1
|
Yu R, Jusko WJ. Physiologically-based modeling of methylprednisolone pharmacokinetics across species with extrapolations to humans. J Pharm Sci 2025; 114:103719. [PMID: 40054526 DOI: 10.1016/j.xphs.2025.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Methylprednisolone (MPL) is widely used in clinical and veterinary medicine to manage inflammation. Plasma profiles and PK parameters in 7 species were digitized from 10 literature sources along with our recent PBPK results in rats. Basic allometric scaling provided reported clearance (CL) and distribution volume (Vd) from noncompartmental analysis highly correlated with body weights (R2 > 0.96), although rat CL deviated from the linear trend. A basic nonlinear minimal physiologically-based pharmacokinetic model (mPBPK) (Model I), an intermediate reversible-metabolism mPBPK model (Model II) accounting for MPL and methylprednisone interconversion, and a full highly complex PBPK model were used to assess the interspecies plasma concentration datasets. The MPL PK profiles were reasonably captured by Model I and II, yielding allometric exponents for CL of 1.15 and 0.94, consistent with basic allometry, 1.18. Rat PK informed the presence of nonlinear tissue binding and required an adjustment factor approximately 8-fold higher for its CL. Our full PBPK model was extrapolated from rats to humans using allometry from Model II and optimized producing excellent applications in healthy subjects and patients. This study, based on conserved tissue binding properties, provided three allometric translational PBPK models for MPL, facilitating reasonable PK assessment and interpretation for various species.
Collapse
Affiliation(s)
- Ruihong Yu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, NY 14214, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, NY 14214, United States.
| |
Collapse
|
2
|
Yu R, Jusko WJ. Physiologically Based Pharmacokinetic Modeling: The Reversible Metabolism and Tissue-Specific Partitioning of Methylprednisolone and Methylprednisone in Rats. Drug Metab Dispos 2024; 52:662-672. [PMID: 38653502 PMCID: PMC11185821 DOI: 10.1124/dmd.124.001711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
The pharmacokinetics (PK) of methylprednisolone (MPL) exhibited tissue-specific saturable binding and reversible conversion with its metabolite, methylprednisone (MPN). Blood and 11 tissues were collected in male rats after intravenous (i.v.) bolus doses of 50 mg/kg MPL and 20 mg/kg MPN and upon i.v. infusion of MPL and MPN at 0.3, 3, and 10 mg/h per kg. The concentrations of MPL and MPN were simultaneously measured. A comprehensive physiologically based pharmacokinetic (PBPK) model was applied to describe the plasma and tissue profiles and estimate PK parameters of the MPL/MPN interconversion system. Both dosed and formed MPL and MPN were in rapid equilibrium or achieved steady-state rapidly in plasma and tissues. MPL tissue partitioning was nonlinear, with highest capacity in liver (322.9 ng/ml) followed by kidney, heart, intestine, skin, spleen, bone, brain, muscle, and lowest in adipose (2.74 ng/ml) and displaying high penetration in lung. The tissue partition coefficient of MPN was linear but widely variable (0.15∼5.38) across most tissues, with nonlinear binding in liver and kidney. The conversion of MPL to MPN occurred in kidney, lung, and intestine with total clearance of 429 ml/h, and the back conversion occurred in liver and kidney at 1342 ml/h. The irreversible elimination clearance of MPL was 789 ml/h from liver and that of MPN was 2758 ml/h with liver accounting for 44%, lung 35%, and kidney 21%. The reversible metabolism elevated MPL exposure in rats by 13%. This highly complex PBPK model provided unique and comprehensive insights into the disposition of a major corticosteroid. SIGNIFICANCE STATEMENT: Our dual physiologically based pharmacokinetic (PBPK) study and model of methylprednisolone/methylprednisone (MPL/MPN) with multiple complexities reasonably characterized and parameterized their disposition, and provided greater insights into the interpretation of their pharmacodynamics in rats. Drug knowledge gained in this study may be translatable to higher-order species to appreciate the clinical utility of MPL. The complex model itself is instructive for advanced PBPK analysis of drugs with reversible metabolism and/or nonlinear tissue partitioning features.
Collapse
Affiliation(s)
- Ruihong Yu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
3
|
Gentili M, Hidalgo-Garcia L, Vezza T, Ricci E, Migliorati G, Rodriguez-Nogales A, Riccardi C, Galvez J, Ronchetti S. A recombinant glucocorticoid-induced leucine zipper protein ameliorates symptoms of dextran sulfate sodium-induced colitis by improving intestinal permeability. FASEB J 2021; 35:e21950. [PMID: 34613638 DOI: 10.1096/fj.202100778rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders characterized by relapsing intestinal inflammation, but many details of pathogenesis remain to be fully unraveled. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory effects of GCs, the most powerful drugs for IBD treatment, but they cause several unwanted side effects. The fusion protein TAT-GILZ has been successfully used in some pre-clinical models of inflammatory and autoimmune diseases. To test the efficacy of TAT-GILZ for treating dextran sulfate sodium (DSS)-induced colitis and explore its impact on the gut microbiome, colitis was induced by DSS in C57BL/6J mice and treated with TAT-GILZ or dexamethasone. Various hallmarks of colitis were analyzed, including disease activity index, gut permeability, and expression of pro-inflammatory cytokines and tight junction proteins. TAT-GILZ treatment showed a therapeutic effect when administered after the onset of colitis. Its efficacy was associated with improved gut permeability, as evidenced by zonula occludens-1 and CD74 upregulation in inflamed colonic tissue. TAT-GILZ also ameliorated the changes in the gut microbiota induced by the DSS, thus potentially providing an optimal environment for colonization of the mucosa surface by beneficial bacteria. Overall, our results demonstrated for the first time that TAT-GILZ treatment proved effective after disease onset allowing restoration of gut permeability, a key pathogenic feature of colitis. Additionally, TAT-GILZ restored gut dysbiosis, thereby contributing to healing mechanisms. Interestingly, we found unprecedented effects of exogenous GILZ that did not overlap with those of GCs.
Collapse
Affiliation(s)
- Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Hidalgo-Garcia
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Erika Ricci
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Carlo Riccardi
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Circadian rhythms: influence on physiology, pharmacology, and therapeutic interventions. J Pharmacokinet Pharmacodyn 2021; 48:321-338. [PMID: 33797011 PMCID: PMC8015932 DOI: 10.1007/s10928-021-09751-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Circadian rhythms are ubiquitous phenomena that recur daily in a self-sustaining, entrainable, and oscillatory manner, and orchestrate a wide range of molecular, physiological, and behavioral processes. Circadian clocks are comprised of a hierarchical network of central and peripheral clocks that generate, sustain, and synchronize the circadian rhythms. The functioning of the peripheral clock is regulated by signals from autonomic innervation (from the central clock), endocrine networks, feeding, and other external cues. The critical role played by circadian rhythms in maintaining both systemic and tissue-level homeostasis is well established, and disruption of the rhythm has direct consequence for human health, disorders, and diseases. Circadian oscillations in both pharmacokinetics and pharmacodynamic processes are known to affect efficacy and toxicity of several therapeutic agents. A variety of modeling approaches ranging from empirical to more complex systems modeling approaches have been applied to characterize circadian biology and its influence on drug actions, optimize time of dosing, and identify opportunities for pharmacological modulation of the clock mechanisms and their downstream effects. In this review, we summarize current understanding of circadian rhythms and its influence on physiology, pharmacology, and therapeutic interventions, and discuss the role of chronopharmacometrics in gaining new insights into circadian rhythms and its applications in chronopharmacology.
Collapse
|
5
|
Mozaffari MS. Role of GILZ in the Kidney and the Cardiovascular System: Relevance to Cardiorenal Complications of COVID-19. J Pharmacol Exp Ther 2020; 375:398-405. [PMID: 33008869 DOI: 10.1124/jpet.120.000243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Glucocorticoids are extensively used for a variety of conditions, including those associated with dysregulation of immune and inflammatory responses as primary etiopathogenic factors. Indeed, the proinflammatory cytokine storm of coronavirus disease 2019 (COVID-19) is the latest condition for which the use of a glucocorticoid has been advocated. Recognition of serious adverse effects of glucocorticoids has led to research aimed at unraveling molecular basis by which they impact immune and inflammatory events with the ultimate objective of devising novel therapies to circumvent glucocorticoids-related adverse outcomes. Consequently, glucocorticoid-induced leucine zipper (GILZ) protein was discovered and is increasingly recognized as the pivotal regulator of the effects of glucocorticoids on immune and inflammatory responses. Importantly, the advent of GILZ-based options raises the prospect of their eventual therapeutic use for a variety of conditions accompanied with dysregulation of immune and inflammatory responses and associated target organ complications. Thus, the objective of this minireview is to describe our current understanding of the role of GILZ in the cardiovascular system and the kidney along with outcome of GILZ-based interventions on associated disorders. This information is also of relevance for emerging complications of COVID-19. SIGNIFICANCE STATEMENT: Glucocorticoid-induced leucine zipper (GILZ) was initially discovered as the pivotal mediator of immune regulatory/suppressive effects of glucocorticoids. Since the use of glucocorticoids is associated with serious adverse effects, GILZ-based formulations could offer therapeutic advantages. Thus, this minireview will describe our current understanding of the role of GILZ in the kidney and the cardiovascular system, which is of relevance and significance for pathologies affecting them, including the multiorgan complications of coronavirus disease 2019.
Collapse
Affiliation(s)
- Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, the Dental College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
6
|
Ayyar VS, Jusko WJ. Transitioning from Basic toward Systems Pharmacodynamic Models: Lessons from Corticosteroids. Pharmacol Rev 2020; 72:414-438. [PMID: 32123034 PMCID: PMC7058984 DOI: 10.1124/pr.119.018101] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Technology in bioanalysis, -omics, and computation have evolved over the past half century to allow for comprehensive assessments of the molecular to whole body pharmacology of diverse corticosteroids. Such studies have advanced pharmacokinetic and pharmacodynamic (PK/PD) concepts and models that often generalize across various classes of drugs. These models encompass the "pillars" of pharmacology, namely PK and target drug exposure, the mass-law interactions of drugs with receptors/targets, and the consequent turnover and homeostatic control of genes, biomarkers, physiologic responses, and disease symptoms. Pharmacokinetic methodology utilizes noncompartmental, compartmental, reversible, physiologic [full physiologically based pharmacokinetic (PBPK) and minimal PBPK], and target-mediated drug disposition models using a growing array of pharmacometric considerations and software. Basic PK/PD models have emerged (simple direct, biophase, slow receptor binding, indirect response, irreversible, turnover with inactivation, and transduction models) that place emphasis on parsimony, are mechanistic in nature, and serve as highly useful "top-down" methods of quantitating the actions of diverse drugs. These are often components of more complex quantitative systems pharmacology (QSP) models that explain the array of responses to various drugs, including corticosteroids. Progressively deeper mechanistic appreciation of PBPK, drug-target interactions, and systems physiology from the molecular (genomic, proteomic, metabolomic) to cellular to whole body levels provides the foundation for enhanced PK/PD to comprehensive QSP models. Our research based on cell, animal, clinical, and theoretical studies with corticosteroids have provided ideas and quantitative methods that have broadly advanced the fields of PK/PD and QSP modeling and illustrates the transition toward a global, systems understanding of actions of diverse drugs. SIGNIFICANCE STATEMENT: Over the past half century, pharmacokinetics (PK) and pharmacokinetics/pharmacodynamics (PK/PD) have evolved to provide an array of mechanism-based models that help quantitate the disposition and actions of most drugs. We describe how many basic PK and PK/PD model components were identified and often applied to the diverse properties of corticosteroids (CS). The CS have complications in disposition and a wide array of simple receptor-to complex gene-mediated actions in multiple organs. Continued assessments of such complexities have offered opportunities to develop models ranging from simple PK to enhanced PK/PD to quantitative systems pharmacology (QSP) that help explain therapeutic and adverse CS effects. Concurrent development of state-of-the-art PK, PK/PD, and QSP models are described alongside experimental studies that revealed diverse CS actions.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, New York
| |
Collapse
|
7
|
Ayyar VS, DuBois DC, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacokinetics and Pharmacodynamics, Part III: Estrous Cycle and Estrogen Receptor-Dependent Antagonism of Glucocorticoid-Induced Leucine Zipper (GILZ) Enhancement by Corticosteroids. J Pharmacol Exp Ther 2019; 370:337-349. [PMID: 31197018 PMCID: PMC6658921 DOI: 10.1124/jpet.119.257543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
Our previous report examined the pharmacokinetics (PK) of methylprednisolone (MPL) and adrenal suppression after a 50 mg/kg IM bolus in male and female rats, and we described in detail the development of a minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK/PD) model. In continuation of such assessments, we investigated sex differences in genomic MPL responses (PD). Message expression of the glucocorticoid-induced leucine zipper (GILZ) was chosen as a multitissue biomarker of glucocorticoid receptor (GR)-mediated drug response. Potential time-dependent interplay between sex hormone and glucocorticoid signaling in vivo was assessed by comparing the enhancement of GILZ by MPL in the uterus [high estrogen receptor (ER) density] and in liver (lower ER density) from male and female rats dosed within the proestrus (high estradiol/progesterone) and estrus (low estradiol/progesterone) phases of the rodent estrous cycle. An expanded-systems PD model of MPL considering circadian rhythms, multireceptor (ER and GR) control, and estrous variations delineated the determinants controlling receptor/gene-mediated steroid responses. Hepatic GILZ response was ∼3-fold greater in females, regardless of estrous stage, compared with males, driven predominantly by increased MPL exposure in females and a negligible influence of estrogen interaction. In contrast, GILZ response in the uterus during proestrus in females was 60% of that observed in estrus-phased females, despite no PK or receptor differences, providing in vivo support to the hypothesis of estrogen-mediated antagonism of glucocorticoid signaling. The developed model offers a mechanistic platform to assess the determinants of sex and tissue specificity in corticosteroid actions and, in turn, reveals a unique PD drug-hormone interaction occurring in vivo. SIGNIFICANCE STATEMENT: Mechanisms relating to sex-based pharmacodynamic variability in genomic responses to corticosteroids have been unclear. Using combined experimental and systems pharmacology modeling approaches, sex differences in both pharmacokinetic and pharmacodynamic mechanisms controlling the enhancement of a sensitive corticosteroid-regulated biomarker, the glucocorticoid-induced leucine zipper (GILZ), were clarified in vivo. The multiscale minimal physiologically based pharmacokinetics/pharmacodynamic model successfully captured the experimental observations and quantitatively discerned the roles of the rodent estrous cycle (hormonal variation) and tissue specificity in mediating the antagonistic coregulation of GILZ gene synthesis. These findings collectively support the hypothesis that estrogens antagonize pharmacodynamic signaling of genomic corticosteroid actions in vivo in a time- and estrogen receptor-dependent manner.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Ayyar VS, DuBois DC, Nakamura T, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacokinetics and Pharmacodynamics, Part II: Sex Differences in Methylprednisolone Pharmacokinetics and Corticosterone Suppression. J Pharmacol Exp Ther 2019; 370:327-336. [PMID: 31197019 PMCID: PMC7184193 DOI: 10.1124/jpet.119.257527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Methylprednisolone (MPL), a corticosteroid of intermediate potency, remains an important immunomodulatory agent for autoimmune diseases. Although sex differences in corticosteroid pharmacokinetics/pharmacodynamics (PK/PD) have been documented in humans, comprehensive preclinical assessments of such differences have not been conducted. Limited in vitro evidence indicates possible sex differences in corticosteroid PK and PD. Therefore, it is hypothesized that comparative PK/PD assessments of MPL disposition and selected PD actions in both sexes will provide insights into factors controlling sex differences in steroid responses. This report focused on the plasma and tissue pharmacokinetics of MPL and its adrenal suppressive effects. Because time-dependent (estrous) regulation of sex hormones in females can influence drug responses, female rats were studied in the proestrus (high estradiol/progesterone) and estrus (low estradiol/progesterone) phases of the reproductive cycle. Cohorts of male and female rats were given a 50 mg/kg bolus dose of MPL intramuscularly. Plasma and liver concentrations of MPL as well as plasma corticosterone concentrations were assayed using high-performance liquid chromatography. An enhanced minimal physiologically-based PK/PD model was developed to characterize MPL kinetics and corticosterone dynamics. The clearance of MPL was ∼3-fold higher in males compared with females, regardless of estrous phase, likely attributable to sex-specific hepatic metabolism in males. Strong inhibitory effects on adrenal suppression were observed in all animals. These temporal steroid profiles in plasma and tissues will be used to drive receptor/gene-mediated PD effects of MPL in both sexes, as described in a companion article (Part III). SIGNIFICANCE STATEMENT: Sex is a relevant factor influencing the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. Few preclinical PK/PD studies, however, include sex as a variable. Sex differences in the PK and adrenal suppressive effects of the synthetic corticosteroid, methylprednisolone, were assessed in male and female rats as a function of the 4-day rodent reproductive cycle. Drug exposure was 3-fold higher in females, regardless of estrous stage, compared with males. An extended minimal physiologically-based PK/PD model utilizing in vitro and in vivo measurements was developed and applied. These studies provide a framework to account for sex-dependent variability in drug and endogenous agonist (corticosterone) exposures, serving as a prelude to more intricate assessments of sex-related variability in receptor/gene-mediated PD corticosteroid actions.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - Toshimichi Nakamura
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - William J Jusko
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| |
Collapse
|
9
|
Ayyar VS, Song D, DuBois DC, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacokinetics and Pharmacodynamics, Part I: Determination and Prediction of Dexamethasone and Methylprednisolone Tissue Binding in the Rat. J Pharmacol Exp Ther 2019; 370:318-326. [PMID: 31197020 PMCID: PMC6658919 DOI: 10.1124/jpet.119.257519] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
The plasma and tissue binding properties of two corticosteroids, dexamethasone (DEX) and methylprednisolone (MPL), were assessed in the rat in anticipation of developing physiologically based pharmacokinetic and pharmacokinetic/pharmacodynamic models. The tissue-to-plasma partition coefficients (K P) of DEX and MPL were measured in liver, muscle, and lung in vivo after steady-state infusion and bolus injection in rats. Since K P is often governed by reversible binding to macromolecules in blood and tissue, an attempt was made to assess K P values of DEX and MPL by in vitro binding studies using rat tissue homogenates and to compare these estimates to those obtained from in vivo kinetics after dosing. The K P values of both steroids were also calculated in rat tissues using mechanistic tissue composition-based equations. The plasma binding of DEX and MPL was linear with moderate binding (60.5% and 82.5%) in male and female rats. In vivo estimates of steroid uptake appeared linear across the tested concentrations and K P was highest in liver and lowest in muscle for both steroids. Assessment of hepatic binding of MPL in vitro was severely affected by drug loss at 37°C in male liver homogenates, whereas DEX was stable in both male and female liver homogenates. With the exception of MPL in liver, in vitro-derived K P estimates reasonably agreed with in vivo values. The mechanistic equations modestly underpredicted K P for both drugs. Tissue metabolism, saturable tissue binding, and active uptake are possible factors that can complicate assessments of in vivo tissue binding of steroids when using tissue homogenates. SIGNIFICANCE STATEMENT: Assuming the free hormone hypothesis, the ratio of the unbound drug fraction in plasma and in tissues defines the tissue-to-plasma partition coefficient (K P), an important parameter in physiologically based pharmacokinetic modeling that determines total drug concentrations within tissues and the steady-state volume of distribution. This study assessed the plasma and tissue binding properties of the synthetic corticosteroids, dexamethasone and methylprednisolone, in rats using ultrafiltration and tissue homogenate techniques. In vitro-in vivo and in silico-in vivo extrapolation of K P was assessed for both drugs in liver, muscle, and lung. Although the extrapolation was fairly successful across the tissues, in vitro homogenate studies severely underpredicted the K P of methylprednisolone in liver, partly attributable to the extensive hepatic metabolism.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Dawei Song
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
10
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Flynn JK, Dankers W, Morand EF. Could GILZ Be the Answer to Glucocorticoid Toxicity in Lupus? Front Immunol 2019; 10:1684. [PMID: 31379872 PMCID: PMC6652235 DOI: 10.3389/fimmu.2019.01684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders. Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and nucleus to regulate the transcription of a host of target genes. As a result, signaling pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation and survival and cytokine and chemokine production are suppressed. However, the gene regulation by GC can also cause severe side effects in patients. Systemic lupus erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by a poorly regulated immune response leading to chronic inflammation and dysfunction of multiple organs, for which GC is the major current therapy. Long-term GC use, however, can cause debilitating adverse consequences for patients including diabetes, cardiovascular disease and osteoporosis and contributes to irreversible organ damage. To date, there is no alternative treatment which can replicate the rapid effects of GC across multiple immune cell functions, effecting disease control during disease flares. Research efforts have focused on finding alternatives to GC, which display similar immunoregulatory actions, without the devastating adverse metabolic effects. One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is induced by low concentrations of GC and is shown to mimic the action of GC in several inflammatory processes, reducing immunity and inflammation in in vitro and in vivo studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed and correlates negatively with disease activity, suggesting an important regulatory role of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus, and discuss whether the regulatory mechanisms of GILZ could lead to the development of a novel therapeutic for lupus. Increased understanding of the mechanisms of action of GILZ, and its ability to regulate immune events leading to lupus disease activity has important clinical implications for the development of safer anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jacqueline K Flynn
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Wendy Dankers
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Eric F Morand
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Vétillard M, Schlecht-Louf G. Glucocorticoid-Induced Leucine Zipper: Fine-Tuning of Dendritic Cells Function. Front Immunol 2018; 9:1232. [PMID: 29915587 PMCID: PMC5994841 DOI: 10.3389/fimmu.2018.01232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that control the induction of both tolerance and immunity. Understanding the molecular mechanisms regulating DCs commitment toward a regulatory- or effector-inducing profile is critical for better designing prophylactic and therapeutic approaches. Initially identified in dexamethasone-treated thymocytes, the glucocorticoid-induced leucine zipper (GILZ) protein has emerged as a critical factor mediating most, but not all, glucocorticoids effects in both non-immune and immune cells. This intracellular protein exerts pleiotropic effects through interactions with transcription factors and signaling proteins, thus modulating signal transduction and gene expression. GILZ has been reported to control the proliferation, survival, and differentiation of lymphocytes, while its expression confers anti-inflammatory phenotype to monocytes and macrophages. In the past twelve years, a growing set of data has also established that GILZ expression in DCs is a molecular switch controlling their T-cell-priming capacity. Here, after a brief presentation of GILZ isoforms and functions, we summarize current knowledge regarding GILZ expression and regulation in DCs, in both health and disease. We further present the functional consequences of GILZ expression on DCs capacity to prime effector or regulatory T-cell responses and highlight recent findings pointing to a broader role of GILZ in the fine tuning of antigen capture, processing, and presentation by DCs. Finally, we discuss future prospects regarding the possible roles for GILZ in the control of DCs function in the steady state and in the context of infections and chronic pathologies.
Collapse
Affiliation(s)
- Mathias Vétillard
- UMR996-Inflammation, Chimiokines et Immunopathologie, INSERM, Faculté de médecine, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Géraldine Schlecht-Louf
- UMR996-Inflammation, Chimiokines et Immunopathologie, INSERM, Faculté de médecine, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| |
Collapse
|
13
|
Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Qu J, Jusko WJ. Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver. J Pharmacokinet Pharmacodyn 2018; 45:557-575. [PMID: 29704219 DOI: 10.1007/s10928-018-9585-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
A multiscale pharmacodynamic model was developed to characterize the receptor-mediated, transcriptomic, and proteomic determinants of corticosteroid (CS) effects on clinically relevant hepatic processes following a single dose of methylprednisolone (MPL) given to adrenalectomized (ADX) rats. The enhancement of tyrosine aminotransferase (TAT) mRNA, protein, and enzyme activity were simultaneously described. Mechanisms related to the effects of MPL on glucose homeostasis, including the regulation of CCAAT-enhancer binding protein-beta (C/EBPβ) and phosphoenolpyruvate carboxykinase (PEPCK) as well as insulin dynamics were evaluated. The MPL-induced suppression of circulating lymphocytes was modeled by coupling its effect on cell trafficking with pharmacogenomic effects on cell apoptosis via the hepatic (STAT3-regulated) acute phase response. Transcriptomic and proteomic time-course profiles measured in steroid-treated rat liver were utilized to model the dynamics of mechanistically relevant gene products, which were linked to associated systemic end-points. While time-courses of TAT mRNA, protein, and activity were well described by transcription-mediated changes, additional post-transcriptional processes were included to explain the lack of correlation between PEPCK mRNA and protein. The immune response model quantitatively discerned the relative roles of cell trafficking versus gene-mediated lymphocyte apoptosis by MPL. This systems pharmacodynamic model provides insights into the contributions of selected molecular events occurring in liver and explores mechanistic hypotheses for the multi-factorial control of clinically relevant pharmacodynamic outcomes.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|