1
|
de Amorim Ferreira M, Ferreira J. Role of Cav2.3 (R-type) Calcium Channel in Pain and Analgesia: A Scoping Review. Curr Neuropharmacol 2024; 22:1909-1922. [PMID: 37581322 PMCID: PMC11284728 DOI: 10.2174/1570159x21666230811102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Voltage-gated calcium channels (VGCCs) play an important role in pain development and maintenance. As Cav2.2 and Cav3.2 channels have been identified as potential drug targets for analgesics, the participation of Cav2.3 (that gives rise to R-type calcium currents) in pain and analgesia remains incompletely understood. OBJECTIVE Identify the participation of Cav2.3 in pain and analgesia. METHODS To map research in this area as well as to identify any existing gaps in knowledge on the potential role of Cav2.3 in pain signalling, we conducted this scoping review. We searched PubMed and SCOPUS databases, and 40 articles were included in this study. Besides, we organized the studies into 5 types of categories within the broader context of the role of Cav2.3 in pain and analgesia. RESULTS Some studies revealed the expression of Cav2.3 in pain pathways, especially in nociceptive neurons at the sensory ganglia. Other studies demonstrated that Cav2.3-mediated currents could be inhibited by analgesic/antinociceptive drugs either indirectly or directly. Some articles indicated that Cav2.3 modulates nociceptive transmission, especially at the pre-synaptic level at spinal sites. There are studies using different rodent pain models and approaches to reduce Cav2.3 activity or expression and mostly demonstrated a pro-nociceptive role of Cav2.3, despite some contradictory findings and deficiencies in the description of study design quality. There are three studies that reported the association of single-nucleotide polymorphisms in the Cav2.3 gene (CACNA1E) with postoperative pain and opioid consumption as well as with the prevalence of migraine in patients. CONCLUSION Cav2.3 is a target for some analgesic drugs and has a pro-nociceptive role in pain.
Collapse
Affiliation(s)
| | - Juliano Ferreira
- Graduate Program of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
2
|
Ion Channels Involved in Substance P-Mediated Nociception and Antinociception. Int J Mol Sci 2019; 20:ijms20071596. [PMID: 30935032 PMCID: PMC6479580 DOI: 10.3390/ijms20071596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Substance P (SP), an 11-amino-acid neuropeptide, has long been considered an effector of pain. However, accumulating studies have proposed a paradoxical role of SP in anti-nociception. Here, we review studies of SP-mediated nociception and anti-nociception in terms of peptide features, SP-modulated ion channels, and differential effector systems underlying neurokinin 1 receptors (NK1Rs) in differential cell types to elucidate the effect of SP and further our understanding of SP in anti-nociception. Most importantly, understanding the anti-nociceptive SP-NK1R pathway would provide new insights for analgesic drug development.
Collapse
|
3
|
Huang D, Huang S, Gao H, Liu Y, Qi J, Chen P, Wang C, Scragg JL, Vakurov A, Peers C, Du X, Zhang H, Gamper N. Redox-Dependent Modulation of T-Type Ca(2+) Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P. Antioxid Redox Signal 2016; 25:233-51. [PMID: 27306612 PMCID: PMC4971421 DOI: 10.1089/ars.2015.6560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 02/05/2023]
Abstract
AIMS Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. RESULTS SP acutely inhibited T-type voltage-gated Ca(2+) channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca(2+) channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K(+) channels described earlier. INNOVATION Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca(2+) current and concurrent enhancement of anti-algesic M-type K(+) current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. CONCLUSION SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233-251.
Collapse
Affiliation(s)
- Dongyang Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Sha Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Haixia Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yani Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Pingping Chen
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Jason L. Scragg
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Alexander Vakurov
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Chris Peers
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Jeong JY, Kweon HJ, Suh BC. Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors. Mol Cells 2016; 39:322-9. [PMID: 26923189 PMCID: PMC4844939 DOI: 10.14348/molcells.2016.2292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/27/2022] Open
Abstract
Voltage-gated Ca(2+) (CaV) channels are dynamically modulated by G protein-coupled receptors (GPCR). The M1 muscarinic receptor stimulation is known to enhance CaV2.3 channel gating through the activation of protein kinase C (PKC). Here, we found that M1 receptors also inhibit CaV2.3 currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated CaV2.3 currents by ∼two-fold. After the PMA-induced potentiation, stimulation of M1 receptors decreased the CaV2.3 currents by 52 ± 8%. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is responsible for the muscarinic suppression of CaV2.3 currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed CaV2.3 currents, by 53 ± 3%. Next, dephosphorylation of both PI(4)P and PI(4,5)P2 to PI by PJ translocation further decreased the current by up to 66 ± 3%. The results suggest that CaV2.3 currents are modulated by the M1 receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane PI(4,5)P2. Our results also suggest that there is rapid turnover between PI(4)P and PI(4,5)P2 in the plasma membrane.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Hae-Jin Kweon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
5
|
Sugino S, Farrag M, Ruiz-Velasco V. Gα14 subunit-mediated inhibition of voltage-gated Ca2+ and K+ channels via neurokinin-1 receptors in rat celiac-superior mesenteric ganglion neurons. J Neurophysiol 2016; 115:1577-86. [PMID: 26843606 DOI: 10.1152/jn.00980.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/21/2016] [Indexed: 11/22/2022] Open
Abstract
The mechanisms by which G proteins modulate voltage-gated Ca(2+)channel currents (CaV), particularly CaV2.2 and CaV2.3, are voltage dependent (VD) or voltage independent (VI). VD pathways are typically mediated by Gαi/oand GαSsubfamilies. On the other hand, VI inhibition modulation is coupled to the Gαqsubfamily and signaling pathways downstream of phospholipase C stimulation. In most studies, this latter pathway has been shown to be linked to Gαqand/or Gα11protein subunits. However, there are no studies that have examined whether natively expressed Gα14subunits (Gαqsubfamily member) couple G protein-coupled receptors (GPCR) with CaV2.2 channels. We report that Gα14subunits functionally couple the substance P (SP)/neurokinin-1 (NK-1) receptor pathway to CaV2.2 channels in acutely dissociated rat celiac-superior mesenteric ganglion (CSMG) neurons. Exposure of CSMG neurons to SP blocked the CaV2.2 currents in a predominantly VD manner that was pertussis toxin and cholera toxin resistant, as well as Gαq/11independent. However, silencing Gα14subunits significantly attenuated the SP-mediated Ca(2+)current block. In another set of experiments, exposure of CSMG neurons to SP led to the inhibition of KCNQ K(+)M-currents. The SP-mediated M-current block was significantly reduced in neurons transfected with Gα14small-interference RNA. Finally, overexpression of the GTP-bound Gαq/11binding protein RGS2 did not alter the block of M-currents by SP but significantly abolished the oxotremorine methiodide-mediated M-current inhibition. Taken together, these results provide evidence of a new Gα14-coupled signaling pathway that modulates CaV2.2 and M-currents via SP-stimulated NK-1 receptors in CSMG neurons.
Collapse
Affiliation(s)
- Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Mohamed Farrag
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
6
|
Kammermeier PJ. Constitutive activity of metabotropic glutamate receptor 7. BMC Neurosci 2015; 16:17. [PMID: 25881041 PMCID: PMC4411663 DOI: 10.1186/s12868-015-0154-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/11/2015] [Indexed: 11/22/2022] Open
Abstract
Background Metabotropic glutamate receptors (mGluRs) are class C G protein coupled receptors with widespread central nervous system expression. mGluR7 is a member of this family that has been implicated in numerous physiological and pathological processes, but the very low potency of mGluR7 for glutamate, its natural ligand, raise questions about the nature of its physiological role. Results Here, evidence is presented using heterologous expression in sympathetic neurons from the rat superior cervical ganglion (SCG) and modulation of the native SCG calcium currents as an assay for receptor signaling, that mGluR7 exhibits constitutive activity. This activity is detectable as basal calcium channel modulation in the absence of ligand that is not observed in untransfected cells or those transfected with other members of the mGluR family. Further, this basal channel modulation was reversibly inhibited with the mGluR7 inverse agonist MMPIP. Surprisingly, MMPIP did not strongly inhibit agonist-induced mGluR7 activation. Finally, the selective mGluR8 agonist (R,S)-PPG was also able to act as an inverse agonist at mGluR7. Conclusions These findings introduce a novel potential physiological role for mGluR7 in the nervous system, that of a constitutively active receptor, and thereby suggest a model in which mGluR7 signaling may be impactful without the need to invoke strong receptor activation by millimolar concentrations of extracellular glutamate. Constitutive activity of mGluR7 may be eliminated or reduced by the presence of other group III mGluRs, perhaps due to heterodimer formation. In addition, both MMPIP and PPG acted as inverse agonists at mGluR7, and agonists at mGluR8.
Collapse
Affiliation(s)
- Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Licon Y, Leandro D, Romero-Mendez C, Rodriguez-Menchaca AA, Sanchez-Armass S, Meza U. Inhibition of CaV2.3 channels by NK1 receptors is sensitive to membrane cholesterol but insensitive to caveolin-1. Pflugers Arch 2014; 467:1699-709. [DOI: 10.1007/s00424-014-1605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
|
8
|
Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci U S A 2012; 109:E1578-86. [PMID: 22586118 DOI: 10.1073/pnas.1201544109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Substance P (SP) is a prominent neuromodulator, which is produced and released by peripheral damage-sensing (nociceptive) neurons; these neurons also express SP receptors. However, the mechanisms of peripheral SP signaling are poorly understood. We report a signaling pathway of SP in nociceptive neurons: Acting predominantly through NK1 receptors and G(i/o) proteins, SP stimulates increased release of reactive oxygen species from the mitochondrial electron transport chain. Reactive oxygen species, functioning as second messengers, induce oxidative modification and augment M-type potassium channels, thereby suppressing excitability. This signaling cascade requires activation of phospholipase C but is largely uncoupled from the inositol 1,4,5-trisphosphate sensitive Ca(2+) stores. In rats SP causes sensitization of TRPV1 and produces thermal hyperalgesia. However, the lack of coupling between SP signaling and inositol 1,4,5-trisphosphate sensitive Ca(2+) stores, together with the augmenting effect on M channels, renders the SP pathway ineffective to excite nociceptors acutely and produce spontaneous pain. Our study describes a mechanism for neurokinin signaling in sensory neurons and provides evidence that spontaneous pain and hyperalgesia can have distinct underlying mechanisms within a single nociceptive neuron.
Collapse
|
9
|
Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels. Proc Natl Acad Sci U S A 2012; 109:3161-6. [PMID: 22308488 DOI: 10.1073/pnas.1121434109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The β-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic protein, they can be inhibited by activating a voltage-sensitive lipid phosphatase to deplete PIP(2). When these channels are coexpressed with a β2a-subunit, a palmitoylated peripheral membrane protein, the inhibition is much smaller. PIP(2) sensitivity could be increased by disabling the two palmitoylation sites in the β2a-subunit. To further test effects of membrane targeting of Ca(V) β-subunits on PIP(2) regulation, the N terminus of Lyn was ligated onto the cytosolic β3-subunit to confer lipidation. This chimera, like the Ca(V) β2a-subunit, displayed plasma membrane localization, slowed the inactivation of Ca(V)2.2 channels, and increased the current density. In addition, the Lyn-β3 subunit significantly decreased Ca(V) channel inhibition by PIP(2) depletion. Evidently lipidation and membrane anchoring of Ca(V) β-subunits compete with the PIP(2) regulation of high-voltage-activated Ca(V) channels. Compared with expression with Ca(V) β3-subunits alone, inhibition of Ca(V)2.2 channels by PIP(2) depletion could be significantly attenuated when β2a was coexpressed with β3. Our data suggest that the Ca(V) currents in neurons would be regulated by membrane PIP(2) to a degree that depends on their endogenous β-subunit combinations.
Collapse
|
10
|
Wall-Lacelle S, Hossain MI, Sauvé R, Blunck R, Parent L. Double mutant cycle analysis identified a critical leucine residue in the IIS4S5 linker for the activation of the Ca(V)2.3 calcium channel. J Biol Chem 2011; 286:27197-205. [PMID: 21652722 DOI: 10.1074/jbc.m111.237412] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations in distal S6 were shown to significantly alter the stability of the open state of Ca(V)2.3 (Raybaud, A., Baspinar, E. E., Dionne, F., Dodier, Y., Sauvé, R., and Parent, L. (2007) J. Biol. Chem. 282, 27944-27952). By analogy with K(V) channels, we tested the hypothesis that channel activation involves electromechanical coupling between S6 and the S4S5 linker in Ca(V)2.3. Among the 11 positions tested in the S4S5 linker of domain II, mutations of the leucine residue at position 596 were found to destabilize significantly the closed state with a -50 mV shift in the activation potential and a -20 mV shift in its charge-voltage relationship as compared with Ca(V)2.3 wt. A double mutant cycle analysis was performed by introducing pairs of glycine residues between S4S5 and S6 of Domain II. Strong coupling energies (ΔΔG(interact) > 2 kcal mol(-1)) were measured for the activation gating of 12 of 39 pairs of mutants. Leu-596 (IIS4S5) was strongly coupled with distal residues in IIS6 from Leu-699 to Asp-704. In particular, the double mutant L596G/I701G showed strong cooperativity with a ΔΔG(interact) ≈6 kcal mol(-1) suggesting that both positions contribute to the activation gating of the channel. Altogether, our results highlight the role of a leucine residue in S4S5 and provide the first series of evidence that the IIS4S5 and IIS6 regions are energetically coupled during the activation of a voltage-gated Ca(V) channel.
Collapse
Affiliation(s)
- Sébastien Wall-Lacelle
- Department of Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
11
|
Rangel A, Sánchez-Armass S, Meza U. Protein kinase C-mediated inhibition of recombinant T-type Cav3.2 channels by neurokinin 1 receptors. Mol Pharmacol 2010; 77:202-10. [PMID: 19805509 DOI: 10.1124/mol.109.058727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The voltage-activated T-type calcium channel (Ca(V)3.2) and the G protein-coupled neurokinin 1 (NK1) receptor are expressed in peripheral tissues and in central neurons, in which they participate in diverse physiological processes, including neurogenic inflammation and nociception. In the present report, we demonstrate that recombinant Ca(V)3.2 channels are reversibly inhibited by NK1 receptors when both proteins are transiently coexpressed in human embryonic kidney 293 cells. We found that the voltage-dependent macroscopic properties of Ca(V)3.2 currents were unaffected during NK1 receptor-mediated inhibition. However, inhibition was attenuated in cells coexpressing either the dominant-negative Galpha(q) Q209L/D277N or the regulator of G protein signaling (RGS) proteins 2 (RGS2) and 3T (RGS3T), which are effective antagonists of Galpha(q/11). By contrast, inhibition was unaffected in cells coexpressing human rod transducin (Galpha(t)), which buffers Gbetagamma. Channel inhibition was blocked by 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and bisindolylmaleimide I, selective inhibitors of phospholipase Cbeta and protein kinase C (PKC), respectively. Inhibition was occluded by application of the PKC activator phorbol-12-myristate-13-acetate. Altogether, these data indicate that NK1 receptors inhibit Ca(V)3.2 channels through a voltage-independent signaling pathway that involves Galpha(q/11), phospholipase Cbeta, and PKC. Our results provide novel evidence regarding the mechanisms underlying T-type calcium channel modulation by G protein-coupled receptors. Functional coupling between Ca(V)3.2 channels and NK1 receptors may be relevant in neurogenic inflammation, neuronal rhythmogenesis, nociception, and other physiological processes.
Collapse
Affiliation(s)
- Azahel Rangel
- Departamento de Fisiología, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza, San Luis Potosí, México
| | | | | |
Collapse
|
12
|
Mitra-Ganguli T, Vitko I, Perez-Reyes E, Rittenhouse AR. Orientation of palmitoylated CaVbeta2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation. ACTA ACUST UNITED AC 2010; 134:385-96. [PMID: 19858358 PMCID: PMC2768804 DOI: 10.1085/jgp.200910204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The G(q)-coupled tachykinin receptor (neurokinin-1 receptor [NK-1R]) modulates N-type Ca(2+) channel (Ca(V)2.2 or N channel) activity at two distinct sites by a pathway involving a lipid metabolite, most likely arachidonic acid (AA). In another study published in this issue (Heneghan et al. 2009. J. Gen Physiol. doi:10.1085/jgp.200910203), we found that the form of modulation observed depends on which Ca(V)beta is coexpressed with Ca(V)2.2. When palmitoylated Ca(V)beta2a is coexpressed, activation of NK-1Rs by substance P (SP) enhances N current. In contrast, when Ca(V)beta3 is coexpressed, SP inhibits N current. However, exogenously applied palmitic acid minimizes this inhibition. These findings suggested that the palmitoyl groups of Ca(V)beta2a may occupy an inhibitory site on Ca(V)2.2 or prevent AA from interacting with that site, thereby minimizing inhibition. If so, changing the orientation of Ca(V)beta2a relative to Ca(V)2.2 may displace the palmitoyl groups and prevent them from antagonizing AA's actions, thereby allowing inhibition even in the presence of Ca(V)beta2a. In this study, we tested this hypothesis by deleting one (Bdel1) or two (Bdel2) amino acids proximal to the alpha interacting domain (AID) of Ca(V)2.2's I-II linker. Ca(V)betas bind tightly to the AID, whereas the rigid region proximal to the AID is thought to couple Ca(V)beta's movements to Ca(V)2.2 gating. Although Bdel1/beta2a currents exhibited more variable enhancement by SP, Bdel2/beta2a current enhancement was lost at all voltages. Instead, inhibition was observed that matched the profile of N-current inhibition from Ca(V)2.2 coexpressed with Ca(V)beta3. Moreover, adding back exogenous palmitic acid minimized inhibition of Bdel2/beta2a currents, suggesting that when palmitoylated Ca(V)beta2a is sufficiently displaced, endogenously released AA can bind to the inhibitory site. These findings support our previous hypothesis that Ca(V)beta2a's palmitoyl groups directly interact with an inhibitory site on Ca(V)2.2 to block N-current inhibition by SP.
Collapse
Affiliation(s)
- Tora Mitra-Ganguli
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
13
|
Heneghan JF, Mitra-Ganguli T, Stanish LF, Liu L, Zhao R, Rittenhouse AR. The Ca2+ channel beta subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current. ACTA ACUST UNITED AC 2010; 134:369-84. [PMID: 19858357 PMCID: PMC2768801 DOI: 10.1085/jgp.200910203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In superior cervical ganglion (SCG) neurons, stimulation of M1 receptors (M1Rs) produces a distinct pattern of modulation of N-type calcium (N-) channel activity, enhancing currents elicited with negative test potentials and inhibiting currents elicited with positive test potentials. Exogenously applied arachidonic acid (AA) reproduces this profile of modulation, suggesting AA functions as a downstream messenger of M1Rs. In addition, techniques that diminish AA's concentration during M1R stimulation minimize N-current modulation. However, other studies suggest depletion of phosphatidylinositol-4,5-bisphosphate during M1R stimulation suffices to elicit modulation. In this study, we used an expression system to examine the physiological mechanisms regulating modulation. We found the β subunit (CaVβ) acts as a molecular switch regulating whether modulation results in enhancement or inhibition. In human embryonic kidney 293 cells, stimulation of M1Rs or neurokinin-1 receptors (NK-1Rs) inhibited activity of N channels formed by CaV2.2 and coexpressed with CaVβ1b, CaVβ3, or CaVβ4 but enhanced activity of N channels containing CaVβ2a. Exogenously applied AA produced the same pattern of modulation. Coexpression of CaVβ2a, CaVβ3, and CaVβ4 recapitulated the modulatory response previously seen in SCG neurons, implying heterogeneous association of CaVβ with CaV2.2. Further experiments with mutated, chimeric CaVβ subunits and free palmitic acid revealed that palmitoylation of CaVβ2a is essential for loss of inhibition. The data presented here fit a model in which CaVβ2a blocks inhibition, thus unmasking enhancement. Our discovery that the presence or absence of palmitoylated CaVβ2a toggles M1R- or NK-1R–mediated modulation of N current between enhancement and inhibition identifies a novel role for palmitoylation. Moreover, these findings predict that at synapses, modulation of N-channel activity by M1Rs or NK-1Rs will fluctuate between enhancement and inhibition based on the presence of palmitoylated CaVβ2a.
Collapse
Affiliation(s)
- John F Heneghan
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dong C, Godwin DW, Brennan PA, Hegde AN. Protein kinase Calpha mediates a novel form of plasticity in the accessory olfactory bulb. Neuroscience 2009; 163:811-24. [PMID: 19580852 DOI: 10.1016/j.neuroscience.2009.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/27/2022]
Abstract
Modification of synapses in the accessory olfactory bulb (AOB) is believed to underlie pheromonal memory that enables mate recognition in mice. The memory, which is acquired with single-trial learning, forms only with coincident noradrenergic and glutamatergic inputs to the AOB. The mechanisms by which glutamate and norepinephrine (NE) alter the AOB synapses are not well understood. Here we present results that not only reconcile the earlier, seemingly contradictory, observations on the role of glutamate and NE in changing the AOB synapses, but also reveal novel mechanisms of plasticity. Our studies suggest that initially, glutamate acting at Group II metabotropic receptors and NE acting at alpha(2)-adrenergic receptors inhibit N-type and R-type Ca(2+) channels in mitral cells via a G-protein. The N-type and R-type Ca(2+) channel inhibition is reversed by activation of alpha(1)-adrenergic receptors and protein kinase Calpha (PKCalpha). Based on these results, we propose a hypothetical model for a new kind of synaptic plasticity in the AOB that accounts for the previous behavioral data on pheromonal memory. According to this model, initial inhibition of the Ca(2+) channels suppresses the GABAergic inhibitory feedback to mitral cells, causing disinhibition and Ca(2+) influx. NE also activates phospholipase C (PLC) through alpha(1)-adrenergic receptors generating inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Calcium and DAG together activate PKCalpha which switches the disinhibition to increased inhibition of mitral cells. Thus, PKCalpha is likely to be a coincidence detector integrating glutamate and NE input in the AOB and bridging the short-term signaling to long-term structural changes resulting in enhanced inhibition of mitral cells that is thought to underlie memory formation.
Collapse
Affiliation(s)
- C Dong
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-0001, USA
| | | | | | | |
Collapse
|
15
|
Thapliyal A, Bannister RA, Hanks C, Adams BA. The monomeric G proteins AGS1 and Rhes selectively influence Galphai-dependent signaling to modulate N-type (CaV2.2) calcium channels. Am J Physiol Cell Physiol 2008; 295:C1417-26. [PMID: 18815223 DOI: 10.1152/ajpcell.00341.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activator of G protein Signaling 1 (AGS1) and Ras homologue enriched in striatum (Rhes) define a new group of Ras-like monomeric G proteins whose signaling properties and physiological roles are just beginning to be understood. Previous results suggest that AGS1 and Rhes exhibit distinct preferences for heterotrimeric G proteins, with AGS1 selectively influencing Galphai and Rhes selectively influencing Galphas. Here, we demonstrate that AGS1 and Rhes trigger nearly identical modulation of N-type Ca(2+) channels (Ca(V)2.2) by selectively altering Galphai-dependent signaling. Whole-cell currents were recorded from HEK293 cells expressing Ca(V)2.2 and Galphai- or Galphas-coupled receptors. AGS1 and Rhes reduced basal current densities and triggered tonic voltage-dependent (VD) inhibition of Ca(V)2.2. Additionally, each protein attenuated agonist-initiated channel inhibition through Galphai-coupled receptors without reducing channel inhibition through a Galphas-coupled receptor. The above effects of AGS1 and Rhes were blocked by pertussis toxin (PTX) or by expression of a Gbetagamma-sequestering peptide (masGRK3ct). Transfection with HRas, KRas2, Rap1A-G12V, Rap2B, Rheb2, or Gem failed to duplicate the effects of AGS1 and Rhes on Ca(V)2.2. Our data provide the first demonstration that AGS1 and Rhes exhibit similar if not identical signaling properties since both trigger tonic Gbetagamma signaling and both attenuate receptor-initiated signaling by the Gbetagamma subunits of PTX-sensitive G proteins. These results are consistent with the possibility that AGS1 and Rhes modulate Ca(2+) influx through Ca(V)2.2 channels under more physiological conditions and thereby influence Ca(2+)-dependent events such as neurosecretion.
Collapse
Affiliation(s)
- Ashish Thapliyal
- Dept. of Biology, Utah State Univ., 5305 Old Main Hill, Logan, UT 84322, USA
| | | | | | | |
Collapse
|
16
|
Fong AY, Potts JT. Neurokinin-1 receptors modulate the excitability of expiratory neurons in the ventral respiratory group. J Neurophysiol 2007; 99:900-14. [PMID: 18057111 DOI: 10.1152/jn.00864.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the role of neurokinin-1 receptors (NK1-R) on the excitability of expiratory (E) neurons (tonic discharge, E(TONIC); augmenting, E(AUG); decrementing, E(DEC)) throughout the ventral respiratory group, including Bötzinger Complex (BötC) using extracellular single-unit recording combined with pressurized picoejection in decerebrate, arterially perfused juvenile rats. Responses evoked by picoejection of the NK1-R agonist, [Sar9-Met(O2)11]-substance P (SSP) were determined before and after the selective NK1-R antagonist, CP99,994. SSP excited 20 of 35 expiratory neurons by increasing the number of action potentials per burst (+33.7 +/- 6.5% of control), burst duration (+20.6 +/- 7.9% of control), and peak firing frequency (+16.2 +/- 4.8% of control; means +/- SE). Pretreatment with CP99,994 completely blocked SSP-evoked excitation in a subset of neurons tested, supporting the notion that SSP excitation was mediated through NK1-R activation. Because we had previously shown that E(AUG) neurons were crucial to locomotor-respiratory coupling (LRC), we reasoned that blockade of NK1-R would alter LRC by preventing somatic-evoked excitation of E(AUG) neurons. Blockade of NK1-Rs by CP99,994 in the BötC severely disrupted LRC and prevented somatic-evoked excitation of E(AUG) neurons. These findings demonstrate that LRC is dependent on endogenous SP release acting via NK1-Rs on E(AUG) neurons of the BötC. Taken together with our earlier finding that inspiratory off-switching by the Hering-Breuer Reflex requires endogenous activation of NK1-Rs through activation of NK1-Rs on E(DEC) neurons, we suggest that endogenous release of substance P in the BötC provides a reflex pathway-dependent mechanism to selectively modulate respiratory rhythm.
Collapse
Affiliation(s)
- Angelina Y Fong
- Dalton Cardiovascular Research Center , University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
17
|
Raybaud A, Baspinar EE, Dionne F, Dodier Y, Sauvé R, Parent L. The Role of Distal S6 Hydrophobic Residues in the Voltage-dependent Gating of CaV2.3 Channels. J Biol Chem 2007; 282:27944-52. [PMID: 17660294 DOI: 10.1074/jbc.m703895200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrophobic locus VAVIM is conserved in the S6 transmembrane segment of domain IV (IVS6) in Ca(V)1 and Ca(V)2 families. Herein we show that glycine substitution of the VAVIM motif in Ca(V)2.3 produced whole cell currents with inactivation kinetics that were either slower (A1719G approximately V1720G), similar (V1718G), or faster (I1721G approximately M1722G) than the wild-type channel. The fast kinetics of I1721G were observed with a approximately +10 mV shift in its voltage dependence of activation (E(0.5,act)). In contrast, the slow kinetics of A1719G and V1720G were accompanied by a significant shift of approximately -20 mV in their E(0.5,act) indicating that the relative stability of the channel closed state was decreased in these mutants. Glycine scan performed with Val (349) in IS6, Ile(701) in IIS6, and Leu(1420) in IIIS6 at positions predicted to face Val(1720) in IVS6 also produced slow inactivating currents with hyperpolarizing shifts in the activation and inactivation potentials, again pointing out a decrease in the stability of the channel closed state. Mutations to other hydrophobic residues at these positions nearly restored the channel gating. Altogether these data indicate that residues at positions equivalent to 1720 exert a critical control upon the relative stability of the channel closed and open states and more specifically, that hydrophobic residues at these positions promote the channel closed state. We discuss a three-dimensional homology model of Ca(V)2.3 based upon Kv1.2 where hydrophobic residues at positions facing Val(1720) in IS6, IIS6, and IIIS6 play a critical role in stabilizing the closed state in Ca(V)2.3.
Collapse
Affiliation(s)
- Alexandra Raybaud
- Département de Physiologie and the Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Weiergräber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T. Hippocampal Seizure Resistance and Reduced Neuronal Excitotoxicity in Mice Lacking the Cav2.3 E/R-Type Voltage-Gated Calcium Channel. J Neurophysiol 2007; 97:3660-9. [PMID: 17376845 DOI: 10.1152/jn.01193.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated calcium channels are key components in the etiology and pathogenesis of epilepsies. Former studies mainly focused on P/Q-type Cav2.1 and T-type Cav3.2 Ca2+ channels involved in absence epileptogenesis, but recent findings also point to an intriguing role of the Cav2.3 E/R-type Ca2+ channel in ictogenesis and seizure propagation. Based on the observation that Cav2.3 is thought to induce plateau potentials in CA1 pyramidal cells, which can trigger epileptiform activity, our recent investigation revealed reduced PTZ-seizure susceptibility and altered seizure architecture in Cav2.3−/− mice compared with controls. In the present study we tested hippocampal seizure susceptibility in Cav2.3-deficient mice using surface and deep intrahippocampal telemetric EEG recordings as well as phenotypic seizure video analysis. Administration of kainic acid (30 mg/kg ip) revealed clear alteration in behavioral seizure architecture and dramatic resistance to limbic seizures in Cav2.3−/− mice compared with controls, whereas no difference in hippocampal EEG seizure activity between both genotypes could be detected at this suprathreshold dosage. The same tendency was observed for NMDA seizure susceptibility (150 mg/kg ip) approaching the level of significance. In addition, histochemical analysis within the hippocampus revealed that excitotoxic effects after kainic acid administration are absent in Cav2.3−/− mice, whereas Cav2.3+/+ animals exhibited clear and typical signs of excitotoxic cell death. These findings clearly indicate that the Cav2.3 voltage-gated calcium channel plays a crucial role in both hippocampal ictogenesis and seizure generalization and is of central importance in neuronal degeneration after excitotoxic events.
Collapse
Affiliation(s)
- Marco Weiergräber
- Institute of Neurophysiology, University of Cologne D-50931 Cologne, Germany.
| | | | | | | | | |
Collapse
|