1
|
Nugnes R, Orlo E, Russo C, Lavorgna M, Isidori M. Comprehensive eco-geno-toxicity and environmental risk of common antiviral drugs in aquatic environments post-pandemic. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135947. [PMID: 39357352 DOI: 10.1016/j.jhazmat.2024.135947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
The eco-geno-toxicological impacts of the most widely used antiviral drugs against SARS-CoV2 - ribavirin, ritonavir, nirmatrelvir and tenofovir - were investigated in freshwater organisms. Ribavirin and tenofovir exhibited the highest acute toxicity in the rotifer Brachionus calyciflorus at concentrations of a few mg/L while ritonavir and nirmatrelvir showed similar effects at tens of mg/L; acute toxicity of ribavirin was also observed in the crustacean Ceriodaphnia dubia at similar concentrations. In contrast, the crustacean Thamnocephalus platyurus showed the lowest sensitivity to the antiviral drugs tested with no sublethal effects. Chronic toxicity tests revelead that these antivirals induced effects in consumers at concentrations of environmental concern (ng-µg/L). Ribavirin showed the highest toxicity to the alga Raphidocelis subcapitata, while ritonavir showed the highest toxicity to B. calyciflorus and C. dubia. DNA damage and oxidative stress were observed in C. dubia at 0.001 µg/L and 0.1 µg/L when exposed to ritonavir and nirmatrelvir respectively, and at 1 µg/L when exposed to ribavirin and tenofovir. Toxic and genotoxic environmental risks were assessed with risk quotients for ritonavir, tenofovir and ribavirin exceeding the threshold of 1, indicating significant environmental concern.
Collapse
Affiliation(s)
- Roberta Nugnes
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Elena Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Chiara Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Margherita Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
2
|
Chang SY, Huang W, Chapron A, Quiñones AJL, Wang J, Isoherranen N, Shen DD, Kelly EJ, Himmelfarb J, Yeung CK. Incorporating Uremic Solute-mediated Inhibition of OAT1/3 Improves PBPK Prediction of Tenofovir Renal and Systemic Disposition in Patients with Severe Kidney Disease. Pharm Res 2023; 40:2597-2606. [PMID: 37704895 PMCID: PMC11901350 DOI: 10.1007/s11095-023-03594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Dose modification of renally secreted drugs in patients with chronic kidney disease (CKD) has relied on serum creatinine concentration as a biomarker to estimate glomerular filtration (GFR) under the assumption that filtration and secretion decline in parallel. A discrepancy between actual renal clearance and predicted renal clearance based on GFR alone is observed in severe CKD patients with tenofovir, a compound secreted by renal OAT1/3. Uremic solutes that inhibit OAT1/3 may play a role in this divergence. METHODS To examine the impact of transporter inhibition by uremic solutes on tenofovir renal clearance, we determined the inhibitory potential of uremic solutes hippuric acid, indoxyl sulfate, and p-cresol sulfate. The inhibition parameters (IC50) were incorporated into a previously validated mechanistic kidney model; simulated renal clearance and plasma PK profile were compared to data from clinical studies. RESULTS Without the incorporation of uremic solute inhibition, the PBPK model failed to capture the observed data with an absolute average fold error (AAFE) > 2. However, when the inhibition of renal uptake transporters and uptake transporters in the slow distribution tissues were included, the AAFE value was within the pre-defined twofold model acceptance criterion, demonstrating successful model extrapolation to CKD patients. CONCLUSION A PBPK model that incorporates inhibition by uremic solutes has potential to better predict renal clearance and systemic disposition of secreted drugs in patients with CKD. Ongoing research is warranted to determine if the model can be expanded to include other OAT1/3 substrate drugs and to evaluate how these findings can be translated to clinical guidance for drug selection and dose optimization in patients with CKD.
Collapse
Affiliation(s)
- Shih-Yu Chang
- Department of Pharmacy, School of Pharmacy, University of Washington, 1959 NE Pacific St. H375, Box 357630, Seattle, WA, 98195, USA
- Janssen Research and Development, Raritan, NJ, USA
| | - Weize Huang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Genentech Inc, South San Francisco, CA, USA
| | - Alenka Chapron
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Antonio J López Quiñones
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Revolution Medicines, San Francisco, CA, USA
| | - Joanne Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Danny D Shen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA, 98195, USA
| | - Catherine K Yeung
- Department of Pharmacy, School of Pharmacy, University of Washington, 1959 NE Pacific St. H375, Box 357630, Seattle, WA, 98195, USA.
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Huliciak M, Lhotska I, Kocova-Vlckova H, Halodova V, Dusek T, Cecka F, Staud F, Vokral I, Cerveny L. Effect of P-glycoprotein and Cotreatment with Sofosbuvir on the Intestinal Permeation of Tenofovir Disoproxil Fumarate and Tenofovir Alafenamide Fumarate. Pharm Res 2023; 40:2109-2120. [PMID: 37594591 DOI: 10.1007/s11095-023-03581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE We aimed to compare the effects of P-glycoprotein (ABCB1) on the intestinal uptake of tenofovir disoproxil fumarate (TDF), tenofovir alafenamide fumarate (TAF), and metabolites, tenofovir isoproxil monoester (TEM) and tenofovir (TFV), and to study the molecular mechanism of drug-drug interaction (DDI) between sofosbuvir (SOF) and TDF/TAF. METHODS Bidirectional transport experiments in Caco-2 cells and accumulation studies in precision-cut intestinal slices prepared from the ileal segment of rodent (rPCIS) and human (hPCIS) intestines were performed. RESULTS TDF and TAF were extensively metabolised but TAF exhibited greater stability. ABCB1 significantly reduced the intestinal transepithelial transfer and uptake of the TFV(TDF) and TFV(TAF)-equivalents. However, TDF and TAF were absorbed more efficiently than TFV and TEM. SOF did not inhibit intestinal efflux of TDF and TAF or affect intestinal accumulation of TFV(TDF) and TFV(TAF)-equivalents but did significantly increase the proportion of absorbed TDF. CONCLUSIONS TDF and TAF likely produce comparable concentrations of TFV-equivalents in the portal vein and the extent of permeation is reduced by the activity of ABCB1. DDI on ABCB1 can thus potentially affect TDF and TAF absorption. SOF does not inhibit ABCB1-mediated transport of TDF and TAF but does stabilise TDF, albeit without affecting the quantity of TFV(TDF)-equivalents crossing the intestinal barrier. Our data thus suggest that reported increases in the TFV plasma concentrations in patients treated with SOF and TDF result either from a DDI between SOF and TDF that does not involve ABCB1 or from a DDI involving another drug used in combination therapy.
Collapse
Affiliation(s)
- Martin Huliciak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Ivona Lhotska
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Hana Kocova-Vlckova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Veronika Halodova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Tomas Dusek
- Department of Surgery, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Filip Cecka
- Department of Surgery, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Ivan Vokral
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
4
|
Hu X, Jia C, Wu J, Zhang J, Jiang Z, Ma K. Towards the Antiviral Agents and Nanotechnology-Enabled Approaches Against Parvovirus B19. Front Cell Infect Microbiol 2022; 12:916012. [PMID: 35795188 PMCID: PMC9250997 DOI: 10.3389/fcimb.2022.916012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Parvovirus B19 (B19V) as a human pathogenic virus, would cause a wide range of clinical manifestations. Besides the supportive and symptomatic treatments, the only FDA-approved antiviral drug for the treatment of B19V is intravenous immunoglobulins, which however, have limited efficacy and high cost. By far, there are still no virus-specific therapeutics clinically available to treat B19V infection. Therefore, exploiting the potential targets with a deep understanding of the life cycle of B19V, are pivotal to the development of B19V-tailored effective antiviral approaches. This review will introduce antiviral agents via blocking viral invasion, inhibiting the enzymes or regulatory proteins involved in DNA synthesis, and so on. Moreover, nanotechnology-enabled approaches against B19V will also be outlined and discussed through a multidisciplinary perspective involving virology, nanotechnology, medicine, pharmaceutics, chemistry, materials science, and other fields. Lastly, the prospects of the antiviral agents and nanosystems in terms of fabrication, clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianyong Wu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuifen Ma
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Dart A, Roy D, Vlaskin V, Limqueco E, Lowe NM, Srinivasan S, Ratner DM, Bhave M, Stayton P, Kingshott P. A nanofiber based antiviral (TAF) prodrug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112626. [PMID: 35039198 DOI: 10.1016/j.msec.2021.112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
HIV and hepatitis B are two of the most prevalent viruses globally, and despite readily available preventive treatments unforgiving treatment regimens still exist, such as daily doses of medicine that are challenging to maintain especially in poorer countries. More advanced and longer-lasting delivery vehicles can potentially overcome this problem by reducing maintenance requirements and significantly increase access to medicine. Here, we designed a technology to control the delivery of an antiviral drug over a long timeframe via a nanofiber based delivery scaffold that is both easy to produce and use. An antiviral prodrug containing tenofovir alafenamide (TAF) was synthesized by initial conjugation to glycerol monomethacrylate followed by polymerization to form a diblock copolymer (pTAF) using reversible addition-fragmentation chain transfer (RAFT). In order to generate an efficient drug delivery system this copolymer was fabricated into an electrospun nanofiber (ESF) scaffold using blend electrospinning with poly(caprolactone) (PCL) as the carrier polymer. SEM images revealed that the pTAF-PCL ESFs were uniform with an average diameter of (787 ± 0.212 nm), while XPS analysis demonstrated that the pTAF was overrepresented at the surface of the ESFs. Additionally, the pTAF exhibited a sustained release profile over a 2 month period in human serum (HS), suggesting that these types of copolymer-based drugamers can be used in conjunction with electrospinning to produce long-lasting drug delivery systems.
Collapse
Affiliation(s)
- Alexander Dart
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Debashish Roy
- Molecular Engineering & Sciences Institute, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Vladimir Vlaskin
- Molecular Engineering & Sciences Institute, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Elaine Limqueco
- Molecular Engineering & Sciences Institute, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Neona M Lowe
- Molecular Engineering & Sciences Institute, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Selvi Srinivasan
- Molecular Engineering & Sciences Institute, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Daniel M Ratner
- Molecular Engineering & Sciences Institute, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Patrick Stayton
- Molecular Engineering & Sciences Institute, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| |
Collapse
|
6
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
7
|
Gingrich D, Deitchman AN, Kantor A, Huang L, Stein JH, Currier JS, Hsue PY, Ribaudo HJ, Aweeka FT, ACTG 5314 protocol team. Methotrexate Decreases Tenofovir Exposure in Antiretroviral-Suppressed Individuals Living With HIV. J Acquir Immune Defic Syndr 2020; 85:651-658. [PMID: 33177476 PMCID: PMC8132144 DOI: 10.1097/qai.0000000000002502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND To mitigate increased risk of premature cardiovascular disease in antiretroviral therapy (ART) suppressed adults living with HIV (PWH), low-dose methotrexate (LDMTX) was evaluated in a multicenter randomized placebo controlled clinical trial of 176 PWH taking various ART regimens (ACTG A5314). Given shared methotrexate (MTX) and tenofovir (TFV) pharmacokinetic (PK) pathways, a substudy was conducted to investigate whether LDMTX alters TFV exposure. METHODS Adults virally suppressed on ART for >24 weeks were randomized to LDMTX or placebo. The first 66 participants taking a tenofovir disoproxil fumarate-containing regimen underwent intensive PK sampling over 24 hours after the second dose of LDMTX 10 mg or placebo. TFV and MTX levels were quantified using validated mass spectrometry methods. TFV PK between LDMTX and placebo groups were compared and MTX PK was characterized. RESULTS Forty-eight participants completed this substudy (n = 20 on LDMTX and 28 on placebo). Baseline characteristics were balanced except for protease inhibitor (PI)-use (25% in LDMTX and 43% in placebo groups). For TFV, AUC6 (primary endpoint), and AUC24,imputed, Cmax, and Cmin (secondary endpoints) were on average 22%, and 24%, 27%, and 31% less in the LDMTX versus placebo groups, with reductions in secondary endpoints reaching statistical significance. Additional analyses suggested a greater reduction in the absence of PI although not significant. CONCLUSION Lower TFV AUC24,imputed and Cmax indicates that LDMTX reduces TFV exposure in PWH. However, this change was modest, not warranting a change in TFV dosing at this time. Further studies of TFV PK with LDMTX, especially without PI co-administration, are warranted.
Collapse
Affiliation(s)
- David Gingrich
- Drug Research Unit, Department of Clinical Pharmacy University of California, San Francisco, CA 94110
| | - Amelia N Deitchman
- Drug Research Unit, Department of Clinical Pharmacy University of California, San Francisco, CA 94110
| | - Amy Kantor
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Liusheng Huang
- Drug Research Unit, Department of Clinical Pharmacy University of California, San Francisco, CA 94110
| | - James H Stein
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Judith S Currier
- David Geffen School of Medicine at University of California – Los Angeles; Los Angeles, CA
| | | | - Heather J Ribaudo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Francesca T Aweeka
- Drug Research Unit, Department of Clinical Pharmacy University of California, San Francisco, CA 94110
| | | |
Collapse
|
8
|
Al-Horani RA, Kar S. Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses 2020; 12:E1092. [PMID: 32993173 PMCID: PMC7600245 DOI: 10.3390/v12101092] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic continues to challenge health care systems around the world. Scientists and pharmaceutical companies have promptly responded by advancing potential therapeutics into clinical trials at an exponential rate. Initial encouraging results have been realized using remdesivir and dexamethasone. Yet, the research continues so as to identify better clinically relevant therapeutics that act either as prophylactics to prevent the infection or as treatments to limit the severity of COVID-19 and substantially decrease the mortality rate. Previously, we reviewed the potential therapeutics in clinical trials that block the early stage of the viral life cycle. In this review, we summarize potential anti-COVID-19 therapeutics that block/inhibit the post-entry stages of the viral life cycle. The review presents not only the chemical structures and mechanisms of the potential therapeutics under clinical investigation, i.e., listed in clinicaltrials.gov, but it also describes the relevant results of clinical trials. Their anti-inflammatory/immune-modulatory effects are also described. The reviewed therapeutics include small molecules, polypeptides, and monoclonal antibodies. At the molecular level, the therapeutics target viral proteins or processes that facilitate the post-entry stages of the viral infection. Frequent targets are the viral RNA-dependent RNA polymerase (RdRp) and the viral proteases such as papain-like protease (PLpro) and main protease (Mpro). Overall, we aim at presenting up-to-date details of anti-COVID-19 therapeutics so as to catalyze their potential effective use in fighting the pandemic.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | |
Collapse
|
9
|
Gomes NIG, Vianna RPDT, Medeiros ARC, de Lima RLFC. Nutritional risk, food insecurity and quality of life in people living with HIV/AIDS in Paraíba, Brazil. Food Secur 2020. [DOI: 10.1007/s12571-020-01102-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Brooks KM, Castillo-Mancilla JR, Blum J, Huntley R, MaWhinney S, Alexander K, Kerr BJ, Ellison L, Bushman LR, MacBrayne CE, Anderson PL, Kiser JJ. Increased tenofovir monoester concentrations in patients receiving tenofovir disoproxil fumarate with ledipasvir/sofosbuvir. J Antimicrob Chemother 2020; 74:2360-2364. [PMID: 31081036 DOI: 10.1093/jac/dkz184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intracellular tenofovir diphosphate concentrations are markedly increased in HIV/HCV coinfected individuals receiving tenofovir disoproxil fumarate (TDF) with sofosbuvir-containing treatment. Sofosbuvir may inhibit the hydrolysis of TDF to tenofovir, resulting in increased concentrations of the disoproxil or monoester forms, which may augment cell loading. We sought to quantify tenofovir disoproxil and monoester concentrations in individuals receiving TDF with and without ledipasvir/sofosbuvir. METHODS HIV/HCV coinfected participants receiving TDF-based therapy were sampled pre-dose and 1 and 4 h post-dose prior to and 4 weeks after initiating ledipasvir/sofosbuvir. Tenofovir disoproxil was not detectable. Tenofovir monoester in plasma and tenofovir diphosphate in PBMC and dried blood spots (DBS) were quantified using LC-MS/MS. Geometric mean ratios (week 4 versus baseline) and 95% CIs were generated for the pharmacokinetic parameters. P values reflect paired t-tests. RESULTS Ten participants had complete data. At baseline, geometric mean (95% CI) tenofovir monoester plasma concentrations at 1 and 4 h post-dose were 97.4 ng/mL (33.0-287.5) and 0.74 ng/mL (0.27-2.06), respectively. With ledipasvir/sofosbuvir, tenofovir monoester concentrations at 4 h post-dose were 5.02-fold higher (95% CI 1.40-18.05; P = 0.019), but did not significantly differ at 1 h post-dose (1.72-fold higher, 95% CI 0.25-11.78; P = 0.54), possibly due to absorption variability. Tenofovir diphosphate in PBMC and DBS were increased 2.80-fold (95% CI 1.71-4.57; P = 0.001) and 7.31-fold (95% CI 4.47-11.95; P < 0.0001), respectively, after 4 weeks of ledipasvir/sofosbuvir. CONCLUSIONS Tenofovir monoester concentrations were increased in individuals receiving TDF with ledipasvir/sofosbuvir, consistent with inhibition of TDF hydrolysis. Additional studies are needed to determine the clinical relevance of this interaction.
Collapse
Affiliation(s)
- Kristina M Brooks
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | | | | | - Ryan Huntley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado AMC, Aurora, CO, USA
| | - Keisha Alexander
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Becky Jo Kerr
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Lucas Ellison
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Lane R Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Christine E MacBrayne
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Peter L Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus (AMC), Aurora, CO, USA
| |
Collapse
|
11
|
Brooks KM, Ibrahim ME, Castillo-Mancilla JR, MaWhinney S, Alexander K, Tilden S, Kerr BJ, Ellison L, McHugh C, Bushman LR, Kiser JJ, Hosek S, Huhn GD, Anderson PL. Pharmacokinetics of tenofovir monoester and association with intracellular tenofovir diphosphate following single-dose tenofovir disoproxil fumarate. J Antimicrob Chemother 2020; 74:2352-2359. [PMID: 31093649 DOI: 10.1093/jac/dkz187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tenofovir monoester is a relatively lipophilic intermediate formed during the hydrolysis of tenofovir disoproxil to tenofovir. Its clinical pharmacokinetic profile and influence on the cellular pharmacology of tenofovir diphosphate have not been reported. METHODS Plasma, PBMC and dried blood spots (DBS) were obtained from HIV-uninfected adults participating in a randomized, cross-over bioequivalence study of single-dose tenofovir disoproxil fumarate (TDF)/emtricitabine unencapsulated or encapsulated with a Proteus® ingestible sensor. Plasma pharmacokinetics of tenofovir monoester and tenofovir were characterized using non-compartmental methods. Relationships with tenofovir diphosphate in DBS and PBMC were examined using mixed-effects models. RESULTS Samples were available from 24 participants (13 female; 19 white, 3 black, 2 Hispanic). Tenofovir monoester appeared rapidly with a median (range) Tmax of 0.5 h (0.25-2) followed by a rapid monophasic decline with a geometric mean (coefficient of variation) t½ of 26 min (31.0%). Tenofovir monoester Cmax was 131.6 ng/mL (69.8%) and AUC0-4 was 93.3 ng·h/mL (47.9%). The corresponding values for plasma tenofovir were 222.2 ng/mL (37.1%) and 448.1 ng·h/mL (30.0%). Tenofovir monoester AUC0-∞ (but not tenofovir AUC0-∞) was a significant predictor of tenofovir diphosphate in both PBMC (P = 0.015) and DBS (P = 0.005), increasing by 3.8% (95% CI 0.8%-6.8%) and 4.3% (95% CI 1.5%-7.2%), respectively, for every 10 ng·h/mL increase in tenofovir monoester. CONCLUSIONS Tenofovir monoester Cmax and AUC0-4 were 59.2% and 20.6% of corresponding plasma tenofovir concentrations. Tenofovir monoester was significantly associated with intracellular tenofovir diphosphate concentrations in PBMC and DBS, whereas tenofovir concentrations were not. Tenofovir monoester likely facilitates cell loading, thereby increasing tenofovir diphosphate exposures in vivo.
Collapse
Affiliation(s)
- Kristina M Brooks
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Mustafa E Ibrahim
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | | | - Samantha MaWhinney
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado AMC, Aurora, CO, USA
| | - Keisha Alexander
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Scott Tilden
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Becky Jo Kerr
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Lucas Ellison
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Cricket McHugh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Lane R Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Sybil Hosek
- Department of Medicine, Stroger Hospital of Cook County, Chicago, IL, USA
| | - Gregory D Huhn
- Department of Medicine, Stroger Hospital of Cook County, Chicago, IL, USA
| | - Peter L Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| |
Collapse
|
12
|
Co-crystals, Salts or Mixtures of Both? The Case of Tenofovir Alafenamide Fumarates. Pharmaceutics 2020; 12:pharmaceutics12040342. [PMID: 32290280 PMCID: PMC7238255 DOI: 10.3390/pharmaceutics12040342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Tenofovir alafenamide fumarate (TAF) is the newest prodrug of tenofovir that constitutes several drug products used for the treatment of HIV/AIDS. Although the solid-state properties of its predecessor tenofovir disoproxil fumarate have been investigated and described in the literature, there are no data in the scientific literature on the solid state properties of TAF. In our report, we describe the preparation of two novel polymorphs II and III of tenofovir alafenamide monofumarate (TA MF2 and TA MF3). The solid-state structure of these compounds was investigated in parallel to the previously known tenofovir alafenamide monofumarate form I (TA MF1) and tenofovir alafenamide hemifumarate (TA HF). Interestingly, the single-crystal X-ray diffraction of TA HF revealed that this derivative exists as a co-crystal form. In addition, we prepared a crystalline tenofovir alafenamide free base (TA) and its hydrochloride salt (TA HCl), which enabled us to determine the structure of TA MF derivatives using 15N-ssNMR (15N-solid state nuclear magnetic resonance). Surprisingly, we observed that TA MF1 exists as a mixed ionization state complex or pure salt, while TA MF2 and TA MF3 can be obtained as pure co-crystal forms.
Collapse
|
13
|
Feng HP, Guo Z, Caro L, Talaty JE, Mangin E, Panebianco D, Fandozzi C, Zhu Y, Marshall W, Huang X, Hanley WD, Jumes P, Valesky R, Martinho M, Butterton JR, Iwamoto M, Yeh WW. Assessment of Drug Interaction Potential Between the Hepatitis C Virus Direct-Acting Antiviral Agents Elbasvir/Grazoprevir and the Nucleotide Analog Reverse-Transcriptase Inhibitor Tenofovir Disoproxil Fumarate. Clin Pharmacol Drug Dev 2019; 8:962-970. [PMID: 31173674 DOI: 10.1002/cpdd.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/07/2019] [Indexed: 11/10/2022]
Abstract
Treatment of individuals coinfected with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) requires careful consideration of potential drug-drug interactions. We evaluated the pharmacokinetic interaction of the direct-acting antiviral agents elbasvir and grazoprevir coadministered with the nucleotide reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF). Three open-label, multidose studies in healthy adults were conducted. In the first study (N = 10), participants received TDF 300 mg once daily, elbasvir 50 mg once daily, and elbasvir coadministered with TDF. In the second study (N = 12), participants received TDF 300 mg once daily, grazoprevir 200 mg once daily, and grazoprevir coadministered with TDF. In the third study (N = 14), participants received TDF 300 mg once daily and TDF 300 mg coadministered with coformulated elbasvir/grazoprevir 50 mg/100 mg once daily. Pharmacokinetics and safety were evaluated. Following coadministration, the tenofovir area under the plasma concentration-time curve to 24 hours and maximum plasma concentration geometric mean ratios (90% confidence intervals) for tenofovir and coadministered drug(s) versus tenofovir were 1.3 (1.2, 1.5) and 1.5 (1.3, 1.6), respectively, when coadministered with elbasvir; 1.2 (1.1, 1.3) and 1.1 (1.0, 1.2), respectively, when coadministered with grazoprevir; and 1.3 (1.2, 1.4) and 1.1 (1.0, 1.4), respectively, when coadministered with the elbasvir/grazoprevir coformulation. TDF had minimal effect on elbasvir and grazoprevir pharmacokinetics. Elbasvir and/or grazoprevir coadministered with TDF resulted in no clinically meaningful tenofovir exposure increases and was generally well tolerated, with no deaths, serious adverse events (AEs), discontinuations due to AEs, or laboratory AEs reported. No dose adjustments for elbasvir/grazoprevir or TDF are needed for coadministration in HCV/HIV-coinfected people.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yali Zhu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Puri A, Bhattaccharjee SA, Zhang W, Clark M, Singh O, Doncel GF, Banga AK. Development of a Transdermal Delivery System for Tenofovir Alafenamide, a Prodrug of Tenofovir with Potent Antiviral Activity Against HIV and HBV. Pharmaceutics 2019; 11:pharmaceutics11040173. [PMID: 30970630 PMCID: PMC6523937 DOI: 10.3390/pharmaceutics11040173] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Tenofovir alafenamide (TAF) is an effective nucleotide reverse transcriptase inhibitor that is used in the treatment of HIV-1 and HBV. Currently, it is being investigated for HIV prophylaxis. Oral TAF regimens require daily intake, which hampers adherence and increases the possibility of viral resistance. Long-acting formulations would significantly reduce this problem. Therefore, the aim of this study was to develop a transdermal patch containing TAF and investigate its performance in vitro through human epidermis. Two types of TAF patches were manufactured. Transparent patches were prepared using acrylate adhesive (DURO-TAK 87-2516), and suspension patches were prepared using silicone (BIO-PSA 7-4301) and polyisobutylene (DURO-TAK 87-6908) adhesives. In vitro permeation studies were performed while using vertical Franz diffusion cells for seven days. An optimized silicone-based patch was characterized for its adhesive properties and tested for skin irritation. The acrylate-based patches, comprising 2% w/w TAF and a combination of chemical enhancers, showed a maximum flux of 0.60 ± 0.09 µg/cm²/h. However, the silicone-based patch comprising of 15% w/w TAF showed the highest permeation (7.24 ± 0.47 μg/cm²/h). This study demonstrates the feasibility of developing silicone-based transdermal patches that can deliver a therapeutically relevant dose of TAF for the control of HIV and HBV infections.
Collapse
Affiliation(s)
- Ashana Puri
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | - Sonalika A Bhattaccharjee
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | - Wei Zhang
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, VA 22209, USA.
| | - Meredith Clark
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, VA 22209, USA.
| | - Onkar Singh
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, VA 22209, USA.
| | - Gustavo F Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, VA 22209, USA.
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
15
|
Transporter-dependent cytotoxicity of antiviral drugs in primary cultures of human proximal tubular cells. Toxicology 2018; 404-405:10-24. [DOI: 10.1016/j.tox.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/10/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
|
16
|
Slusarczyk M, Serpi M, Pertusati F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir Chem Chemother 2018; 26:2040206618775243. [PMID: 29792071 PMCID: PMC5971382 DOI: 10.1177/2040206618775243] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5'-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5'-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5'-monophosphate, which is further transformed to the active 5'-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan's research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents.
Collapse
Affiliation(s)
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
De Clercq E. Role of tenofovir alafenamide (TAF) in the treatment and prophylaxis of HIV and HBV infections. Biochem Pharmacol 2017; 153:2-11. [PMID: 29225131 DOI: 10.1016/j.bcp.2017.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
Tenofovir (TFV) is the cornerstone of the treatment and prophylaxis of HIV infections. It has been routinely used in its prodrug form TDF (tenofovir disoproxil fumarate) combined with emtricitabine ((-)FTC) and other antiretroviral agents. TDF has now been replaced by TAF (tenofovir alafenamide) which allows better uptake by the lymphoid tissue. In combination with elvitegravir (E), cobicistat (C), emtricitabine (F), TAF can be advocated as an STR (single tablet regimen, Genvoya®) for the treatment of HIV infections. In this combination, E and C may in the future be replaced by bictegravir. The prophylaxis of HIV infection is momentarily based upon Truvada®, the combination of F with TDF, which in the future may also be replaced by TAF. TAF (Vemlidy®) has also replaced TDF (Viread®) for the treatment of hepatitis B virus (HBV) infections. Both TDF and TAF offer little or no risk for virus-drug resistance. As compared to TDF, TAF limits the risk for nephrotoxicity and loss of bone mineral density. What remains to be settled, however, before the universal use of TAF could be recommended, is its safety during pregnancy and its applicability in the treatment of tuberculosis, in combination with rifampicin.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|