1
|
Biletskyi B, Dousset M, Colonna P, Héran V, Carissan Y, Commeiras L, Chouraqui G. Formation of Substituted Benzocyclobutenes Starting from Donor-Acceptor Cyclopropanes. J Org Chem 2025; 90:4115-4120. [PMID: 40048655 DOI: 10.1021/acs.joc.4c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
We describe an operationally simple, good-yielding, two-step cascade process to convert biscyclopropanes 1 into high-value benzocyclobutene building blocks 3. This study highlights the novel reactivity of our "in-house" donor-acceptor cyclopropane, achieving complete diastereoselectivity and regioselectivity transfer.
Collapse
Affiliation(s)
- Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Maxime Dousset
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Pierre Colonna
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Virginie Héran
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13397 Marseille, France
| |
Collapse
|
2
|
Pagel PS, Hang D, Freed JK, Crystal GJ. Advances in Cardiovascular Pharmacotherapy. II. Ivabradine, an Inhibitor of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel. J Cardiothorac Vasc Anesth 2025:S1053-0770(25)00247-2. [PMID: 40199701 DOI: 10.1053/j.jvca.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Ivabradine selectively reduces heart rate by inhibiting the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel in the sinoatrial node. Unlike other medications that produce negative chronotropic effects [beta-blockers, calcium channel blockers], ivabradine does not affect systemic, pulmonary, and coronary hemodynamics. Despite several proof-of-concept clinical studies suggesting that ivabradine may exert anti-ischemic effects, two large randomized trials did not support its use in patients with chronic stable angina. Preliminary data also did not support the use of ivabradine in patients with acute ST-segment elevation myocardial infarction or acutely decompensated heart failure. However, ivabradine improved outcome in patients with heart failure with reduced ejection fraction (HFrEF), leading to its approval by the Food and Drug Administration, but the drug failed to do so in those with heart failure with preserved ejection fraction (HFpEF). Ivabradine may also be useful in cardiac electrophysiology disorders characterized by tachycardia (e.g., inappropriate sinus tachycardia, postural orthostatic tachycardia syndrome), but it has not yet gained wide acceptance for these indications. In this article, the authors briefly review the structure and function of the cardiac HCN channel; discuss the development and actions of drugs, including ivabradine, that modulate the channel's activity; describe in detail the potential clinical applications of ivabradine in patients with coronary artery disease, HFrEF and HFpEF, and cardiac electrophysiology; comment on the adverse effects of ivabradine therapy; and finally, consider the potential anesthetic implications of ivabradine in patients undergoing noncardiac and cardiac surgery.
Collapse
Affiliation(s)
- Paul S Pagel
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI.
| | - Dustin Hang
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI
| | - Julie K Freed
- Department of Anesthesiology, the Medical College of Wisconsin, Milwaukee, WI
| | - George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
3
|
Hager T, Agorastos A, Ögren SO, Stiedl O. Identifying Cardiovascular Risk by Nonlinear Heart Rate Dynamics Analysis: Translational Biomarker from Mice to Humans. Brain Sci 2025; 15:306. [PMID: 40149828 PMCID: PMC11940095 DOI: 10.3390/brainsci15030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The beat-by-beat fluctuation of heart rate (HR) in its temporal sequence (HR dynamics) provides information on HR regulation by the autonomic nervous system (ANS) and its dysregulation in pathological states. Commonly, linear analyses of HR and its variability (HRV) are used to draw conclusions about pathological states despite clear statistical and translational limitations. OBJECTIVE The main aim of this study was to compare linear and nonlinear HR measures, including detrended fluctuation analysis (DFA), based on ECG recordings by radiotelemetry in C57BL/6N mice to identify pathological HR dynamics. METHODS We investigated different behavioral and a wide range of pharmacological interventions which alter ANS regulation through various peripheral and/or central mechanisms including receptors implicated in psychiatric disorders. This spectrum of interventions served as a reference system for comparison of linear and nonlinear HR measures to identify pathological states. RESULTS Physiological HR dynamics constitute a self-similar, scale-invariant, fractal process with persistent intrinsic long-range correlations resulting in physiological DFA scaling coefficients of α~1. Strongly altered DFA scaling coefficients (α ≠ 1) indicate pathological states of HR dynamics as elicited by (1) parasympathetic blockade, (2) parasympathetic overactivation and (3) sympathetic overactivation but not inhibition. The DFA scaling coefficients are identical in mice and humans under physiological conditions with identical pathological states by defined pharmacological interventions. CONCLUSIONS Here, we show the importance of tonic vagal function for physiological HR dynamics in mice, as reported in humans. Unlike linear measures, DFA provides an important translational measure that reliably identifies pathological HR dynamics based on altered ANS control by pharmacological interventions. Central ANS dysregulation represents a likely mechanism of increased cardiac mortality in psychiatric disorders.
Collapse
Affiliation(s)
- Torben Hager
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - Agorastos Agorastos
- Division of Neurosciences, II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
- Department of Health, Safety and Environment, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ohashi N, Ohashi M, Hoshino R, Deguchi H, Baba H. Ivabradine reduces neuropathic pain after spinal cord injury by inhibiting excitatory synaptic transmission in the spinal dorsal horn. Neurosci Lett 2025; 848:138113. [PMID: 39765281 DOI: 10.1016/j.neulet.2025.138113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Spinal cord injuries (SCIs) can lead to severe neuropathic pain and increased risk of myocardial infarction and heart failure; therefore, the use of analgesics against SCI-induced pain should be minimized because of their adverse effects on the cardiovascular system. Ivabradine, a blocker of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, is used as a bradycardic agent, but recent studies focused on it as an analgesic agent for peripheral neuropathic pain. However, the analgesic effects of ivabradine on central neuropathic pain, such as SCI-induced pain, have not been examined. The aim of this study was to investigate the spinal analgesic effects of ivabradine on central neuropathic pain induced by SCI. Ivabradine induced analgesia in both spontaneous pain-related behavior and mechanical allodynia in SCI-induced pain (6-7 rats/group; p < 0.01). In immunohistochemical staining analyses, ivabradine suppressed phosphorylation of extracellular signal-regulated kinases activated by SCI-induced pain in the superficial spinal dorsal horn (6 rats/group; p < 0.01). In in vitro whole-cell patch-clamp analysis, ivabradine decreased the frequency of miniature excitatory postsynaptic currents in substantia gelatinosa neurons (11-12 rats/group; p < 0.01). We concluded that ivabradine reduces SCI-induced pain by inhibiting excitatory synaptic transmission in the spinal dorsal horn.
Collapse
Affiliation(s)
- Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan.
| | - Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan.
| | - Rintaro Hoshino
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan
| | - Hiroyuki Deguchi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan.
| |
Collapse
|
5
|
Alijanzadeh D, Moghim S, Zarand P, Akbarzadeh MA, Zarinfar Y, Khaheshi I. Reassessing Ivabradine: Potential Benefits and Risks in Atrial Fibrillation Therapy. Cardiovasc Drugs Ther 2024. [DOI: 10.1007/s10557-024-07652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/03/2025]
|
6
|
Jean Jacques A, D’Avanzo N. Inhibition of HCN1 currents by norquetiapine, an active metabolite of the atypical anti-psychotic drug quetiapine. Front Pharmacol 2024; 15:1445509. [PMID: 39434909 PMCID: PMC11491390 DOI: 10.3389/fphar.2024.1445509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Quetiapine is a second-generation atypical antipsychotic drug that has been commonly prescribed for the treatment of schizophrenia, major depressive disorder (depression), and other psychological disorders. Targeted inhibition of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels, which generate Ih, may provide effective resistance against schizophrenia and depression. We investigated if HCN channels could contribute to the therapeutic effect of quetiapine, and its major active metabolite norquetiapine. Two-electrode voltage clamp recordings were used to assess the effects of quetiapine and its active metabolites 7-hydroxyquetiapine and norquetiapine on currents from HCN1 channels expressed in Xenopus laevis oocytes. Norquetiapine, but not quetiapine nor 7-hydroxyquetiapine, has an inhibitory effect on HCN1 channels. Norquetiapine selectively inhibited HCN1 currents by shifting the voltage-dependence of activation to more hyperpolarized potentials in a concentration-dependent manner with an IC50 of 13.9 ± 0.8 μM for HCN1 and slowing channel opening, without changing the kinetics of closing. Inhibition by norquetiapine primarily occurs from in the closed state. Norquetiapine inhibition is not sensitive to the external potassium concentration, and therefore, likely does not block the pore. Norquetiapine inhibition also does not dependent on the cyclic-nucleotide binding domain. Norquetiapine also inhibited HCN4 channels with reduced efficacy than HCN1 and had no effect on HCN2 channels. Therefore, HCN channels are key targets of norquetiapine, the primary active metabolite of quetiapine. These data help to explain the therapeutic mechanisms by which quetiapine aids in the treatment of anxiety, major depressive disorder, bipolar disorder, and schizophrenia, and may represent a novel structure for future drug design of HCN inhibitors.
Collapse
Affiliation(s)
| | - Nazzareno D’Avanzo
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Umeya N, Yoshizawa Y, Fukuda K, Ikeda K, Kamada M, Inada H, Usui T, Miyawaki I. Detection of retinal dysfunction induced by HCN channel inhibitors using multistep light stimulus and long-duration light stimulus ERG in rats. Exp Eye Res 2024; 241:109847. [PMID: 38401854 DOI: 10.1016/j.exer.2024.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Ivabradine, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel inhibitor, has been reported to induce photosensitivity-related visual disturbances such as phosphene in humans. Ivabradine-induced visual disturbances are caused by inhibition of HCN channels in the retina, and the mechanisms have been verified using HCN channel knockout mice and electroretinography (ERG). However, in rats, classical ERG using single flash light stimulus with standard analyses of waveform amplitude and latency has not revealed abnormal retinal function after administration of ivabradine. To verify whether retinal dysfunction after ivabradine administration was detectable in rats, we performed ERG using multistep flash light stimulation at the time when plasma concentration of ivabradine was high. Furthermore, the mechanism of the change in the waveform that appeared after the b-wave was investigated. Ivabradine and cilobradine, a selective HCN channel inhibitor, were administered subcutaneously to rats at 4-40 mg/kg as a single dose, and flash or long-duration ERG recordings at each light stimulus luminance were conducted 1.5 h after administration. Plasma and retinal concentrations of both compounds were measured immediately after the ERG recordings. In the flash ERG, prolongation of a- and/or b-wave latencies were detected at each light stimulus, and dose-dependent waveform changes after the b-wave were recorded at the specific light stimulus luminance for both compounds. These ERG changes increased in response to increasing plasma and retinal concentrations for both ivabradine and cilobradine. In the long-duration light stimulus ERG, a change in the waveform of the b-wave trough and attenuation of the c-wave were recorded, suggesting that the feedback control in the photoreceptor cells may be inhibited. This study revealed that the retinal dysfunction by HCN channel inhibitors in rats can be detected by multistep light stimulus ERG. Additionally, we identified that the inhibition of feedback current and the sustained responses in the photoreceptor cells cause the retinal dysfunction of HCN channel inhibitors in rats.
Collapse
Affiliation(s)
- Naohisa Umeya
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan.
| | - Yuki Yoshizawa
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Kosuke Fukuda
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Keigo Ikeda
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Mami Kamada
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hiroshi Inada
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Toru Usui
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Drug Research Division, Sumitomo Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| |
Collapse
|
8
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
9
|
Han X, Pinto LG, Vilar B, McNaughton PA. Opioid-Induced Hyperalgesia and Tolerance Are Driven by HCN Ion Channels. J Neurosci 2024; 44:e1368232023. [PMID: 38124021 PMCID: PMC11059424 DOI: 10.1523/jneurosci.1368-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active μ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.
Collapse
Affiliation(s)
- Xue Han
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Larissa Garcia Pinto
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Bruno Vilar
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
10
|
Tan HB, Zhou JY, Liu YS, Lei T, Wang SY, Hu SS, Zhang X, Xu ZG, Tang DY, Chen ZZ, Wang BC. Visible-Light-Mediated Catalyst-Free [2+2] Cycloaddition Reaction for Dihydrocyclobuta[ b]naphthalene-3,8-diones Synthesis under Mild Conditions. Molecules 2023; 28:7654. [PMID: 38005375 PMCID: PMC10675681 DOI: 10.3390/molecules28227654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
A facile and efficient visible-light-mediated method for directly converting 1,4-naphthoquinones into dihydrocyclo-buta[b]naphthalene-3,8-diones (DHCBNDOs) under mild and clean conditions without using any photocatalysts is reported. This approach exhibited favorable compatibility with functional groups and afforded a series of DHCBNDOs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Hong-Bo Tan
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Jia-Ying Zhou
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Ying-Shan Liu
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Tong Lei
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Shi-Yu Wang
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Shuang-Shuang Hu
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Xu Zhang
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Zhi-Gang Xu
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Dian-Yong Tang
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Zhong-Zhu Chen
- National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (J.-Y.Z.); (Z.-Z.C.)
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
11
|
Mu L, Liu X, Yu H, Vickstrom CR, Friedman V, Kelly TJ, Hu Y, Su W, Liu S, Mantsch JR, Liu QS. cAMP-mediated upregulation of HCN channels in VTA dopamine neurons promotes cocaine reinforcement. Mol Psychiatry 2023; 28:3930-3942. [PMID: 37845497 PMCID: PMC10730389 DOI: 10.1038/s41380-023-02290-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Chronic cocaine exposure induces enduring neuroadaptations that facilitate motivated drug taking. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to modulate neuronal firing and pacemaker activity in ventral tegmental area (VTA) dopamine neurons. However, it remained unknown whether cocaine self-administration affects HCN channel function and whether HCN channel activity modulates motivated drug taking. We report that rat VTA dopamine neurons predominantly express Hcn3-4 mRNA, while VTA GABA neurons express Hcn1-4 mRNA. Both neuronal types display similar hyperpolarization-activated currents (Ih), which are facilitated by acute increases in cAMP. Acute cocaine application decreases voltage-dependent activation of Ih in VTA dopamine neurons, but not in GABA neurons. Unexpectedly, chronic cocaine self-administration results in enhanced Ih selectively in VTA dopamine neurons. This differential modulation of Ih currents is likely mediated by a D2 autoreceptor-induced decrease in cAMP as D2 (Drd2) mRNA is predominantly expressed in dopamine neurons, whereas D1 (Drd1) mRNA is barely detectable in the VTA. Moreover, chronically decreased cAMP via Gi-DREADD stimulation leads to an increase in Ih in VTA dopamine neurons and enhanced binding of HCN3/HCN4 with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), an auxiliary subunit that is known to facilitate HCN channel surface trafficking. Finally, we show that systemic injection and intra-VTA infusion of the HCN blocker ivabradine reduces cocaine self-administration under a progressive ratio schedule and produces a downward shift of the cocaine dose-response curve. Our results suggest that cocaine self-administration induces an upregulation of Ih in VTA dopamine neurons, while HCN inhibition reduces the motivation for cocaine intake.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wantang Su
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John R Mantsch
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
12
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
13
|
Chen CS, So EC, Wu SN. Modulating Hyperpolarization-Activated Cation Currents through Small Molecule Perturbations: Magnitude and Gating Control. Biomedicines 2023; 11:2177. [PMID: 37626674 PMCID: PMC10452073 DOI: 10.3390/biomedicines11082177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The hyperpolarization-activated cation current (Ih) exhibits a slowly activating time course of the current (Ih) when the cell membrane is hyperpolarized for an extended duration. It is involved in generating electrical activity in various excitable cells. Numerous structurally distinct compounds or herbal drugs have the potential to impact both the magnitude and gating kinetics of this current. Brivaracetam, a chemical analog of levetiracetam known to be a ligand for synaptic vesicle protein 2A, could directly suppress the Ih magnitude. Carisbamate, an anticonvulsant agent, not only inhibited the Ih amplitude but also reduced the strength of voltage-dependent hysteresis (Hys(V)) associated with Ih. Cilobradine, similar to ivabradine, inhibited the amplitude of Ih; however, it also suppressed the amplitude of delayed-rectifier K+ currents. Dexmedetomidine, an agonist of α2-adrenergic receptor, exerted a depressant action on Ih in a concentration-dependent fashion. Suppression of Ih amplitude was observed when GAL-021, a breathing control modulator, was present at a concentration exceeding 30 μM. Lutein, one of the few xanthophyll carotenoids, was able to suppress the Ih amplitude as well as to depress Hys(V)'s strength of Ih. Pirfenidone, a pyridine derivative known to be an anti-fibrotic agent, depressed the Ih magnitude in a concentration- and voltage-dependent fashion. Tramadol, a synthetic centrally active analgesic, was shown to reduce the Ih magnitude, independent of its interaction with opioid receptors. Various herbal drugs, including ent-kaurane-type diterpenoids from Croton tonkinensis, Ganoderma triterpenoids, honokiol, and pterostilbene, demonstrated efficacy in reducing the magnitude of Ih. Conversely, oxaliplatin, a platinum-based chemotherapeutic compound, was observed to effectively increase the Ih amplitude. Collectively, the regulatory effects of these compounds or herbal drugs on cellular function can be partly attributed to their perturbations on Ih.
Collapse
Affiliation(s)
- Cheng-Shih Chen
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan; (C.-S.C.); (E.C.S.)
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan; (C.-S.C.); (E.C.S.)
| | - Sheng-Nan Wu
- School of Medicine, National Sun Yat Sen University College of Medicine, Kaohsiung 804, Taiwan
- Department of Medical Education & Research, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| |
Collapse
|
14
|
Sun D, Wang Q. The application of SUDEP in forensic diagnosis: a mini review. Front Neurol 2023; 14:1169003. [PMID: 37181558 PMCID: PMC10169668 DOI: 10.3389/fneur.2023.1169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
In the epilepsy population, the risk of sudden death from epilepsy is rare but is ~24 times greater than the risk of sudden death from other causes. Sudden unexpected death in epilepsy (SUDEP) has been widely recognized in clinical studies. Despite its significance as a cause of death, SUDEP is rarely used in forensic practice. This review focuses on the forensic characteristics of SUDEP, analyzed the reasons for its underuse in forensic practice, and illustrated the prospect of establishing uniform diagnostic criteria for sudden unexpected death in epilepsy and molecular anatomy in aiding forensic diagnosis.
Collapse
Affiliation(s)
| | - Qiang Wang
- Forensic Science Center, East China University of Political Science and Law, Shanghai, China
| |
Collapse
|
15
|
Szabo PL, Marksteiner J, Ebner J, Dostal C, Podesser BK, Sauer J, Kubista H, Todt H, Hackl B, Koenig X, Kiss A, Hilber K. Ivabradine acutely improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy. Physiol Rep 2023; 11:e15664. [PMID: 37032434 PMCID: PMC10083165 DOI: 10.14814/phy2.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
The muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Therefore, ventricular cardiomyocytes were isolated from the hearts of adult dystrophin-deficient DMDmdx rats, and the effects of acutely applied ivabradine on intracellular Ca transients were tested. In addition, the drug's acute impact on cardiac function in DMDmdx rats was assessed by transthoracic echocardiography. We found that administration of ivabradine to DMDmdx rats significantly improved cardiac function. Moreover, the amplitude of electrically induced intracellular Ca transients in ventricular cardiomyocytes isolated from DMDmdx rats was increased by the drug. We conclude that ivabradine enhances Ca release from the sarcoplasmic reticulum in dystrophic cardiomyocytes and thereby improves contractile performance in the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
16
|
Depressed HCN4 function in the type 2 diabetic sinoatrial node. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Majgaard J, Skov FG, Kim S, Hjortdal VE, Boedtkjer DMB. Positive chronotropic action of HCN channel antagonism in human collecting lymphatic vessels. Physiol Rep 2022; 10:e15401. [PMID: 35980021 PMCID: PMC9387113 DOI: 10.14814/phy2.15401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023] Open
Abstract
Spontaneous action potentials precede phasic contractile activity in human collecting lymphatic vessels. In this study, we investigated the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in human collecting lymphatics and by pharmacological inhibition ex vivo tested their potential role in controlling contractile function. Spontaneous and agonist-evoked tension changes of isolated thoracic duct and mesenteric lymphatic vessels-obtained from surgical patients with informed consent-were investigated by isometric myography, and ivabradine, ZD7288 or cesium were used to inhibit HCN. Analysis of HCN isoforms by RT-PCR and immunofluorescence revealed HCN2 to be the predominantly expressed mRNA isoform in human thoracic duct and mesenteric lymphatic vessels and HCN2-immunoreactivity confirmed protein expression in both vessel types. However, in functional experiments ex vivo the HCN inhibitors ivabradine, ZD7288, and cesium failed to lower contraction frequency: conversely, all three antagonists induced a positive chronotropic effect with concurrent negative inotropic action, though these effects first occurred at concentrations regarded as supramaximal for HCN inhibition. Based on these results, we conclude that human collecting vessels express HCN channel proteins but under the ex vivo experimental conditions described here HCN channels have little involvement in regulating contraction frequency in human collecting lymphatic vessels. Furthermore, HCN antagonists can produce concentration-dependent positive chronotropic and negative inotropic effects, which are apparently unrelated to HCN antagonism.
Collapse
Affiliation(s)
- Jens Majgaard
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | | | - Sukhan Kim
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Vibeke Elisabeth Hjortdal
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Cardiothoracic and Vascular SurgeryAarhus University HospitalAarhusDenmark
| | - Donna M. B. Boedtkjer
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
18
|
Analgesic effect of ivabradine against inflammatory pain mediated by hyperpolarization-activated cyclic nucleotide–gated cation channels expressed on primary afferent terminals in the spinal dorsal horn. Pain 2022; 163:1356-1369. [DOI: 10.1097/j.pain.0000000000002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/14/2021] [Indexed: 11/25/2022]
|
19
|
Mokrov GV. Linked biaromatic compounds as cardioprotective agents. Arch Pharm (Weinheim) 2021; 355:e2100428. [PMID: 34967027 DOI: 10.1002/ardp.202100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases (CVDs) are widespread in the modern world, and their number is constantly growing. For a long time, CVDs have been the leading cause of morbidity and mortality worldwide. Drugs for the treatment of CVD have been developed almost since the beginning of the 20th century, and a large number of effective cardioprotective agents of various classes have been created. Nevertheless, the need for the design and development of new safe drugs for the treatment of CVD remains. Literature data indicate that a huge number of cardioprotective agents of various generations and mechanisms correspond to a single generalized pharmacophore model containing two aromatic nuclei linked by a linear linker. In this regard, we put forward a concept for the design of a new generation of cardioprotective agents with a multitarget mechanism of action within the indicated pharmacophore model. This review is devoted to a generalization of the currently known compounds with cardioprotective properties and corresponding to the pharmacophore model of biaromatic compounds linked by a linear linker. Particular attention is paid to the history of the creation of these drugs, approaches to their design, and analysis of the structure-action relationship within each class.
Collapse
Affiliation(s)
- Grigory V Mokrov
- Department of Medicinal Chemistry, FSBI "Zakusov Institute of Pharmacology", Moscow, Russia
| |
Collapse
|
20
|
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | | | - Yellaiah Tangella
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| |
Collapse
|
21
|
Bernard Healey SA, Scholtes I, Abrahams M, McNaughton PA, Menon DK, Lee MC. Role of hyperpolarization-activated cyclic nucleotide-gated ion channels in neuropathic pain: a proof-of-concept study of ivabradine in patients with chronic peripheral neuropathic pain. Pain Rep 2021; 6:e967. [PMID: 34712888 PMCID: PMC8547924 DOI: 10.1097/pr9.0000000000000967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel receptors mediate neuropathic pain in preclinical models. Here, exploratory analysis reveals a dose-dependent reduction in pain with HCN blockade in patients with neuropathic pain. Introduction: Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels mediate repetitive action potential firing in the heart and nervous system. The HCN2 isoform is expressed in nociceptors, and preclinical studies suggest a critical role in neuropathic pain. Ivabradine is a nonselective HCN blocker currently available for prescription for cardiac indications. Mouse data suggest that ivabradine in high concentrations is equianalgesic with gabapentin. We sought to translate these findings to patients with chronic peripheral neuropathic pain. Objectives: We sought to translate these findings to patients with chronic peripheral neuropathic pain. Methods: We adopted an open-label design, administering increasing doses of ivabradine to target a heart rate of 50 to 60 BPM, up to a maximum of 7.5 mg twice daily. All participants scored their pain on an 11-point numerical rating scale (NRS). Results: Seven (7) participants received the drug and completed the study. There was no significant treatment effect on the primary endpoint, the difference between the mean score at baseline and at maximum dosing (mean reduction = 0.878, 95% CI = −2.07 to 0.31, P = 0.1). Exploratory analysis using linear mixed models, however, revealed a highly significant correlation between ivabradine dose and pain scores (χ2(1) = 74.6, P < 0.001), with a reduction of 0.12 ± 0.01 (SEM) NRS points per milligram. The 2 participants with painful diabetic neuropathy responded particularly well. Conclusion: This suggests that ivabradine may be efficacious at higher doses, particularly in patients with diabetic neuropathic pain. Importantly, participants reported no adverse effects. These data suggest that ivabradine, a peripherally restricted drug (devoid of central nervous system side effects), is well tolerated in patients with chronic neuropathic pain. Ivabradine is now off-patent, and its analgesic potential merits further investigation in clinical trials.
Collapse
Affiliation(s)
| | - Ingrid Scholtes
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Mark Abrahams
- Pain Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Michael C Lee
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Oknińska M, Paterek A, Zambrowska Z, Mackiewicz U, Mączewski M. Effect of Ivabradine on Cardiac Ventricular Arrhythmias: Friend or Foe? J Clin Med 2021; 10:4732. [PMID: 34682854 PMCID: PMC8537674 DOI: 10.3390/jcm10204732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Life-threatening ventricular arrhythmias, such as ventricular tachycardia and ventricular fibrillation remain an ongoing clinical problem and their prevention and treatment require optimization. Conventional antiarrhythmic drugs are associated with significant proarrhythmic effects that often outweigh their benefits. Another option, the implantable cardioverter defibrillator, though clearly the primary therapy for patients at high risk of ventricular arrhythmias, is costly, invasive, and requires regular monitoring. Thus there is a clear need for new antiarrhythmic treatment strategies. Ivabradine, a heartrate-reducing agent, an inhibitor of HCN channels, may be one of such options. In this review we discuss emerging data from experimental studies that indicate new mechanism of action of this drug and further areas of investigation and potential use of ivabradine as an antiarrhythmic agent. However, clinical evidence is limited, and the jury is still out on effects of ivabradine on cardiac ventricular arrhythmias in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Michał Mączewski
- Centre of Postgraduate Medical Education, Department of Clinical Physiology, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (M.O.); (A.P.); (Z.Z.); (U.M.)
| |
Collapse
|
23
|
Benzoni P, Bertoli G, Giannetti F, Piantoni C, Milanesi R, Pecchiari M, Barbuti A, Baruscotti M, Bucchi A. The funny current: Even funnier than 40 years ago. Uncanonical expression and roles of HCN/f channels all over the body. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:189-204. [PMID: 34400215 DOI: 10.1016/j.pbiomolbio.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Discovered some 40 years ago, the If current has since been known as the "pacemaker" current due to its role in the initiation and modulation of the heartbeat and of neuronal excitability. But this is not all, the funny current keeps entertaining the researchers; indeed, several data discovering novel and uncanonical roles of f/HCN channel are quickly accumulating. In the present review, we provide an overview of the expression and cellular functions of HCN/f channels in a variety of systems/organs, and particularly in sour taste transduction, hormones secretion, activation of astrocytes and microglia, inhibition of osteoclastogenesis, renal ammonium excretion, and peristalsis in the gastrointestinal and urine systems. We also analyzed the role of HCN channels in sustaining cellular respiration in mitochondria and their participation to mitophagy under specific conditions. The relevance of HCN currents in undifferentiated cells, and specifically in the control of stem cell cycle and in bioelectrical signals driving left/right asymmetry during zygote development, is also considered. Finally, we present novel data concerning the expression of HCN mRNA in human leukocytes. We can thus conclude that the emerging evidence presented in this review clearly points to an increasing interest and importance of the "funny" current that goes beyond its role in cardiac sinoatrial and neuronal excitability regulation.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Raffaella Milanesi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| | - Matteo Pecchiari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via L. Mangiagalli 32, 20133, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
24
|
Peters CH, Liu PW, Morotti S, Gantz SC, Grandi E, Bean BP, Proenza C. Bidirectional flow of the funny current (I f) during the pacemaking cycle in murine sinoatrial node myocytes. Proc Natl Acad Sci U S A 2021; 118:e2104668118. [PMID: 34260402 PMCID: PMC8285948 DOI: 10.1073/pnas.2104668118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (If) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify If during the cardiac cycle in mouse SAMs. We found that If is persistently active throughout the sinoatrial AP, with surprisingly little voltage-dependent gating. As a consequence, it carries both inward and outward current around its reversal potential of -30 mV. Despite operating at only 2 to 5% of its maximal conductance, If carries a substantial fraction of both depolarizing and repolarizing net charge movement during the firing cycle. We also show that β-adrenergic receptor stimulation increases the percentage of net depolarizing charge moved by If, consistent with a contribution of If to the fight-or-flight increase in heart rate. These properties were confirmed by heterologously expressed HCN4 channels and by mathematical models of If Modeling further suggested that the slow rates of activation and deactivation of the HCN4 isoform underlie the persistent activity of If during the sinoatrial AP. These results establish a new conceptual framework for the role of If in pacemaking, in which it operates at a very small fraction of maximal activation but nevertheless drives membrane potential oscillations in SAMs by providing substantial driving force in both inward and outward directions.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Stephanie C Gantz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
25
|
Xie H, Shen XY, Zhao N, Ye P, Ge Z, Hu ZY. Ivabradine Ameliorates Cardiac Diastolic Dysfunction in Diabetic Mice Independent of Heart Rate Reduction. Front Pharmacol 2021; 12:696635. [PMID: 34239443 PMCID: PMC8259788 DOI: 10.3389/fphar.2021.696635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Cardiac fibroblast (CF) proliferation and activation play important roles in cardiac fibrosis and diastolic dysfunction (DD), which are involved in fibrosis-associated cardiovascular diseases. A previous study showed that ivabradine, a specific heart rate (HR)-lowering agent, significantly ameliorated DD in diabetic db/db mice by reducing HR. Herein, we attempted to determine whether ivabradine has antifibrotic and cardioprotective effects in diabetic mice by directly suppressing CF proliferation and activation, independent of a reduction in HR. We found that knockdown of c-Jun N-terminal kinase (JNK) or p38 mitogen-activated protein kinase (MAPK), or treatment with ivabradine, reduced JNK and p38 MAPK phosphorylation and the protein expression of proliferating cell nuclear antigen, collagen I, collagen III, tissue inhibitor of matrix metalloproteinase 2, and α-smooth muscle actin, accompanied with upregulation of matrix metalloproteinase 2 both in high glucose-treated neonatal rat CFs and left ventricular CFs isolated from db/db mice. However, zatebradine (a HR-lowering agent) did not have these effects in vitro or in vivo. In addition, cardiac fibrosis and DD were ameliorated in db/db mice that were intravenously administered lentiviruses carrying short hairpin RNAs targeting JNK and p38 MAPK or administered ivabradine. Taken together, these findings demonstrate that the ivabradine-induced amelioration of cardiac fibrosis, and DD in db/db mice may be at least in part attributable to the suppression of CF proliferation and activation, through the inhibition of JNK and p38 MAPK.
Collapse
Affiliation(s)
- Hao Xie
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xing-Yi Shen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Na Zhao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zuo-Ying Hu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Hoekstra M, van Ginneken ACG, Wilders R, Verkerk AO. HCN4 current during human sinoatrial node-like action potentials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:105-118. [PMID: 34153331 DOI: 10.1016/j.pbiomolbio.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the many studies carried out over the past 40 years, the contribution of the HCN4 encoded hyperpolarization-activated 'funny' current (If) to pacemaker activity in the mammalian sinoatrial node (SAN), and the human SAN in particular, is still controversial and not fully established. OBJECTIVE To study the contribution of If to diastolic depolarization of human SAN cells and its dependence on heart rate, cAMP levels, and atrial load. METHODS HCN4 channels were expressed in human cardiac myocyte progenitor cells (CMPCs) and HCN4 currents assessed using perforated patch-clamp in traditional voltage clamp mode and during action potential clamp with human SAN-like action potential waveforms with 500-1500 ms cycle length, in absence or presence of forskolin to mimic β-adrenergic stimulation and a -15 mV command potential offset to mimic atrial load. RESULTS Forskolin significantly increased the fully-activated HCN4 current density at -140 mV by 14% and shifted the steady-state activation curve by +7.4 mV without affecting its slope. In addition, forskolin significantly accelerated current activation but slowed deactivation. The HCN4 current did not completely deactivate before the subsequent diastolic depolarization during action potential clamp. The amplitude of HCN4 current increased with increasing cycle length, was significantly larger in the presence of forskolin at all cycle lengths, and was significantly increased upon the negative offset to the command potential. CONCLUSIONS If is active during a human SAN action potential waveform and its amplitude is modulated by heart rate, β-adrenergic stimulation, and diastolic voltage range, such that If is under delicate control.
Collapse
Affiliation(s)
- Maaike Hoekstra
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoni C G van Ginneken
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Amstetter D, Badt F, Rubi L, Bittner RE, Ebner J, Uhrin P, Hilber K, Koenig X, Todt H. The bradycardic agent ivabradine decreases conduction velocity in the AV node and in the ventricles in-vivo. Eur J Pharmacol 2021; 893:173818. [PMID: 33345856 DOI: 10.1016/j.ejphar.2020.173818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Ivabradine blocks hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels, thereby lowering the heart rate, an action that is used clinically for the treatment of heart failure and angina pectoris. We and others have shown previously that ivabradine, in addition to its HCN channel blocking activity, also inhibits voltage-gated Na channels in vitro at concentrations that may be clinically relevant. Such action may reduce conduction velocity in cardiac atria and ventricles. Here, we explore the effect of administration of ivabradine on parameters of ventricular conduction and repolarization in the surface ECG of anesthetized mice. We found that 5 min after i.p. administration of 10 mg/kg ivabradine spontaneous heart rate had declined by ~13%, which is within the range observed in human clinical studies. At the same time a significant increase in QRS duration by ~18% was observed, suggesting a reduction in ventricular conduction velocity. During transesophageal pacing at heart rates between 100 and 220 beats/min there was no obvious rate-dependence of ivabradine-induced QRS prolongation. On the other hand, ivabradine produced substantial rate-dependent slowing of AV nodal conduction. We conclude that ivabradine prolongs conduction in the AV-node and in the ventricles in vivo.
Collapse
Affiliation(s)
- Daniel Amstetter
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian Badt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Lena Rubi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Reginald E Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Janine Ebner
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Austria
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach. Sci Rep 2020; 10:11831. [PMID: 32678143 PMCID: PMC7367351 DOI: 10.1038/s41598-020-68567-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 µM ivabradine—an open channel blocker of HCNs—for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).
Collapse
|
29
|
Isoform-specific regulation of HCN4 channels by a family of endoplasmic reticulum proteins. Proc Natl Acad Sci U S A 2020; 117:18079-18090. [PMID: 32647060 DOI: 10.1073/pnas.2006238117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.
Collapse
|
30
|
Lu TL, Lu TJ, Wu SN. Inhibitory Effective Perturbations of Cilobradine (DK-AH269), A Blocker of HCN Channels, on the Amplitude and Gating of Both Hyperpolarization-Activated Cation and Delayed-Rectifier Potassium Currents. Int J Mol Sci 2020; 21:2416. [PMID: 32244431 PMCID: PMC7177279 DOI: 10.3390/ijms21072416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Cilobradine (CIL, DK-AH269), an inhibitor of hyperpolarization-activated cation current (Ih), has been observed to possess pro-arrhythmic properties. Whether and how CIL is capable of perturbing different types of membrane ionic currents existing in electrically excitable cells, however, is incompletely understood. In this study, we intended to examine possible modifications by it or other structurally similar compounds of ionic currents in pituitary tumor (GH3) cells and in heart-derived H9c2 cells. The standard whole-cell voltage-clamp technique was performed to examine the effect of CIL on ionic currents. GH3-cell exposure to CIL suppressed the density of hyperpolarization-evoked Ih in a concentration-dependent manner with an effective IC50 of 3.38 μM. Apart from its increase in the activation time constant of Ih during long-lasting hyperpolarization, the presence of CIL (3 μM) distinctly shifted the steady-state activation curve of Ih triggered by a 2-s conditioning pulse to a hyperpolarizing direction by 10 mV. As the impedance-frequency relation of Ih was studied, its presence raised the impedance magnitude at the resonance frequency induced by chirp voltage. CIL also suppressed delayed-rectifier K+ current (IK(DR)) followed by the accelerated inactivation time course of this current, with effective IC50 (measured at late IK(DR)) or KD value of 3.54 or 3.77 μM, respectively. As the CIL concentration increased 1 to 3 μM, the inactivation curve of IK(DR) elicited by 1- or 10-s conditioning pulses was shifted to a hyperpolarizing potential by approximately 10 mV, and the recovery of IK(DR) inactivation during its presence was prolonged. The peak Na+ current (INa) during brief depolarization was resistant to being sensitive to the presence of CIL, yet to be either decreased by subsequent addition of A-803467 or enhanced by that of tefluthrin. In cardiac H9c2 cells, unlike the CIL effect, the addition of either ivabradine or zatebradine mildly led to a lowering in IK(DR) amplitude with no conceivable change in the inactivation time course of the current. Taken together, the compound like CIL, which was tailored to block hyperpolarization-activated cation (HCN) channels effectively, was also capable of altering the amplitude and gating of IK(DR), thereby influencing the functional activities of electrically excitable cells, such as GH3 cells.
Collapse
Affiliation(s)
- Te-Ling Lu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
| | - Te-Jung Lu
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan;
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
31
|
Abstract
A progressive decline in maximum heart rate (mHR) is a fundamental aspect of aging in humans and other mammals. This decrease in mHR is independent of gender, fitness, and lifestyle, affecting in equal measure women and men, athletes and couch potatoes, spinach eaters and fast food enthusiasts. Importantly, the decline in mHR is the major determinant of the age-dependent decline in aerobic capacity that ultimately limits functional independence for many older individuals. The gradual reduction in mHR with age reflects a slowing of the intrinsic pacemaker activity of the sinoatrial node of the heart, which results from electrical remodeling of individual pacemaker cells along with structural remodeling and a blunted β-adrenergic response. In this review, we summarize current evidence about the tissue, cellular, and molecular mechanisms that underlie the reduction in pacemaker activity with age and highlight key areas for future work.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
| | - Emily J Sharpe
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
32
|
Xie M, Huang HL, Zhang WH, Gao L, Wang YW, Zhu XJ, Li W, Chen KS, Boutjdir M, Chen L. Increased sarcoplasmic/endoplasmic reticulum calcium ATPase 2a activity underlies the mechanism of the positive inotropic effect of ivabradine. Exp Physiol 2020; 105:477-488. [PMID: 31912915 DOI: 10.1113/ep087964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? The therapeutic effect of ivabradine on patients with chronic heart failure and chronic stable angina pectoris is mediated through a reduction in heart rate: what are the haemodynamic characteristics and the mechanism of the inotropic effect? What is the main finding and its importance? Ivabradine has a positive inotropic effect and lowers the heart rate both in vivo and in vitro. These effects are likely mediated by ivabradine's significant increase of the fast component rate constant mediated by sarcoplasmic/endoplasmic reticulum calcium ATPase 2a and decrease of the slow component rate constant that is mediated by the Na+ /Ca2+ exchanger and sarcolemmal Ca2+ -ATPase during the Ca2+ transient decay phase. ABSTRACT Ivabradine's therapeutic effect is mediated by a reduction of the heart rate; however, its haemodynamic characteristics and the mechanism of its inotropic effect are poorly understood. We aimed to investigate the positive inotropic effect of ivabradine and its underlying mechanism. The results demonstrated that ivabradine increased the positive inotropy of the rat heart in vivo by increasing the stroke work, cardiac output, stroke volume, end-diastolic volume, end-systolic pressure, ejection fraction, ±dP/dtmax , left ventricular end-systolic elastance and systolic blood pressure without altering the diastolic blood pressure and arterial elastance. This inotropic effect was observed in both non-paced and paced rat isolated heart. Ivabradine increased the Ca2+ transient amplitude and the reuptake rates of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), lowered the diastolic Ca2+ level and suppressed the combined extrusion rate of the Na+ /Ca2+ exchanger and the sarcolemmal Ca2+ -ATPase. In addition, ivabradine widened the action potential duration, hyperpolarized the resting membrane potential, increased sarcoplasmic reticulum Ca2+ content and reduced Ca2+ leak. Overall, ivabradine had a positive inotropic effect brought about by enhanced SERCA2a activity, which might be mediated by increased phospholamban phosphorylation. The positive inotropic effect along with the lowered heart rate underlies ivabradine's therapeutic effect in heart failure.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Jiangyin Hospital of TCM Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China.,Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui-Li Huang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Hui Zhang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Wang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jia Zhu
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke-Su Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, 800 Poly place, Brooklyn, NY, USA.,State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, USA.,NYU School of Medicine, 550 First Avenue, New York, NY, USA
| | - Long Chen
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Chinese Medicine of Taizhou China Medical City, Double Tower, China Medical City, Taizhou, China
| |
Collapse
|
33
|
Marchant JL, Farrell AP. Membrane and calcium clock mechanisms contribute variably as a function of temperature to setting cardiac pacemaker rate in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 95:1265-1274. [PMID: 31429079 DOI: 10.1111/jfb.14126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax ) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide-gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.
Collapse
Affiliation(s)
- James L Marchant
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P Farrell
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Chen SJ, Xu Y, Liang YM, Cao Y, Lv JY, Pang JX, Zhou PZ. Identification and characterization of a series of novel HCN channel inhibitors. Acta Pharmacol Sin 2019; 40:746-754. [PMID: 30315249 DOI: 10.1038/s41401-018-0162-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/13/2018] [Indexed: 11/09/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a critical role in controlling pacemaker activity in both heart and nervous system. Developing HCN channel inhibitors has been proposed to be an important strategy for the treatment of pain, heart failure, arrhythmias, and epilepsy. One HCN channel inhibitor, ivabradine, has been clinically approved for the treatment of angina pectoris and heart failure. In this study, we designed and synthesized eight alkanol amine derivatives, and assessed their effects on HCN channels expressed in COS7 cells using a whole-cell patch clamp method. Among them, compound 4e displayed the most potent inhibitory activity with an IC50 of 2.9 ± 1.2 µM at - 120 mV on HCN2 channel expressed in COS7 cells. Further analysis revealed that application of compound 4e (10 μM) caused a slowing of activation and a hyperpolarizing shift (ΔV1/2 = - 30.2 ± 2.9 mV, n = 5) in the voltage dependence of HCN2 channel activation. The inhibitory effect of compound 4e on HCN1 and HCN4 channel expressed in COS7 cells was less potent with IC50 of 17.2 ± 1.3 and 7.3 ± 1.2 μM, respectively. Besides, we showed that application of compound 4e (10 μM) inhibited Ih and action potential firing in acutely dissociated mouse small dorsal root ganglion neurons. Our study provides a new strategy for the design and development of potent HCN channel inhibitors.
Collapse
|
35
|
Romanelli MN, Del Lungo M, Guandalini L, Zobeiri M, Gyökeres A, Árpádffy-Lovas T, Koncz I, Sartiani L, Bartolucci G, Dei S, Manetti D, Teodori E, Budde T, Cerbai E. EC18 as a Tool To Understand the Role of HCN4 Channels in Mediating Hyperpolarization-Activated Current in Tissues. ACS Med Chem Lett 2019; 10:584-589. [PMID: 30996800 DOI: 10.1021/acsmedchemlett.8b00587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are membrane proteins encoded by four genes (HCN1-4) and widely distributed in the central and peripheral nervous system and in the heart. HCN channels are involved in several physiological functions, including the generation of rhythmic activity, and are considered important drug targets if compounds with isoform selectivity are developed. At present, however, few compounds are known, which are able to discriminate among HCN channel isoforms. The inclusion of the three-methylene chain of zatebradine into a cyclohexane ring gave a compound (3a) showing a 5-fold preference for HCN4 channels, and ability to selectively modulate Ih in different tissues. Compound 3a has been tested for its ability to reduce Ih and to interact with other ion channels in the heart and the central nervous system. Its preference for HCN4 channels makes this compound useful to elucidate the contribution of this isoform in the physiological and pathological processes involving hyperpolarization-activated current.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Martina Del Lungo
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Luca Guandalini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Mehrnoush Zobeiri
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster 48149, Germany
| | - András Gyökeres
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary
| | - Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary
| | - Istvan Koncz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary
| | - Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Silvia Dei
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Elisabetta Teodori
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster 48149, Germany
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| |
Collapse
|
36
|
Ide T, Ohtani K, Higo T, Tanaka M, Kawasaki Y, Tsutsui H. Ivabradine for the Treatment of Cardiovascular Diseases. Circ J 2018; 83:252-260. [PMID: 30606942 DOI: 10.1253/circj.cj-18-1184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Higher heart rate (HR) is independently related to worse outcomes in various cardiac diseases, including hypertension, coronary artery disease, and heart failure (HF). HR is determined by the pacemaker activity of cells within the sinoatrial node. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 4 channel, one of 4 HCN isoforms, generates the If current and plays an important role in the regulation of pacemaker activity in the sinoatrial node. Ivabradine is a novel and only available HCN inhibitor, which can reduce HR and has been approved for stable angina and chronic HF in many countries other than Japan. In this review, we summarize the current knowledge of the HCN4 channel and ivabradine, including the function of HCN4 in cardiac pacemaking, the mechanism of action of If inhibition by ivabradine, and the pharmacological and clinical effects of ivabradine in cardiac diseases as HF, coronary artery disease, and atrial fibrillation.
Collapse
Affiliation(s)
- Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Kisho Ohtani
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Taiki Higo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | | | | | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
37
|
Cao Y, Chen S, Liang Y, Wu T, Pang J, Liu S, Zhou P. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by β-blocker carvedilol. Br J Pharmacol 2018; 175:3963-3975. [PMID: 30098004 DOI: 10.1111/bph.14469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Carvedilol is a clinically effective β-blocker broadly used for treating congestive heart failure (CHF), and several clinical trials have demonstrated that it shows a favourable effect compared with other β-blockers in patients with CHF. The mechanism underlying this beneficial effect of carvedilol compared to other β-blockers is not clearly understood. In addition to β-blockers, inhibitors of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels, which play a critical role in spontaneous rhythmic activity in the heart, have also been proposed to be suitable drugs for reducing heart rate and, therefore, beneficial for treating CHF. In the present study, we investigated the effect of carvedilol on HCN channels. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were used to assess the effect of carvedilol on currents from wild-type and mutant HCN1, HCN2 and HCN4 channels expressed in CHO cells. KEY RESULTS Carvedilol was the only β-blocker tested that showed inhibitory effects on the major sinoatrial HCN channel isoform HCN4. Carvedilol inhibited HCN4 in a concentration-dependent manner with an EC50 of 4.4 μM. In addition, carvedilol also inhibited HCN1 and HCN2 channels. Carvedilol blocked HCN channels by decelerating the rate of channel activation and increasing that of deactivation, and shifted the voltage-dependence of activation leftwards. Our data also showed that carvedilol, unlike other inhibitors of this channel (ivabradine and ZD7288), is not an 'open-channel' inhibitor of HCN4. CONCLUSIONS AND IMPLICATIONS Carvedilol is a negative gating modulator of HCN channels. It represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shujun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|
39
|
Tsantoulas C, Laínez S, Wong S, Mehta I, Vilar B, McNaughton PA. Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci Transl Med 2018; 9:eaam6072. [PMID: 28954930 DOI: 10.1126/scitranslmed.aam6072] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/22/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023]
Abstract
Diabetic patients frequently suffer from continuous pain that is poorly treated by currently available analgesics. We used mouse models of type 1 and type 2 diabetes to investigate a possible role for the hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels as drivers of diabetic pain. Blocking or genetically deleting HCN2 channels in small nociceptive neurons suppressed diabetes-associated mechanical allodynia and prevented neuronal activation of second-order neurons in the spinal cord in mice. In addition, we found that intracellular cyclic adenosine monophosphate (cAMP), a positive HCN2 modulator, is increased in somatosensory neurons in an animal model of painful diabetes. We propose that the increased intracellular cAMP drives diabetes-associated pain by facilitating HCN2 activation and consequently promoting repetitive firing in primary nociceptive nerve fibers. Our results suggest that HCN2 may be an analgesic target in the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Christoforos Tsantoulas
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Sergio Laínez
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Sara Wong
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Ishita Mehta
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Bruno Vilar
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
40
|
Synaptic transmission and excitability during hypoxia with inflammation and reoxygenation in hippocampal CA1 neurons. Neuropharmacology 2018; 138:20-31. [PMID: 29775678 DOI: 10.1016/j.neuropharm.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
Although a number of experimental and clinical studies have shown that hypoxia typically accompanies acute inflammatory responses, the combinatorial effect of the two insults on basic neural function has not been thoroughly investigated. Previous studies have predominantly suggested that hypoxia reduces network activity; however, several studies suggest the opposite effect. Of note, inflammation is known to increase neural activity. In the current study, we examined the effects of limited oxygen in combination with an inflammatory stimulus, as well as the effects of reoxygenation, on synaptic transmission and excitability. We observed a significant reduction of both synaptic transmission and excitability when hypoxia and inflammation occurred in combination, whereas reoxygenation caused hyperexcitability of neurons. Further, we found that the observed reduction in synaptic transmission was due to compromised presynaptic release efficiency based on an adenosine-receptor-dependent increase in synaptic facilitation. Excitability changes in both directions were attributable to dynamic regulation of the hyperpolarization-activated cation current (Ih) and to changes in the input resistance and the voltage difference between resting membrane potential and action potential threshold. We found that zatebradine, an Ih current inhibitor, reduced the fluctuation in excitability, suggesting that it may have potential as a drug to ameliorate reperfusion brain injury.
Collapse
|
41
|
Riegelhaupt PM, Tibbs GR, Goldstein PA. HCN and K 2P Channels in Anesthetic Mechanisms Research. Methods Enzymol 2018; 602:391-416. [PMID: 29588040 DOI: 10.1016/bs.mie.2018.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ability of a diverse group of agents to produce general anesthesia has long been an area of intense speculation and investigation. Over the past century, we have seen a paradigm shift from proposing that the anesthetized state arises from nonspecific interaction of anesthetics with the lipid membrane to the recognition that the function of distinct, and identifiable, membrane-embedded proteins is dramatically altered in the presence of intravenous and inhaled agents. Among proteinaceous targets, metabotropic and ionotropic receptors garnered much of the attention over the last 30 years, and it is only relatively recently that voltage-gated ion channels have clearly and rigorously been shown to be important molecular targets. In this review, we will consider the experimental issues relevant to two important ion channel anesthetic targets, HCN and K2P.
Collapse
Affiliation(s)
| | - Gareth R Tibbs
- Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|
42
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
43
|
Zhang Z, Huang TQ, Nepliouev I, Zhang H, Barnett AS, Rosenberg PB, Ou SHI, Stiber JA. Crizotinib Inhibits Hyperpolarization-activated Cyclic Nucleotide-Gated Channel 4 Activity. CARDIO-ONCOLOGY 2017; 3. [PMID: 28217366 PMCID: PMC5310672 DOI: 10.1186/s40959-017-0020-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Sinus bradycardia is frequently observed in patients treated with crizotinib, a receptor tyrosine kinase inhibitor used for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). We investigated whether crizotinib could influence heart rate (HR) through direct cardiac effects. METHODS The direct effect of crizotinib on HR was studied using ECG analysis of Langendorff-perfused mouse hearts. The whole-cell patch clamp technique was used to measure the effects of crizotinib on the hyperpolarization-activated funny current, If, in mouse sinoatrial node cells (SANCs) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) activity in HEK-293 cells stably expressing human HCN4. RESULTS Crizotinib resulted in a dose-dependent reduction in HR in isolated intact mouse hearts with a half maximal inhibitory concentration (IC50) of 1.7 ± 0.4 μmol/L. Because ECG analysis revealed that crizotinib (0-5 μmol/L) resulted in significant reductions in HR in isolated mouse hearts without changes in PR, QRS, or QT intervals, we performed whole-cell patch clamp recordings of SANCs which showed that crizotinib inhibited If which regulates cardiac pacemaker activity. Crizotinib resulted in diminished current density of HCN4, the major molecular determinant of If, with an IC50 of 1.4 ± 0.3 μmol/L. Crizotinib also slowed HCN4 activation and shifted the activation curve to the left towards more hyperpolarized potentials. CONCLUSIONS Our results suggest that crizotinib's effects on HCN4 channels play a significant role in mediating its observed effects on HR.
Collapse
Affiliation(s)
- Zhushan Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC USA 27710
| | - Tai-Qin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC USA 27710
| | - Igor Nepliouev
- Department of Medicine, Duke University Medical Center, Durham, NC USA 27710
| | - Hengtao Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC USA 27710
| | - Adam S Barnett
- Department of Medicine, Duke University Medical Center, Durham, NC USA 27710
| | - Paul B Rosenberg
- Department of Medicine, Duke University Medical Center, Durham, NC USA 27710
| | - Sai-Hong I Ou
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA 92868
| | - Jonathan A Stiber
- Department of Medicine, Duke University Medical Center, Durham, NC USA 27710
| |
Collapse
|
44
|
Sharpe EJ, Larson ED, Proenza C. Cyclic AMP reverses the effects of aging on pacemaker activity and If in sinoatrial node myocytes. J Gen Physiol 2017; 149:237-247. [PMID: 28057842 PMCID: PMC5299620 DOI: 10.1085/jgp.201611674] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
Aging reduces pacemaker activity and shifts the voltage dependence of activation of the funny current, If, in sinoatrial node myocytes. Sharpe et al. find that these effects of aging can be reversed by application of exogenous cAMP but not by stimulation of endogenous cAMP. Aerobic capacity decreases with age, in part because of an age-dependent decline in maximum heart rate (mHR) and a reduction in the intrinsic pacemaker activity of the sinoatrial node of the heart. Isolated sinoatrial node myocytes (SAMs) from aged mice have slower spontaneous action potential (AP) firing rates and a hyperpolarizing shift in the voltage dependence of activation of the “funny current,” If. Cyclic AMP (cAMP) is a critical modulator of both AP firing rate and If in SAMs. Here, we test the ability of endogenous and exogenous cAMP to overcome age-dependent changes in acutely isolated murine SAMs. We found that maximal stimulation of endogenous cAMP with 3-isobutyl-1-methylxanthine (IBMX) and forskolin significantly increased AP firing rate and depolarized the voltage dependence of activation of If in SAMs from both young and aged mice. However, these changes were insufficient to overcome the deficits in aged SAMs, and significant age-dependent differences in AP firing rate and If persisted in the presence of IBMX and forskolin. In contrast, the effects of aging on SAMs were completely abolished by a high concentration of exogenous cAMP, which restored AP firing rate and If activation to youthful levels in cells from aged animals. Interestingly, the age-dependent differences in AP firing rates and If were similar in whole-cell and perforated-patch recordings, and the hyperpolarizing shift in If persisted in excised inside-out patches, suggesting a limited role for cAMP in causing these changes. Collectively, the data indicate that aging does not impose an absolute limit on pacemaker activity and that it does not act by simply reducing the concentration of freely diffusible cAMP in SAMs.
Collapse
Affiliation(s)
- Emily J Sharpe
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Eric D Larson
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045 .,Department of Medicine, Division of Cardiology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
45
|
Huang X, Zhong N, Zhang H, Ma A, Yuan Z, Guo N. Reduced expression of HCN channels in the sinoatrial node of streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2016; 95:586-594. [PMID: 28177679 DOI: 10.1139/cjpp-2016-0418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is associated with an electrical remodeling of the heart, increasing the risk of arrhythmias. However, knowledge of electrical remodeling in the sinoatrial node (SAN) by DM is limited. We investigated the expression of HCN channel isoforms, HCN1-HCN4, in SAN from streptozotocin (STZ)-induced diabetic rats and the age-matched controls. We found that the STZ-induced diabetic rats have a lower intrinsic heart rate, a lengthened sinoatrial conduction time, and rate-corrected maximal sinoatrial node recovery time in vivo as well as a longer cycle length (CL) in vitro, as compared with the control. Optical mapping of the SAN demonstrated an inferior leading pacemaker site, reduced SAN conduction velocity and diastolic depolarization slope, and a longer action potential duration in the STZ-induced diabetic rats than in the control. The transcripts and proteins of HCN2 and HCN4 in diabetic SAN were reduced. Specific blockade of HCN channels by 3 μmol/L ivabradine significantly prolonged the CL of a Langendorff heart by 18% in the diabetic rats and 26% in the control. The reduced expression of HCN channel isoforms in the SAN of the STZ-induced diabetic rat may be an important contributor to the reduced SAN function in DM.
Collapse
Affiliation(s)
- Xin Huang
- a Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China, 710061
| | - Nier Zhong
- b Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China, 710068
| | - Hong Zhang
- c School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China, 710049
| | - Aiqun Ma
- a Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China, 710061
| | - Zuyi Yuan
- a Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China, 710061
| | - Ning Guo
- a Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China, 710061
| |
Collapse
|
46
|
Acute ivabradine treatment reduces heart rate without increasing atrial fibrillation inducibility irrespective of underlying vagal activity in dogs. Heart Vessels 2016; 32:484-494. [PMID: 27844147 DOI: 10.1007/s00380-016-0922-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023]
Abstract
Ivabradine, a bradycardic agent, has been shown to stably reduce patient's heart rate (HR) in the setting of acute cardiac care. However, an association between atrial fibrillation (AF) risk and acute ivabradine treatment remains a controversial clinical issue, and has not been thoroughly investigated. Bradycardia and abnormal atrial refractoriness induced by ivabradine treatment may enhance vulnerability to AF induction, especially when vagal nerve is concurrently activated. We aimed to experimentally investigate the effects of acute ivabradine treatment with/without concurrent vagal activation on AF inducibility. In 16 anesthetized dogs, cervical vagal nerves were prepared for electrical stimulation (VS). AF induction rate (AFIR) was determined by atrial burst pacing. HR, atrial action potential duration (APD), atrial effective refractory period (ERP), and AFIR were obtained consecutively at baseline, during delivery of VS (VS alone), after intravenous injection of ivabradine 0.5 mg/kg (n = 8, ivabradine group) or saline (n = 8, saline group), and again during VS delivery (drug+VS). In the ivabradine group, ivabradine alone significantly lowered HR compared to baseline, while ivabradine+VS significantly lowered HR compared to VS alone. Contrary to expectations, there were no significant differences in trends of APD, temporal dispersion of APD, ERP, and AFIR between ivabradine and saline groups. Irrespective of whether ivabradine or saline was injected, VS significantly shortened APD and ERP, and increased AFIR. Interestingly, although bradycardia in response to ivabradine injection was more intense than that to VS alone, AFIR was significantly lower after ivabradine injection than during VS alone. We conclude that, despite its intense bradycardic effect, acute ivabradine treatment does not increase AF inducibility irrespective of underlying vagal activity. This study may constitute support for the safety of using ivabradine in the setting of acute cardiac care.
Collapse
|
47
|
Han Y, Lyman KA, Clutter M, Schiltz GE, Ismail QA, Cheng X, Luan CH, Chetkovich DM. Method for Identifying Small Molecule Inhibitors of the Protein-protein Interaction Between HCN1 and TRIP8b. J Vis Exp 2016. [PMID: 27911380 DOI: 10.3791/54540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed ubiquitously throughout the brain, where they function to regulate the excitability of neurons. The subcellular distribution of these channels in pyramidal neurons of hippocampal area CA1 is regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit. Genetic knockout of HCN pore forming subunits or TRIP8b, both lead to an increase in antidepressant-like behavior, suggesting that limiting the function of HCN channels may be useful as a treatment for Major Depressive Disorder (MDD). Despite significant therapeutic interest, HCN channels are also expressed in the heart, where they regulate rhythmicity. To circumvent off-target issues associated with blocking cardiac HCN channels, our lab has recently proposed targeting the protein-protein interaction between HCN and TRIP8b in order to specifically disrupt HCN channel function in the brain. TRIP8b binds to HCN pore forming subunits at two distinct interaction sites, although here the focus is on the interaction between the tetratricopeptide repeat (TPR) domains of TRIP8b and the C terminal tail of HCN1. In this protocol, an expanded description of a method for purifying TRIP8b and executing a high throughput screen to identify small molecule inhibitors of the interaction between HCN and TRIP8b, is described. The method for high throughput screening utilizes a Fluorescence Polarization (FP) -based assay to monitor the binding of a large TRIP8b fragment to a fluorophore-tagged eleven amino acid peptide corresponding to the HCN1 C terminal tail. This method allows 'hit' compounds to be identified based on the change in the polarization of emitted light. Validation assays are then performed to ensure that 'hit' compounds are not artifactual.
Collapse
Affiliation(s)
- Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University;
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University
| | - Matt Clutter
- Center for Molecular Innovation and Drug Discovery, Northwestern University
| | - Gary E Schiltz
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University
| | - Quratul-Ain Ismail
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University
| | - Xiangying Cheng
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory, Department of Molecular Biosciences, Northwestern University
| | - Dane M Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University; Department of Physiology, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
48
|
HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain. Biochem J 2016; 473:2717-36. [DOI: 10.1042/bcj20160287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023]
Abstract
Nociception — the ability to detect painful stimuli — is an invaluable sense that warns against present or imminent damage. In patients with chronic pain, however, this warning signal persists in the absence of any genuine threat and affects all aspects of everyday life. Neuropathic pain, a form of chronic pain caused by damage to sensory nerves themselves, is dishearteningly refractory to drugs that may work in other types of pain and is a major unmet medical need begging for novel analgesics. Hyperpolarisation-activated cyclic nucleotide (HCN)-modulated ion channels are best known for their fundamental pacemaker role in the heart; here, we review data demonstrating that the HCN2 isoform acts in an analogous way as a ‘pacemaker for pain’, in that its activity in nociceptive neurons is critical for the maintenance of electrical activity and for the sensation of chronic pain in pathological pain states. Pharmacological block or genetic deletion of HCN2 in sensory neurons provides robust pain relief in a variety of animal models of inflammatory and neuropathic pain, without any effect on normal sensation of acute pain. We discuss the implications of these findings for our understanding of neuropathic pain pathogenesis, and we outline possible future opportunities for the development of efficacious and safe pharmacotherapies in a range of chronic pain syndromes.
Collapse
|
49
|
Tibbs GR, Posson DJ, Goldstein PA. Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends Pharmacol Sci 2016; 37:522-542. [DOI: 10.1016/j.tips.2016.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
50
|
Güvenç TS, Güvenç RÇ, Velibey Y, Tanık VO, Öz D, Eren M. Could ivabradine challenge be helpful for the diagnosis of intermittent sinoatrial node dysfunction in suspected patients? Med Hypotheses 2016; 92:100-3. [PMID: 27241267 DOI: 10.1016/j.mehy.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
Sinoatrial node dysfunction (SND) is an important cause of syncope in the elderly. Though the diagnosis can be relatively straightforward in the persistent form of SND, it can be elusive when the dysfunction is intermittent. For intermittent SND, the diagnosis may require prolonged electrocardiographic recordings with an external or internal loop recorder, or an invasive electrophysiologic study. Ivabradine, an If inhibitor that slows sinoatrial discharge rate, is widely used for the treatment of chronic angina or heart failure. Though the drug is contraindicated in patients with known SND as it may exacerbate symptoms, we propose that a simple ivabradine suppression test, followed by a 24-h monitorization of heart rhythm, could be valuable to aid diagnosis of intermittent SND. The test we propose could be used prior to prolonged electrocardiographic monitoring in patients with suspected SND, but both the diagnostic accuracy and the safety should be evaluated with studies prior to implementation.
Collapse
Affiliation(s)
- Tolga Sinan Güvenç
- Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Research and Training Hospital, Department of Cardiology, Istanbul, Turkey.
| | - Rengin Çetin Güvenç
- Haydarpaşa Numune Research and Training Hospital, Department of Cardiology, Istanbul, Turkey
| | - Yalçın Velibey
- Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Research and Training Hospital, Department of Cardiology, Istanbul, Turkey
| | - Veysel Ozan Tanık
- Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Research and Training Hospital, Department of Cardiology, Istanbul, Turkey
| | - Dilaver Öz
- Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Research and Training Hospital, Department of Cardiology, Istanbul, Turkey
| | - Mehmet Eren
- Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Research and Training Hospital, Department of Cardiology, Istanbul, Turkey
| |
Collapse
|