1
|
de Bruin N, Schneider AK, Reus P, Talmon S, Ciesek S, Bojkova D, Cinatl J, Lodhi I, Charlesworth B, Sinclair S, Pennick G, Laughey WF, Gribbon P, Kannt A, Schiffmann S. Ibuprofen, Flurbiprofen, Etoricoxib or Paracetamol Do Not Influence ACE2 Expression and Activity In Vitro or in Mice and Do Not Exacerbate In-Vitro SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms23031049. [PMID: 35162972 PMCID: PMC8835123 DOI: 10.3390/ijms23031049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications—including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)—have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model. We also analysed the ACE2 mRNA/protein levels and activity in lung, heart and aorta in ibuprofen treated mice. The drugs had no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model. There was no up-regulation of ACE2 mRNA/protein expression and activity in lung, heart and aorta tissue in ibuprofen-treated mice in comparison to untreated mice. Viral load was significantly reduced by both flurbiprofen and ibuprofen at high concentrations. Ibuprofen, flurbiprofen, etoricoxib and paracetamol demonstrated no effects on ACE2 expression or activity in vitro or in vivo. Higher concentrations of ibuprofen and flurbiprofen reduced SARS-CoV-2 replication in vitro.
Collapse
Affiliation(s)
- Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (A.-K.S.); (S.T.); (S.C.)
- Fraunhofer Cluster of Excellence Immune Mediated Diseases, CIMD, 60596 Frankfurt am Main, Germany
| | - Ann-Kathrin Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (A.-K.S.); (S.T.); (S.C.)
| | - Philipp Reus
- Institute of Medical Virology, University Hospital Frankfurt/Main, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (P.R.); (D.B.); (J.C.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany;
| | - Sonja Talmon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (A.-K.S.); (S.T.); (S.C.)
| | - Sandra Ciesek
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (A.-K.S.); (S.T.); (S.C.)
- Institute of Medical Virology, University Hospital Frankfurt/Main, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (P.R.); (D.B.); (J.C.)
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt/Main, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (P.R.); (D.B.); (J.C.)
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt/Main, Goethe University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (P.R.); (D.B.); (J.C.)
| | - Imran Lodhi
- Reckitt Healthcare Ltd., Dansom Lane South, Kingston Upon Hull HU8 7DS, UK; (I.L.); (B.C.); (S.S.); (G.P.); (W.F.L.)
| | - Bruce Charlesworth
- Reckitt Healthcare Ltd., Dansom Lane South, Kingston Upon Hull HU8 7DS, UK; (I.L.); (B.C.); (S.S.); (G.P.); (W.F.L.)
| | - Simon Sinclair
- Reckitt Healthcare Ltd., Dansom Lane South, Kingston Upon Hull HU8 7DS, UK; (I.L.); (B.C.); (S.S.); (G.P.); (W.F.L.)
| | - Graham Pennick
- Reckitt Healthcare Ltd., Dansom Lane South, Kingston Upon Hull HU8 7DS, UK; (I.L.); (B.C.); (S.S.); (G.P.); (W.F.L.)
| | - William F. Laughey
- Reckitt Healthcare Ltd., Dansom Lane South, Kingston Upon Hull HU8 7DS, UK; (I.L.); (B.C.); (S.S.); (G.P.); (W.F.L.)
- Health Professions Education Unit, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany;
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (A.-K.S.); (S.T.); (S.C.)
- Fraunhofer Cluster of Excellence Immune Mediated Diseases, CIMD, 60596 Frankfurt am Main, Germany
- Correspondence: (A.K.); or (S.S.); Tel.: +49-69-870025053 (A.K.); +49-69-870025060 (S.S.); Fax: +49-69-870010000 (S.S.)
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (A.-K.S.); (S.T.); (S.C.)
- Pharmazentrum Frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Correspondence: (A.K.); or (S.S.); Tel.: +49-69-870025053 (A.K.); +49-69-870025060 (S.S.); Fax: +49-69-870010000 (S.S.)
| |
Collapse
|
2
|
White Z, Milad N, Tehrani AY, Chen WWH, Donen G, Sellers SL, Bernatchez P. Angiotensin II receptor blocker losartan exacerbates muscle damage and exhibits weak blood pressure-lowering activity in a dysferlin-null model of Limb-Girdle muscular dystrophy type 2B. PLoS One 2019; 14:e0220903. [PMID: 31404091 PMCID: PMC6690544 DOI: 10.1371/journal.pone.0220903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
There is no cure or beneficial management option for Limb-Girdle muscular dystrophy (MD) type 2B (LGMD2B). Losartan, a blood pressure (BP) lowering angiotensin II (AngII) receptor type 1 (ATR1) blocker (ARB) with unique anti-transforming growth factor-β (TGF-β) properties, can protect muscles in various types of MD such as Duchenne MD, suggesting a potential benefit for LGMD2B patients. Herein, we show in a mild, dysferlin-null mouse model of LGMD2B that losartan increased quadriceps muscle fibrosis (142%; P<0.0001). In a severe, atherogenic diet-fed model of LGMD2B recently described by our group, losartan further exacerbated dysferlin-null mouse muscle wasting in quadriceps and triceps brachii, two muscles typically affected by LGMD2B, by 40% and 51%, respectively (P<0.05). Lower TGF-β signalling was not observed with losartan, therefore plasma levels of atherogenic lipids known to aggravate LGMD2B severity were investigated. We report that losartan increased both plasma triglycerides and cholesterol concentrations in dysferlin-null mice. Other protective properties of losartan, such as increased nitric oxide release and BP lowering, were also reduced in the absence of dysferlin expression. Our data suggest that LGMD2B patients may show some resistance to the primary BP-lowering effects of losartan along with accelerated muscle wasting and dyslipidemia. Hence, we urge caution on the use of ARBs in this population as their ATR1 pathway may be dysfunctional.
Collapse
Affiliation(s)
- Zoe White
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
- * E-mail: (ZW); (PB)
| | - Nadia Milad
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Arash Y. Tehrani
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - William Wei-Han Chen
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Graham Donen
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Stephanie L. Sellers
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Pascal Bernatchez
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
- * E-mail: (ZW); (PB)
| |
Collapse
|
3
|
Sui T, Xu L, Lau YS, Liu D, Liu T, Gao Y, Lai L, Han R, Li Z. Development of muscular dystrophy in a CRISPR-engineered mutant rabbit model with frame-disrupting ANO5 mutations. Cell Death Dis 2018; 9:609. [PMID: 29789544 PMCID: PMC5964072 DOI: 10.1038/s41419-018-0674-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022]
Abstract
Limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi myopathy type 3 (MMD3) are autosomal recessive muscular dystrophy caused by mutations in the gene encoding anoctamin-5 (ANO5), which belongs to the anoctamin protein family. Two independent lines of mice with complete disruption of ANO5 transcripts did not exhibit overt muscular dystrophy phenotypes; instead, one of these mice was observed to present with some abnormality in sperm motility. In contrast, a third line of ANO5-knockout (KO) mice with residual expression of truncated ANO5 expression was reported to display defective membrane repair and very mild muscle pathology. Many of the ANO5-related patients carry point mutations or small insertions/deletions (indels) in the ANO5 gene. To more closely mimic the human ANO5 mutations, we engineered mutant ANO5 rabbits via co-injection of Cas9 mRNA and sgRNA into the zygotes. CRISPR-mediated small indels in the exon 12 and/or 13 in the mutant rabbits lead to the development of typical signs of muscular dystrophy with increased serum creatine kinase (CK), muscle necrosis, regeneration, fatty replacement and fibrosis. This novel ANO5 mutant rabbit model would be useful in studying the disease pathogenesis and therapeutic treatments for ANO5-deficient muscular dystrophy.
Collapse
Affiliation(s)
- Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, 130062, Changchun, China
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, United States
| | - Yeh Siang Lau
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, United States
| | - Di Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, 130062, Changchun, China
| | - Tingjun Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, 130062, Changchun, China
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, United States
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, 130062, Changchun, China.
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, United States.
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, 130062, Changchun, China.
| |
Collapse
|