic approaches to HCC remains one of the most challenging areas of cancer. This review focuses on the relevance of cAMP signalling in the development of hepatocellular carcinoma and identifies the modulation of this second messenger as a new strategy for the control of tumour growth. In addition, because the cAMP pathway is controlled by phosphodiesterases (PDEs), targeting these enzymes using PDE inhibitors is becoming an attractive and promising tool for the control of HCC. Among them, based on current preclinical and clinical findings, PDE4-specific inhibitors remarkably demonstrate therapeutic potential in the management of cancer outcomes, especially as adjuvants to standard therapies. However, more preclinical studies are warranted to ascertain their efficacy during the different stages of hepatocyte transformation and in the treatment of established HCC.
Collapse
Affiliation(s)
- Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence: (M.M.); (M.G.); Tel.: +39-0862-433219 (M.M.); +39-06-49912308 (M.G.)
| | - Federica Ragusa
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Silvia Cardarelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.G.); Tel.: +39-0862-433219 (M.M.); +39-06-49912308 (M.G.)
| |
Collapse
|
12
|
Sivertsen Åsrud K, Pedersen L, Aesoy R, Muwonge H, Aasebø E, Nitschke Pettersen IK, Herfindal L, Dobie R, Jenkins S, Berge RK, Henderson NC, Selheim F, Døskeland SO, Bakke M. Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration in response to partial hepatectomy. Sci Rep 2019; 9:13789. [PMID: 31551444 PMCID: PMC6760117 DOI: 10.1038/s41598-019-50219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2) are expressed in a cell specific manner in the liver, but their biological functions in this tissue are poorly understood. The current study was undertaken to begin to determine the potential roles of Epac1 and Epac2 in liver physiology and disease. Male C57BL/6J mice in which expression of Epac1 and/or Epac2 are deleted, were subjected to partial hepatectomy and the regenerating liver was analyzed with regard to lipid accumulation, cell replication and protein expression. In response to partial hepatectomy, deletion of Epac1 and/or Epac2 led to increased hepatocyte proliferation 36 h post surgery, and the transient steatosis observed in wild type mice was virtually absent in mice lacking both Epac1 and Epac2. The expression of the protein cytochrome P4504a14, which is implicated in hepatic steatosis and fibrosis, was substantially reduced upon deletion of Epac1/2, while a number of factors involved in lipid metabolism were significantly decreased. Moreover, the number of Küpffer cells was affected, and Epac2 expression was increased in the liver of wild type mice in response to partial hepatectomy, further supporting a role for these proteins in liver function. This study establishes hepatic phenotypic abnormalities in mice deleted for Epac1/2 for the first time, and introduces Epac1/2 as regulators of hepatocyte proliferation and lipid accumulation in the regenerative process.
Collapse
Affiliation(s)
| | - Line Pedersen
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Reidun Aesoy
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Haruna Muwonge
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Biomedicine, The Proteomic Unit at The University of Bergen (PROBE), University of Bergen, 5009, Bergen, Norway
| | | | - Lars Herfindal
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Stephen Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rolf Kristian Berge
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Neil Cowan Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Frode Selheim
- Department of Biomedicine, The University of Bergen, Bergen, Norway
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Ebrahimighaei R, McNeill MC, Smith SA, Wray JP, Ford KL, Newby AC, Bond M. Elevated cyclic-AMP represses expression of exchange protein activated by cAMP (EPAC1) by inhibiting YAP-TEAD activity and HDAC-mediated histone deacetylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1634-1649. [PMID: 31255721 DOI: 10.1016/j.bbamcr.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 02/05/2023]
Abstract
Ligand-induced activation of Exchange Protein Activated by cAMP-1 (EPAC1) is implicated in numerous physiological and pathological processes, including cardiac fibrosis where changes in EPAC1 expression have been detected. However, little is known about how EPAC1 expression is regulated. Therefore, we investigated regulation of EPAC1 expression by cAMP in cardiac fibroblasts. Elevation of cAMP using forskolin, cAMP-analogues or adenosine A2B-receptor activation significantly reduced EPAC1 mRNA and protein levels and inhibited formation of F-actin stress fibres. Inhibition of actin polymerisation with cytochalasin-D, latrunculin-B or the ROCK inhibitor, Y-27632, mimicked effects of cAMP on EPAC1 mRNA and protein levels. Elevated cAMP also inhibited activity of an EPAC1 promoter-reporter gene, which contained a consensus binding element for TEAD, which is a target for inhibition by cAMP. Inhibition of TEAD activity using siRNA-silencing of its co-factors YAP and TAZ, expression of dominant-negative TEAD or treatment with YAP-TEAD inhibitors, significantly inhibited EPAC1 expression. However, whereas expression of constitutively-active YAP completely reversed forskolin inhibition of EPAC1-promoter activity it did not rescue EPAC1 mRNA levels. Chromatin-immunoprecipitation detected a significant reduction in histone3-lysine27-acetylation at the EPAC1 proximal promoter in response to forskolin stimulation. HDAC1/3 inhibition partially reversed forskolin inhibition of EPAC1 expression, which was completely rescued by simultaneously expressing constitutively active YAP. Taken together, these data demonstrate that cAMP downregulates EPAC1 gene expression via disrupting the actin cytoskeleton, which inhibits YAP/TAZ-TEAD activity in concert with HDAC-mediated histone deacetylation at the EPAC1 proximal promoter. This represents a novel negative feedback mechanism controlling EPAC1 levels in response to cAMP elevation.
Collapse
Affiliation(s)
- Reza Ebrahimighaei
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Madeleine C McNeill
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Sarah A Smith
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Jason P Wray
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Kerrie L Ford
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrew C Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Mark Bond
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| |
Collapse
|
14
|
Gurung S, Williams S, Deane JA, Werkmeister JA, Gargett CE. The Transcriptome of Human Endometrial Mesenchymal Stem Cells Under TGFβR Inhibition Reveals Improved Potential for Cell-Based Therapies. Front Cell Dev Biol 2018; 6:164. [PMID: 30564575 PMCID: PMC6288489 DOI: 10.3389/fcell.2018.00164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells with favorable properties for cell therapies and regenerative medicine. Human endometrium harbors a small population of perivascular, clonogenic MSCs (eMSCs) identified by the SUSD2 marker. As for other MSCs, eMSCs require extensive in vitro expansion to generate clinically relevant numbers of cells, resulting in spontaneous differentiation, replicative senescence and cell death, decreasing therapeutic potency. We previously demonstrated that A83-01, a TGF-β receptor inhibitor, maintained eMSC clonogenicity, promoted proliferation, prevented apoptosis and maintained MSC function in vitro. Here we compare the transcriptome of passaged eMSCs from six women cultured with and without A83-01 for 7 days. We identified 1206 differentially expressed genes (DEG) using a false discovery rate cut-off at 0.01 and fold change >2. Significant enrichment of genes involved in anti-inflammatory responses, angiogenesis, cell migration and proliferation, and collagen fibril and extracellular matrix organization were revealed. TGF-β, Wnt and Akt signaling pathways were decreased. Anti-fibrotic and anti-apoptotic genes were induced, and fibroblast proliferation and myofibroblast related genes were downregulated. We found increased MSC potency genes (TWIST1, TWIST2, JAG1, LIFR, and SLIT2) validating the enhanced potency of A83-01-treated eMSCs, and importantly no pluripotency gene expression. We also identified eMSCs’ potential for secreting exosomes, possibly explaining their paracrine properties. Angiogenic and cytokine protein arrays confirmed the angiogenic, anti-fibrotic and immunomodulatory phenotype of A83-01-treated eMSCs, and increased angiogenic activity was functionally demonstrated in vitro. eMSCs culture expanded with A83-01 have enhanced clinically relevant properties, suggesting their potential for cell-therapies and regenerative medicine applications.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sarah Williams
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
16
|
Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, Levtchenko E, Kuypers D, Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69:44-66. [DOI: 10.1016/j.matbio.2018.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
17
|
Abstract
Extracellular adenosine nucleoside is a potent, endogenous mediator that signals through specific G protein-coupled receptors, and exerts pleiotropic effects on liver physiology, in health and disease. Particularly, adenosinergic or adenosine-mediated signaling pathways impact the progression of hepatic fibrosis, a common feature of chronic liver diseases, through regulation of matrix deposition by liver myofibroblasts. This review examines the current lines of evidence on adenosinergic regulation of liver fibrosis and myofibroblasts, identifies unanswered research questions, and proposes important future areas of investigation.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|