1
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Liu Z, Wu D, Ke C, Nian Q, Chen Y, Huang Y, Chen M. Real-World Disproportionality Analysis of the Food and Drug Administration Adverse Event Reporting System Database for Asciminib. Oncology 2024:1-13. [PMID: 39102794 DOI: 10.1159/000540542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Asciminib is primarily utilized for treating Philadelphia chromosome-positive chronic myeloid leukemia in its chronic phase among patients harboring the T315I mutation or those who have been previously treated with at least two tyrosine kinase inhibitors. The safety profile of asciminib across a broad patient population over an extended timeframe remains unverified. This study uses a real-world pharmacovigilance database to evaluate the adverse events (AEs) linked with asciminib, providing valuable insights for clinical drug safety. METHODS Data from the FDA Adverse Event Reporting System (FAERS) database, spanning from October 2021 to December 2023, served as the basis for this analysis. The extent of disproportional events was assessed using sophisticated metrics such as the reporting odds ratio, proportional reporting ratio, information component, and empirical Bayesian geometric mean. RESULTS Within the specified period, the FAERS database documented 3,913,574 AE reports, with asciminib being associated with 966 incidents. Reactions to asciminib spanned 27 system organ categories. Utilizing four distinct analytical algorithms, 663 significant preferred terms exhibiting disproportional frequencies were identified. Notably, this investigation uncovered 26 significant AEs linked to off-label asciminib use, encompassing conditions such as gynecomastia, nephrotic syndrome, orchitis, pyelonephritis, hepatotoxicity, and pancreatitis. The median onset time for asciminib-related AEs was 52.5 days, ranging from 17 to 122.75 days. CONCLUSION The study sheds light on additional potential AEs associated with asciminib use, warranting further research to confirm these findings.
Collapse
Affiliation(s)
- Zhijing Liu
- Department of Pharmacy, Affiliated Hospital of Putian University, Pu Tian, China
| | - Dongzhi Wu
- Department of Orthopedics Institute, Fuzhou Second General Hospital, Fuzhou, China
| | - Chengjie Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qichun Nian
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Fuzhou, China
| | - Yan Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Fuzhou, China
| | - Yaping Huang
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Maohua Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Fuzhou, China
| |
Collapse
|
3
|
Sato T, Yagi A, Yamauchi M, Kumondai M, Sato Y, Kikuchi M, Maekawa M, Yamaguchi H, Abe T, Mano N. The Use of an Antioxidant Enables Accurate Evaluation of the Interaction of Curcumin on Organic Anion-Transporting Polypeptides 4C1 by Preventing Auto-Oxidation. Int J Mol Sci 2024; 25:991. [PMID: 38256064 PMCID: PMC10815578 DOI: 10.3390/ijms25020991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Flavonoids have garnered attention because of their beneficial bioactivities. However, some flavonoids reportedly interact with drugs via transporters and may induce adverse drug reactions. This study investigated the effects of food ingredients on organic anion-transporting polypeptide (OATP) 4C1, which handles uremic toxins and some drugs, to understand the safety profile of food ingredients in renal drug excretion. Twenty-eight food ingredients, including flavonoids, were screened. We used ascorbic acid (AA) to prevent curcumin oxidative degradation in our method. Twelve compounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin, kaempferol, luteolin, morin, quercetin, curcumin, resveratrol, and ellagic acid, altered OATP4C1-mediated transport. Kaempferol and curcumin strongly inhibited OATP4C1, and the Ki values of kaempferol (AA(-)), curcumin (AA(-)), and curcumin (AA(+)) were 25.1, 52.2, and 23.5 µM, respectively. The kinetic analysis revealed that these compounds affected OATP4C1 transport in a competitive manner. Antioxidant supplementation was determined to benefit transporter interaction studies investigating the effects of curcumin because the concentration-dependent curve evidently shifted in the presence of AA. In this study, we elucidated the food-drug interaction via OATP4C1 and indicated the utility of antioxidant usage. Our findings will provide essential information regarding food-drug interactions for both clinical practice and the commercial development of supplements.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Ayaka Yagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Minami Yamauchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan;
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan;
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Kayesh R, Tambe V, Xu C, Yue W. Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. Pharmaceutics 2023; 15:1020. [PMID: 36986880 PMCID: PMC10052025 DOI: 10.3390/pharmaceutics15031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Impaired transport activity of hepatic OATP1B1 and OATP1B3 due to drug-drug interactions (DDIs) often leads to increased systemic exposure to substrate drugs (e.g., lipid-lowering statins). Since dyslipidemia and hypertension frequently coexist, statins are often concurrently used with antihypertensives, including calcium channel blockers (CCBs). OATP1B1/1B3-related DDIs in humans have been reported for several CCBs. To date, the OATP1B1/1B3-mediated DDI potential of CCB nicardipine has not been assessed. The current study was designed to assess the OATP1B1- and OATP1B3-mediated DDI potential of nicardipine using the R-value model, following the US-FDA guidance. IC50 values of nicardipine against OATP1B1 and OATP1B3 were determined in transporter-overexpressing human embryonic kidney 293 cells using [3H]-estradiol 17β-D-glucuronide and [3H]-cholecystokinin-8 as substrates, respectively, with or without nicardipine-preincubation in protein-free Hanks' Balanced Salt Solution (HBSS) or in fetal bovine serum (FBS)-containing culture medium. Preincubation with nicardipine for 30 min in protein-free HBSS buffer produced lower IC50 and higher R-values for both OATP1B1 and OATP1B3 compared to in FBS-containing medium, yielding IC50 values of 0.98 and 1.63 µM and R-values of 1.4 and 1.3 for OATP1B1 and OATP1B3, respectively. The R-values were higher than the US-FDA cut-off value of 1.1, supporting that nicardipine has the potential to cause OATP1B1/3-mediated DDIs. Current studies provide insight into the consideration of optimal preincubation conditions when assessing the OATP1B1/3-mediated DDIs in vitro.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Vishakha Tambe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
5
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N. Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D. Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S. Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Bile Acid-Drug Interaction via Organic Anion-Transporting Polypeptide 4C1 Is a Potential Mechanism of Altered Pharmacokinetics of Renally Excreted Drugs. Int J Mol Sci 2022; 23:ijms23158508. [PMID: 35955643 PMCID: PMC9369231 DOI: 10.3390/ijms23158508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with liver diseases not only experience the adverse effects of liver-metabolized drugs, but also the unexpected adverse effects of renally excreted drugs. Bile acids alter the expression of renal drug transporters, however, the direct effects of bile acids on drug transport remain unknown. Renal drug transporter organic anion-transporting polypeptide 4C1 (OATP4C1) was reported to be inhibited by chenodeoxycholic acid. Therefore, we predicted that the inhibition of OATP4C1-mediated transport by bile acids might be a potential mechanism for the altered pharmacokinetics of renally excreted drugs. We screened 45 types of bile acids and calculated the IC50, Ki values, and bile acid−drug interaction (BDI) indices of bile acids whose inhibitory effect on OATP4C1 was >50%. From the screening results, lithocholic acid (LCA), glycine-conjugated lithocholic acid (GLCA), and taurine-conjugated lithocholic acid (TLCA) were newly identified as inhibitors of OATP4C1. Since the BDI index of LCA was 0.278, LCA is likely to inhibit OATP4C1-mediated transport in clinical settings. Our findings suggest that dose adjustment of renally excreted drugs may be required in patients with renal failure as well as in patients with hepatic failure. We believe that our findings provide essential information for drug development and safe drug treatment in clinics.
Collapse
|
7
|
Hoch M, Huth F, Sato M, Sengupta T, Quinlan M, Dodd S, Kapoor S, Hourcade-Potelleret F. Pharmacokinetics of asciminib in the presence of CYP3A or P-gp inhibitors, CYP3A inducers, and acid-reducing agents. Clin Transl Sci 2022; 15:1698-1712. [PMID: 35616006 PMCID: PMC9283742 DOI: 10.1111/cts.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Asciminib is a first‐in‐class inhibitor of BCR::ABL1, specifically targeting the ABL myristoyl pocket. Asciminib is a substrate of CYP3A4 and P‐glycoprotein (P‐gp) and possesses pH‐dependent solubility in aqueous solution. This report summarizes the results of two phase I studies in healthy subjects aimed at assessing the impact of CYP3A and P‐gp inhibitors, CYP3A inducers and acid‐reducing agents (ARAs) on the pharmacokinetics (PK) of asciminib (single dose of 40 mg). Asciminib exposure (area under the curve [AUC]) unexpectedly decreased by ~40% when administered concomitantly with the strong CYP3A inhibitor itraconazole oral solution, whereas maximum plasma concentration (Cmax) decreased by ~50%. However, asciminib exposure was slightly increased in subjects receiving an itraconazole capsule (~3%) or clarithromycin (~35%), another strong CYP3A inhibitor. Macroflux studies showed that cyclodextrin (present in high quantities as excipient [40‐fold excess to itraconazole] in the oral solution formulation of itraconazole) decreased asciminib flux through a lipid membrane by ~80%. The AUC of asciminib was marginally decreased by concomitant administration with the strong CYP3A inducer rifampicin (by ~13–15%) and the strong P‐gp inhibitor quinidine (by ~13–16%). Concomitant administration of the ARA rabeprazole had little or no effect on asciminib AUC, with a 9% decrease in Cmax. The treatments were generally well tolerated. Taking into account the large therapeutic window of asciminib, the observed changes in asciminib PK following multiple doses of P‐gp, CYP3A inhibitors, CYP3A inducers, or ARAs are not considered to be clinically meaningful. Care should be exercised when administering asciminib concomitantly with cyclodextrin‐containing drug formulations.
Collapse
Affiliation(s)
- Matthias Hoch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Felix Huth
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masahiko Sato
- Novartis Pharma K.K., Novartis Institutes for Biomedical Research, Tokyo, Japan
| | | | | | - Stephanie Dodd
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Shruti Kapoor
- Novartis Pharmaceuticals, East Hanover, New Jersey, USA
| | | |
Collapse
|
8
|
Tuey SM, Atilano-Roque A, Charkoftaki G, Thurman JM, Nolin TD, Joy MS. Influence of vitamin D treatment on functional expression of drug disposition pathways in human kidney proximal tubule cells during simulated uremia. Xenobiotica 2021; 51:657-667. [PMID: 33870862 DOI: 10.1080/00498254.2021.1909783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effects of cholecalciferol (VitD3) and calcitriol (1,25-VitD3), on the expression and function of major vitamin D metabolizing enzymes (cytochrome P450 [CYP]2R1, CYP24A1) and select drug transport pathways (ABCB1/P-gp, SLCO4C1/OATP4C1) were evaluated in human kidney proximal tubule epithelial cells (hPTECs) under normal and uraemic serum conditions.hPTECs were incubated with 10% normal or uraemic serum for 24 h followed by treatment with 2% ethanol vehicle, or 100 and 240 nM doses of VitD3, or 1,25-VitD3 for 6 days. The effects of treatment on mRNA and protein expression and functional activity of select CYP enzymes and transporters were assessedUnder uraemic serum, treatment with 1,25-VitD3 resulted in increased mRNA but decreased protein expression of CYP2R1. Activity of CYP2R1 was not influenced by serum or VitD analogues. CYP24A1 expression was increased with 1,25-VitD3 under normal as well as uraemic serum, although to a lesser extent. ABCB1/P-gp mRNA expression increased under normal and uraemic serum, with exposure to 1,25-VitD3. SLCO4C1/OATP4C1 exhibited increased mRNA but decreased protein expression, under uraemic serum + 1,25-VitD3. Functional assessments of transport showed no changes regardless of exposure to serum or 1,25-VitD3.Key findings indicate that uraemic serum and VitD treatment led to differential effects on the functional expression of CYPs and transporters in hPTECs.
Collapse
Affiliation(s)
- Stacey M Tuey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Georgia Charkoftaki
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,School of Public Health, Yale University, New Haven, CT, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
9
|
Keche Y, Gaikwad N, Dhaneria S, Joshi A. Evaluation of the Prescribed Drugs to Elderly in a Tertiary Healthcare Center for Possible Drug Interactions with Investigational Drugs for COVID-19 Treatment. J Res Pharm Pract 2021; 9:212-217. [PMID: 33912505 PMCID: PMC8067896 DOI: 10.4103/jrpp.jrpp_20_107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
Objective: Earlier identifying drug interactions may help in risk reduction in elderly patients. Methods: Drug prescription data of 212 elderly patients of tertiary health care center had been analyzed for possible drug interactions with investigational drugs for COVID-19 treatment. Drug interaction had been checked from Stockley's Drug Interaction 2019 and Martindale the Complete Drug Reference 2017 and standard reference books of Pharmacology. Findings: Different types of drugs prescribed in the elderly were 260 and out of which 68 (26.36%) were in the category of fixed-dose combinations. Around 150 (70.75%) elderly patients were having one or more associated comorbidities. Thirty-five drugs prescribed to elderly had been found to cause drug interaction with investigational drugs for COVID-19. Possible drug interactions are mediated through CYP3A4 (eighteen patients), CYP2D6 (seven patients) isoenzymes, or P glycoproteins transporters (three patients). Conclusion: Possible drug interactions predicted in this study suggested need for modification of dose of drug or watchfulness for adverse effects. If these drug interactions are considered beforehand, complications can be prevented on account of these drug interactions in elderly who are suffering from COVID-19.
Collapse
Affiliation(s)
- Yogendra Keche
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Nitin Gaikwad
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suryaprakash Dhaneria
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Apoorva Joshi
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
10
|
Transport of L-Arginine Related Cardiovascular Risk Markers. J Clin Med 2020; 9:jcm9123975. [PMID: 33302555 PMCID: PMC7764698 DOI: 10.3390/jcm9123975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular outcomes and various metabolic and functional pathways such as NO-mediated endothelial function. Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far, but the number of transporters shown to mediate the transport of L-arginine and its derivatives is constantly increasing. In the present review we assess the growing body of evidence regarding the function, expression, and clinical relevance of these transporters and their possible relation to cardiovascular diseases.
Collapse
|
11
|
Sodhi JK, Liu S, Benet LZ. Intestinal Efflux Transporters P-gp and BCRP Are Not Clinically Relevant in Apixaban Disposition. Pharm Res 2020; 37:208. [PMID: 32996065 DOI: 10.1007/s11095-020-02927-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The involvement of the intestinally expressed xenobiotic transporters P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) have been implicated in apixaban disposition based on in vitro studies. Recommendations against co-administration of apixaban with inhibitors of these efflux transporters can be found throughout the literature as well as in the apixaban FDA label. However, the clinical relevance of such findings is questionable due to the high permeability and high solubility characteristics of apixaban. METHODS Using recently published methodologies to discern metabolic- from transporter- mediated drug-drug interactions, a critical evaluation of all published apixaban drug-drug interaction studies was conducted to investigate the purported clinical significance of efflux transporters in apixaban disposition. RESULTS Rational examination of these clinical studies using basic pharmacokinetic theory does not support the clinical significance of intestinal efflux transporters in apixaban disposition. Further, there is little evidence that efflux transporters are clinically significant determinants of systemic clearance. CONCLUSIONS Inhibition or induction of intestinal CYP3A4 can account for exposure changes of apixaban in all clinically significant drug-drug interactions, and lack of intestinal CYP3A4 inhibition can explain all studies with no exposure changes, regardless of the potential for these perpetrators to inhibit intestinal or systemic efflux transporters.
Collapse
Affiliation(s)
- Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences Schools of Pharmacy and Medicine, University of California San Francisco, 513 Parnassus Ave Rm HSE 1164, UCSF Box 0912, San Francisco, California, 94143, USA
| | - Shuaibing Liu
- Department of Bioengineering and Therapeutic Sciences Schools of Pharmacy and Medicine, University of California San Francisco, 513 Parnassus Ave Rm HSE 1164, UCSF Box 0912, San Francisco, California, 94143, USA.,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences Schools of Pharmacy and Medicine, University of California San Francisco, 513 Parnassus Ave Rm HSE 1164, UCSF Box 0912, San Francisco, California, 94143, USA.
| |
Collapse
|
12
|
Hsin CH, Stoffel MS, Gazzaz M, Schaeffeler E, Schwab M, Fuhr U, Taubert M. Combinations of common SNPs of the transporter gene ABCB1 influence apparent bioavailability, but not renal elimination of oral digoxin. Sci Rep 2020; 10:12457. [PMID: 32719417 PMCID: PMC7385621 DOI: 10.1038/s41598-020-69326-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Effects of different genotypes on the pharmacokinetics of probe substrates may support their use as phenotyping agents for the activity of the respective enzyme or transporter. Digoxin is recommended as a probe substrate to assess the activity of the transporter P-glycoprotein (P-gp) in humans. Current studies on the individual effects of three commonly investigated single nucleotide polymorphisms (SNPs) of the ABCB1 gene encoding P-gp (C1236T, G2677T/A, and C3435T) on digoxin pharmacokinetics are inconclusive. Since SNPs are in incomplete linkage disequilibrium, considering combinations of these SNPs might be necessary to assess the role of polymorphisms in digoxin pharmacokinetics accurately. In this study, the relationship between SNP combinations and digoxin pharmacokinetics was explored via a population pharmacokinetic approach in 40 volunteers who received oral doses of 0.5 mg digoxin. Concerning the SNPs 1236/2677/3435, the following combinations were evaluated: CGC, CGT, and TTT. Carriers of CGC/CGT and TTT/TTT had 35% higher apparent bioavailability compared to the reference group CGC/CGC, while no difference was seen in CGC/TTT carriers. No significant effect on renal clearance was observed. The population pharmacokinetic model supports the use of oral digoxin as a phenotyping substrate of intestinal P-gp, but not to assess renal P-gp activity.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Marc S Stoffel
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Malaz Gazzaz
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany.,Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elke Schaeffeler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University of Tuebingen, Tuebingen, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Uwe Fuhr
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Max Taubert
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Zhao D, Chen J, Chu M, Long X, Wang J. Pharmacokinetic-Based Drug-Drug Interactions with Anaplastic Lymphoma Kinase Inhibitors: A Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1663-1681. [PMID: 32431491 PMCID: PMC7198400 DOI: 10.2147/dddt.s249098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors are important treatment options for non-small-cell lung cancer (NSCLC), associated with ALK gene rearrangement. Patients with ALK gene rearrangement show sensitivity to and benefit clinically from treatment with ALK tyrosine kinase inhibitors (ALK-TKIs). To date, crizotinib, ceritinib, alectinib, brigatinib, lorlatinib, and entrectinib have received approval from the US Food and Drug Administration and/or the European Medicines Agency for use during the treatment of ALK-gene-rearrangement forms of NSCLC. Although the oral route of administration is convenient and results in good compliance among patients, oral administration can be affected by many factors, such as food, intragastric pH, cytochrome P450 enzymes, transporters, and p-glycoprotein. These factors can result in increased risks for serious adverse events or can lead to reduced therapeutic effects of ALK-TKIs. This review characterizes and summarizes the pharmacokinetic parameters and drug–-drug interactions associated with ALK-TKIs to provide specific recommendations for oncologists and clinical pharmacists when prescribing ALK-TKIs.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| | - Jing Chen
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| | - Mingming Chu
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, People's Republic of China
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| |
Collapse
|
14
|
|
15
|
Kikuchi K, Saigusa D, Kanemitsu Y, Matsumoto Y, Thanai P, Suzuki N, Mise K, Yamaguchi H, Nakamura T, Asaji K, Mukawa C, Tsukamoto H, Sato T, Oikawa Y, Iwasaki T, Oe Y, Tsukimi T, Fukuda NN, Ho HJ, Nanto-Hara F, Ogura J, Saito R, Nagao S, Ohsaki Y, Shimada S, Suzuki T, Toyohara T, Mishima E, Shima H, Akiyama Y, Akiyama Y, Ichijo M, Matsuhashi T, Matsuo A, Ogata Y, Yang CC, Suzuki C, Breeggemann MC, Heymann J, Shimizu M, Ogawa S, Takahashi N, Suzuki T, Owada Y, Kure S, Mano N, Soga T, Wada T, Kopp JB, Fukuda S, Hozawa A, Yamamoto M, Ito S, Wada J, Tomioka Y, Abe T. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun 2019; 10:1835. [PMID: 31015435 PMCID: PMC6478834 DOI: 10.1038/s41467-019-09735-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease. Diabetes is a major cause of kidney disease. Here Kikuchi et al. show that phenol sulfate, a gut microbiota-derived metabolite, is increased in diabetic kidney disease and contributes to the pathology by promoting kidney injury, suggesting phenyl sulfate could be used a marker and therapeutic target for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Koichi Kikuchi
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Yoshitomi Kanemitsu
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | | | - Naoto Suzuki
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Koki Mise
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Tomohiro Nakamura
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Kei Asaji
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Chikahisa Mukawa
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Yoshitsugu Oikawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tomoyuki Iwasaki
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yuji Oe
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Tomoya Tsukimi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Noriko N Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Hsin-Jung Ho
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan
| | - Fumika Nanto-Hara
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Shizuko Nagao
- Education and Research Center of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Ohsaki
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Satoshi Shimada
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takehiro Suzuki
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Eikan Mishima
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hisato Shima
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yasutoshi Akiyama
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yukako Akiyama
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Mariko Ichijo
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tetsuro Matsuhashi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan
| | - Akihiro Matsuo
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yoshiaki Ogata
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Ching-Chin Yang
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan
| | - Chitose Suzuki
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | | | - Jurgen Heymann
- Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD, 20892-1268, USA
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Susumu Ogawa
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Jeffrey B Kopp
- Kidney Diseases Branch, NIDDK, NIH, Bethesda, MD, 20892-1268, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, 210-0821, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, 305-8577, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8574, Japan.
| |
Collapse
|
16
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
17
|
Shen Y, Yu Y, Lai W, Li S, Xu Z, Jin J, Yan X, Xing H, Chen X, Xiong A, Xia C, He J, Hong K. Evaluation of a Potential Clinical Significant Drug-Drug Interaction between Digoxin and Bupropion in Cynomolgus Monkeys. Pharm Res 2018; 36:1. [PMID: 30402714 DOI: 10.1007/s11095-018-2525-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE A three-period digoxin-bupropion drug-drug interaction study was performed in cynomolgus monkeys to assess the effect of bupropion and its metabolites on digoxin disposition. METHODS Monkeys were administered either an i.v. infusion (0.1 mg/kg) or an oral dose of digoxin (0.2 mg/kg) as control. In single-dosing period, monkeys received an i.v. infusion of bupropion at 1.5 mg/kg together with an infusion or oral dosing of digoxin, respectively. During multiple-dosing period, bupropion was orally administered q.d. at 7.72 mg/kg for 12-day. Then it was co-administered with an i.v. infusion or oral dosing of digoxin, respectively. Renal expression of OATP4C1 and P-gp was examined. RESULTS Bupropion significantly increased i.v. digoxin CLrenal0-48h by 1 fold in single-dosing period. But it had no effect on the systemic disposition of digoxin. In multiple-dosing period, bupropion significantly increased oral digoxin CLrenal0-48h, CLtotal0-48h, CLnon-renal0-48h and decreased its plasma exposure. Bupropion and its metabolites did not alter creatinine clearance. OATP4C1 was located at the basolateral membrane of proximal tubule cells, while P-gp was on the apical membrane. CONCLUSIONS The effect of multiple dosing with bupropion on the pharmacokinetics of digoxin is more pronounced. The magnitude of increase in digoxin CLrenal0-48h contributed to the decrease in AUC of digoxin in some extent, but certainly is not the major driving force. The lack of systemic exposure after a single dose but a significant decrease in exposure mediated by an increase in the digoxin CLnon-renal0-48h with repeated dosing is likely to be the more clinically relevant.
Collapse
Affiliation(s)
- Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China.,The Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi,, China.,Clinical Pharmacology Institute, Department of Pharmacy, Nanchang University, Bayi Avenue No. 461, Nanchang, 330006, Jiangxi,, China
| | - Wei Lai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| | - Shuai Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| | - Zixuan Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| | - Jiejing Jin
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China
| | - Han Xing
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Aizhen Xiong
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi,, China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Department of Pharmacy, Nanchang University, Bayi Avenue No. 461, Nanchang, 330006, Jiangxi,, China.
| | - Jiake He
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi,, China. .,Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China.
| | - Kui Hong
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi,, China.,The Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Minde Road No.1, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
18
|
Amor D, Goutal S, Marie S, Caillé F, Bauer M, Langer O, Auvity S, Tournier N. Impact of rifampicin-inhibitable transport on the liver distribution and tissue kinetics of erlotinib assessed with PET imaging in rats. EJNMMI Res 2018; 8:81. [PMID: 30116910 PMCID: PMC6095934 DOI: 10.1186/s13550-018-0434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Erlotinib is an epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitor approved for treatment of non-small cell lung cancer. The wide inter-individual pharmacokinetic (PK) variability of erlotinib may impact treatment outcome and/or toxicity. Recent in vivo studies reported a nonlinear uptake transport of erlotinib into the liver, suggesting carrier-mediated system(s) to mediate its hepatobiliary clearance. Erlotinib has been identified in vitro as a substrate of organic anion-transporting polypeptide (OATP) transporters which expression does not restrict to hepatocytes and may impact the tissue uptake of erlotinib in vivo. Results The impact of rifampicin (40 mg/kg), a potent OATP inhibitor, on the liver uptake and exposure to tissues of 11C-erlotinib was investigated in rats (4 animals per group) using positron emission tomography (PET) imaging. Tissue pharmacokinetics (PK) and corresponding exposure (area under the curve, AUC) were assessed in the liver, kidney cortex, abdominal aorta (blood pool) and the lungs. The plasma PK of parent 11C-erlotinib was also measured using arterial blood sampling to estimate the transfer rate constant (kuptake) of 11C-erlotinib from plasma into different tissues. PET images unveiled the predominant distribution of 11C-erlotinib-associated radioactivity to the liver, which gradually moved to the intestine, thus highlighting hepatobiliary clearance. 11C-erlotinib also accumulated in the kidney cortex. Rifampicin did not impact AUCaorta but reduced kuptake, liver (p < 0.001), causing a significant 27.3% decrease in liver exposure (p < 0.001). Moreover, a significant decrease in kuptake, kidney with a concomitant decrease in AUCkidney (− 30.4%, p < 0.001) were observed. Rifampicin neither affected kuptake, lung nor AUClung. Conclusions Our results suggest that 11C-erlotinib is an in vivo substrate of rOATP transporters expressed in the liver and possibly of rifampicin-inhibitable transporter(s) in the kidneys. Decreased 11C-erlotinib uptake by elimination organs did not translate into changes in systemic exposure and exposure to the lungs, which are a target tissue for erlotinib therapy.
Collapse
Affiliation(s)
- Dorra Amor
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Solène Marie
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, F-91400, Orsay, France. .,CEA, DRF, JOLIOT, Service Hospitalier Frédéric Joliot, F-91401, Orsay, France.
| |
Collapse
|
19
|
Zamek-Gliszczynski MJ, Taub ME, Chothe PP, Chu X, Giacomini KM, Kim RB, Ray AS, Stocker SL, Unadkat JD, Wittwer MB, Xia C, Yee SW, Zhang L, Zhang Y. Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin Pharmacol Ther 2018; 104:890-899. [PMID: 30091177 DOI: 10.1002/cpt.1112] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
This white paper provides updated International Transporter Consortium (ITC) recommendations on transporters that are important in drug development following the 3rd ITC workshop. New additions include prospective evaluation of organic cation transporter 1 (OCT1) and retrospective evaluation of organic anion transporting polypeptide (OATP)2B1 because of their important roles in drug absorption, disposition, and effects. For the first time, the ITC underscores the importance of transporters involved in drug-induced vitamin deficiency (THTR2) and those involved in the disposition of biomarkers of organ function (OAT2 and bile acid transporters).
Collapse
Affiliation(s)
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut, USA
| | - Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Adrian S Ray
- Clinical Research, Gilead Sciences, Foster City, California, USA
| | - Sophie L Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia & St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Cindy Xia
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Cambridge, Massachusetts, USA
| | - Sook-Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte, Wilmington, Delaware, USA
| | | |
Collapse
|
20
|
Narumi K, Sato Y, Kobayashi M, Furugen A, Kasashi K, Yamada T, Teshima T, Iseki K. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: Evaluation of drug-drug interactions mediated by organic anion transporter 3. Biopharm Drug Dispos 2017; 38:501-508. [PMID: 28801980 DOI: 10.1002/bdd.2091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Methotrexate (MTX) is an antifolate agent used in the treatment of numerous types of cancer, and eliminated by active tubular secretion via organic anion transporter 3 (OAT3). Gastric antisecretory drugs, such as proton pump inhibitors (PPIs) and histamine H2 receptor antagonists, are widely used among patients with cancer in clinical practice. The aim of the present study was to analyse the potential drug-drug interactions between MTX and gastric antisecretory drugs in high-dose MTX (HD-MTX) therapy. The impact of PPIs on the plasma MTX concentration on 73 cycles of HD-MTX therapy was analysed retrospectively in 43 patients. Also investigated was the involvement of OAT3 in PPI-MTX drug interaction in an in vitro study using human OAT3 expressing HEK293 cells. In a retrospective study, patients who received a PPI had significantly higher MTX levels at 48 h (0.38 vs. 0.15 μmol l-1 , respectively, p = 0.000018) and 72 h (0.13 vs. 0.05 μmol l-1 , respectively, p = 0.0002) compared with patients who did not receive a PPI (but received famotidine). Moreover, in vitro experiments demonstrated that PPIs (esomeprazole, lansoprazole, omeprazole and rabeprazole) inhibited hOAT3-mediated uptake of MTX in a concentration-dependent manner (IC50 values of 0.40-5.5 μ m), with a rank order of lansoprazole > esomeprazole > rabeprazole > omeprazole. In contrast to PPIs, famotidine showed little inhibitory effect on hOAT3-mediated MTX uptake. These results demonstrated that co-administration of PPI, but not famotidine, could result in a pharmacokinetic interaction that increases the plasma MTX levels, at least in part, via hOAT3 inhibition.
Collapse
Affiliation(s)
- Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.,Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Yu Sato
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Kumiko Kasashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Takehiro Yamada
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Takanori Teshima
- Faculty of Medicine, Hokkaido University, Kita-15-jo, Nishi-7-chome, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.,Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| |
Collapse
|