1
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Kumar V, Haldar S, Ghosh S, Saini S, Dhankhar P, Roy P. Pterostilbene-Isothiocyanate Inhibits Proliferation of Human MG-63 Osteosarcoma Cells via Abrogating β-Catenin/TCF-4 Interaction-A Mechanistic Insight. ACS OMEGA 2023; 8:43474-43489. [PMID: 38027335 PMCID: PMC10666272 DOI: 10.1021/acsomega.3c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Osteosarcoma, a highly metastasizing bone neoplasm, is a leading cause of death and disability in children and adolescents worldwide. Osteosarcoma is only suboptimally responsive to surgery and radio- and chemotherapy, that too with adverse side effects. Hence, there is a necessary need for safer alternative therapeutic approaches. This study evaluated the anticancer effects of the semi-synthetic compound, pterostilbene-isothiocyanate (PTER-ITC), on human osteosarcoma MG-63 cells through cytotoxicity, wound-healing, and transwell-migration assays. Results showed that PTER-ITC specifically inhibited the survival, proliferation, and migration of osteosarcoma cells. PTER-ITC induced apoptosis in MG-63 cells by disrupting mitochondrial membrane potential, as evident from the outcomes of different cytological staining. The antimetastatic potential of PTER-ITC was evaluated through immunostaining, RT-qPCR, and immunoblotting. In silico (molecular docking and dynamic simulation) and, subsequently, biochemical [co-immunoprecipitation (Co-IP) and luciferase reporter] assays deciphered the underlying mode-of-action of this compound. PTER-ITC increased E-cadherin and reduced N-cadherin levels, thereby facilitating the reversal of epithelial-mesenchymal transition (EMT). It also modulated the expressions of proliferative cell nuclear antigen (PCNA), caspase-3, poly [ADP-ribose] polymerase (PARP-1) and matrix metalloproteinase-2/9 (MMPs-2/9) at transcriptional and translational levels. PTER-ITC interfered with the β-catenin/transcription factor-4 (TCF-4) interaction in silico by occupying the β-catenin binding site on TCF-4, confirmed by their reduced physical interactions (Co-IP assay). This inhibited transcriptional activation of TCF-4 by β-catenin (as shown by luciferase reporter assay). In conclusion, PTER-ITC exhibited potent anticancer effects in vitro against human osteosarcoma cells by abrogating the β-catenin/TCF-4 interaction. Altogether, this study suggests that PTER-ITC may be regarded as a new approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Swati Haldar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Poonam Dhankhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| |
Collapse
|
3
|
Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F, Heymann D. Advances in Osteosarcoma. Curr Osteoporos Rep 2023:10.1007/s11914-023-00803-9. [PMID: 37329384 PMCID: PMC10393907 DOI: 10.1007/s11914-023-00803-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE OF REVIEW This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. RECENT FINDINGS Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Javier Muñoz-García
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
| | - Jorge W Vargas-Franco
- University of Antioquia, Department of Basic Studies, Faculty of Odontology, Medellin, Colombia
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), 75012, Paris, France
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
- University of Sheffield, Medical School, Department of Oncology and Metabolism, S10 2RX, Sheffield, UK.
| |
Collapse
|
4
|
Borges R, Zambanini T, Pelosine AM, Justo GZ, Souza ACS, Machado J, Schneider JF, de Araujo DR, Marchi J. A colloidal hydrogel-based drug delivery system overcomes the limitation of combining bisphosphonates with bioactive glasses: in vitro evidence of a potential selective bone cancer treatment allied with bone regeneration. BIOMATERIALS ADVANCES 2023; 151:213441. [PMID: 37167747 DOI: 10.1016/j.bioadv.2023.213441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Bisphosphonates are a class of drugs that induce bone cancer cell death and favor bone regeneration, making them suitable for bone cancer treatment. However, when combined with bioactive glasses to enhance bone regeneration, a chemical bond between biphosphonates and the glass surface inactivates their mechanism of action. A new colloidal hydrogel-based drug delivery system could overcome that limitation once bisphosphonates, such as zoledronic acid (ZA), are incorporated into hydrogel micelles, avoiding their interaction with the glass surface. In this work, we proposed formulations based on a poloxamer 407 thermo-responsive hydrogel matrix containing holmium-doped bioactive glass nanoparticles and different concentrations (0.05 and 5 mg/mL) of ZA. We characterized the influence of the glass and the ZA on the hydrogel properties. In addition, a drug concentration screening was performed, and biological characterizations evaluated the best result. The biological characterization consisted of evaluating cytotoxicity and in vitro bone regeneration ability through cell migration and quantification of genes related to osteogeneses through RT-PCR. The results suggest that the addition of glasses and ZA to the poloxamer did not significantly influence the sol-gel transition of the hydrogels (around 13 °C) regardless of the ZA content. However, the ZA at high concentration (PL-ZA100) decreased the enthalpy of gel formation from 68 to 43 kJ.mol-1 when compared with the pure hydrogel formulation (PL), suggesting a water structurer role of ZA, which is withdrawn when glass particles are added to the system (PL-BG5Ho-ZA100). Solid-state 31P nuclear resonance spectroscopy results showed that part of the ZA is chemically bonded to the glass surface, which explains the withdrawal in the water structurer role of ZA when the glasses were incorporated into the hydrogel. Besides, based on the drug release results, we proposed a model where part of the ZA is "free," encapsulated in the hydrogel matrix, while another part of the ZA is bonded to the glass surface. Finally, considering the in vitro results and our proposed model, the ratio between "free" and "bonded" ZA in our drug delivery systems showed in vitro evidence of a cancer treatment that selectively kills osteosarcoma cells while still favoring an osteogenic microenvironment. By overcoming the limitation of combining bisphosphonates with bioactive glasses, hydrogel-based drug delivery systems can be a solution for the development of new formulations proposed for bone cancer treatment in conjunction with bone regeneration.
Collapse
Affiliation(s)
- Roger Borges
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, Brazil; School of Biomedical Engineering, Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Telma Zambanini
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Agatha Maria Pelosine
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Giselle Zenker Justo
- Departamento de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ana Carolina S Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Joel Machado
- Departamento de Biologia, Universidade Federal do São Paulo, UNIFESP, Diadema, Brazil
| | - Jose Fabian Schneider
- Instituto de Física de São Carlos, Universidade de São Paulo, USP, São Carlos, Brazil
| | - Daniele R de Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Juliana Marchi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, Brazil.
| |
Collapse
|
5
|
Zhang S, Wu Y, Yu J, Ma C, Wang Y, Wang Y, Li L, Zhang LW. Gadolinium-Bisphosphonate Nanoparticle-Based Low-Dose Radioimmunotherapy for Osteosarcoma. ACS Biomater Sci Eng 2022; 8:5329-5337. [PMID: 36383732 DOI: 10.1021/acsbiomaterials.2c00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteosarcoma is a malignant osteogenic tumor with a high metastatic rate commonly occurring in adolescents. Although radiotherapy is applied to treat unresectable osteosarcoma with radiation resistance, a high dose of radiotherapy is required, which may weaken the immune microenvironment. Therefore, there is an urgent need to develop novel agents to maximize the radiotherapeutic effects by eliciting immune activation effects. In this study, we synthesized therapeutic gadolinium-based metal-bisphosphonate nanoparticles (NPs) for osteosarcoma treatment that can be combined with radiotherapy. The gadolinium ion (Gd) was chelated with zoledronic acid (Zol), a commonly used drug to prevent/treat osteoporosis or bone metastases from advanced cancers, and stabilized by ovalbumin (OVA) to produce OVA-GdZol NPs. OVA-GdZol NPs were internalized into K7M2 osteosarcoma cells, showing a high sensitization effect under X-ray irradiation. Cell pretreatment of OVA-GdZol NPs significantly enhanced the radiation therapeutic effect in vitro by reducing the cell colonies and increased the signal of γH2AX-positive cells. More importantly, OVA-GdZol NPs promoted the maturation of bone marrow-derived dendritic cells (BMDCs) and M1 polarization of macrophages. The inhibitory effect on K7M2 osteosarcoma of OVA-GdZol NPs and X-ray radiation was evident, indicated by a significantly reduced tumor volume, high survival rate, and decreased lung metastasis. Meanwhile, both innate and adaptive immune systems were activated to exert a strong antitumor effect. The above results highly suggest that OVA-GdZol NPs serve as both radiosensitizers and immune adjuvants, suitable for the sequential combination of vaccination and radiotherapy.
Collapse
Affiliation(s)
- Shaodian Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China.,The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Yanxian Wu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jiangkun Yu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chunjie Ma
- The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yong Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Liubing Li
- The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
7
|
Kara M, Boran T, Öztaş E, Jannuzzi AT, Özden S, Özhan G. Zoledronic acid-induced oxidative damage and endoplasmic reticulum stress-mediated apoptosis in human embryonic kidney (HEK-293) cells. J Biochem Mol Toxicol 2022; 36:e23083. [PMID: 35587103 DOI: 10.1002/jbt.23083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/06/2022]
Abstract
Zoledronic acid, a nitrogen-containing bisphosphonate drug, is used for the treatment of osteoporosis, Paget's disease of bone, and tumor-induced osteolysis. Zoledronic acid has also gained a place in cancer treatment due to its cytotoxic and antiproliferative effects in many cancer cells. Although zoledronic acid is considered safe, kidney damage is still one of the concerns in therapeutic doses. In the study, the aim was to assess the nephrotoxic profiles of zoledronic acid in the human embryonic kidney (HEK-293) cells. Cytotoxicity evaluation was performed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and neutral red uptake tests, while oxidative stress was performed by reactive oxygen species (ROS) production via flow cytometry, and the incomprehensible evaluation of ROS-related genes by RT-PCR and apoptosis was performed with Annexin-PI analysis in flow cytometry. The obtained result showed that zoledronic acid inhibited cell viability (IC50 values were determined as 273.16 by MTT) and cell proliferation in a concentration-dependent manner, induced ROS production, caused glutathione depletion, and increased oxidative stress index and endoplasmic reticulum (ER) stress, indicating severe cellular stress. The expression levels of oxidative damage (L-fabp, α-GST, Nrf2, and HMOX1), ER stress (CASP4, IRE1-α, GADD153, and GRP78), and apoptosis (Bcl-2, Bax, Cyt-c, p53, CASP9, CASP3, NF-κB, TNF-α, and JNK) related genes were altered as well as IRE1-α protein levels. Herein, we were the first to show that increased oxidative stress and ER stress resulting in apoptosis are the key molecular pathways in zoledronic acid-induced nephrotoxicity equivalent to clinically administered concentrations.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sibel Özden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Araki Y, Aiba H, Yoshida T, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Nguyen TD, Ishii KA, Nojima T, Takahashi S, Murakami H, Tsuchiya H, Hanayama R. Osteosarcoma-Derived Small Extracellular Vesicles Enhance Tumor Metastasis and Suppress Osteoclastogenesis by miR-146a-5p. Front Oncol 2021; 11:667109. [PMID: 34017686 PMCID: PMC8130824 DOI: 10.3389/fonc.2021.667109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most frequent type of primary bone tumor in children and adolescents, thus care for patients with malignant osteosarcoma is strongly required. The roles of small extracellular vesicles (SEVs) in enhancing metastases have been demonstrated in multiple tumors, but they are still poorly understood in osteosarcoma. Hence, this study investigated the effects of SEVs on progression and the tumor microenvironment in mice and patients. In an orthotopic implantation study, we found that osteosarcoma-derived SEVs had the potential to enhance metastases and angiogenesis. In addition, osteosarcoma-derived SEVs decreased the number of mature osteoclasts in vivo. In vitro osteoclastogenesis studies revealed that the inhibition of osteoclast maturation by osteosarcoma-derived SEVs was mediated by suppressing the NF-κB signal pathway. MicroRNA analysis of SEVs from different malignant human osteosarcomas revealed that miR-146a-5p was involved in the inhibition of osteoclastogenesis. In osteosarcoma patients, lower numbers of osteoclasts in biopsy specimens at the first visits were correlated with higher malignancy. These findings indicated that osteosarcoma-derived SEVs enhance distant metastasis of osteosarcomas by inhibiting osteoclast maturation, which may be a useful prognostic marker. This diagnostic method may enable to predict malignancy at early stage, and help to provide optimal care to patients with risk of high malignancy.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hisaki Aiba
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Yoshida
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tuan D Nguyen
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kiyo-Aki Ishii
- Department of Integrative Medicine for Longevity, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayuki Nojima
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Heymann MF, Lezot F, Heymann D. Bisphosphonates in common pediatric and adult bone sarcomas. Bone 2020; 139:115523. [PMID: 32622877 DOI: 10.1016/j.bone.2020.115523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
The therapeutic strategies proposed currently for bone sarcomas are based on neo-adjuvant chemotherapy, delayed en-bloc wide resection, and adjuvant chemotherapy. Unfortunately, bone sarcomas are characterized by high rates of poor drug response, with a high risk of drug resistance, local recurrence and/or a high propensity for induced metastases. The pathogenesis of bone sarcomas is strongly associated with dysregulation of local bone remodeling and increased osteolysis that plays a part in tumor development. In this context, bisphosphonates (BPs) have been proposed as a single agent or in combination with conventional drugs to block bone resorption and the vicious cycle established between bone and sarcoma cells. Pre-clinical in vitro studies revealed the potential "anti-tumor" activities of nitrogen-bisphosphonates (N-BPs). In pre-clinical models, N-BPs reduced significantly primary tumor growth in osteosarcoma and Ewing sarcoma, and the installation of lung metastases. In chondrosarcoma, N-BPs reduced the recurrence of local tumors after intralesional curettage, and increased overall survival. In pediatric and adult osteosarcoma patients, N-BPs have been assessed in combination with conventional chemotherapy and surgery in randomized phase 3 studies with no improvement in clinical outcome. The lack of benefit may potentially be explained by the biological impact of N-BPs on macrophage differentiation/recruitment which may alter CD8+-T lymphocyte infiltration. Thanks to their considerable affinity for the mineralized extracellular matrix, BPs are an excellent platform for drug delivery in malignant bone sites with reduced systemic toxicity, which opens up new opportunities for their future use.
Collapse
Affiliation(s)
- Marie-Francoise Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France
| | - Frederic Lezot
- Université de Nantes, Inserm, U1238, Faculty of Medicine, Nantes, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France; University of Sheffield, Dept of Oncology and Metabolism, School of Medicine, Sheffield, UK.
| |
Collapse
|
10
|
New insights into molecular and cellular mechanisms of zoledronate in human osteosarcoma. Pharmacol Ther 2020; 214:107611. [PMID: 32565177 DOI: 10.1016/j.pharmthera.2020.107611] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common primary malignant tumor of the skeleton in teenagers and young adults and continues to confer a generally poor prognosis in patients who do not respond to chemotherapy or who present with metastatic diseases at diagnosis. The nitrogen-containing zoledronate, the third generation bisphosphonate (BP), effectively inhibits osteoclastic bone resorption and is widely utilized in the treatment of metabolic and metastatic bone diseases nowadays. Owing to an acceptable safety profile and tolerability, zoledronate is the only BP currently approved for the prevention and treatment of skeletal relevant events in patients with metastatic bone lesions, especially bone metastases from advanced renal cell carcinoma and prostate cancer, and breast cancer, due to all solid malignancy. Moreover, zoledronate possesses diverse anti-osteosarcoma properties and may have potential to become an adjunctive treatment for high-grade osteosarcoma to enhance survival rates and to obliterate complications of the chemotherapy. Herein we highlighted the pharmacology of BPs and its underlying molecular mechanisms in osteoclasts and various cancer cells. We further provided the available literature on in vitro studies to illustrate the new insights into the intracellular molecular mechanisms of zoledronate in human osteosarcoma cell lines and in vivo animal models that led to the development and regulatory approval of zoledronate in patients with human osteosarcoma. This review also addresses clinical trials to focus on the efficacy of zoledronate on human osteosarcoma.
Collapse
|
11
|
Mahmood N, Arakelian A, Khan HA, Tanvir I, Mazar AP, Rabbani SA. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions. Bone Res 2020; 8:18. [PMID: 32337090 PMCID: PMC7165173 DOI: 10.1038/s41413-020-0094-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/16/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) is implicated in tumor growth and metastasis due to its ability to activate latent growth factors, proteases, and different oncogenic signaling pathways upon binding to different ligands. Elevated uPAR expression is correlated with the increased aggressiveness of cancer cells, which led to its credentialing as an attractive diagnostic and therapeutic target in advanced solid cancer. Here, we examine the antitumor effects of a humanized anti-uPAR antibody (huATN-658) alone and in combination with the approved bisphosphonate Zometa (Zoledronic acid) on skeletal lesion through a series of studies in vitro and in vivo. Treatment with huATN-658 or Zometa alone significantly decreased human MDA-MB-231 cell proliferation and invasion in vitro, effects which were more pronounced when huATN-658 was combined with Zometa. In vivo studies demonstrated that huATN-658 treatment significantly reduced MDA-MB-231 primary tumor growth compared with controls. In a model of breast tumor-induced bone disease, huATN-658 and Zometa were equally effective in reducing skeletal lesions. The skeletal lesions were significantly reduced in animals receiving the combination of huATN-658 + Zometa compared with monotherapy treatment. These effects were due to a significant decrease in osteoclastic activity and tumor cell proliferation in the combination treatment group. Transcriptome analysis revealed that combination treatment significantly changes the expression of genes from signaling pathways implicated in tumor progression and bone remodeling. Results from these studies provide a rationale for the continued development of huATN-658 as a monotherapy and in combination with currently approved agents such as Zometa in patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC H4A3J1 Canada
| | - Ani Arakelian
- Department of Medicine, McGill University, Montréal, QC H4A3J1 Canada
| | | | | | | | | |
Collapse
|
12
|
Madka V, Kumar G, Pathuri G, Zhang Y, Lightfoot S, Asch AS, Mohammed A, Steele VE, Rao CV. Bisphosphonates Zometa and Fosamax Synergize with Metformin to Prevent AOM-Induced Colon Cancer in F344 Rat Model. Cancer Prev Res (Phila) 2020; 13:185-194. [PMID: 31699708 PMCID: PMC7007371 DOI: 10.1158/1940-6207.capr-19-0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Recent observational studies suggest that bisphosphonates (BP) and antidiabetic drugs are associated with colorectal cancer risk reduction. Hence, we evaluated the colorectal cancer preventive effects of BPs (zometa and fosamax), individually and when combined with metformin, in azoxymethane-induced rat colon cancer model. Rat (30/group) were randomized and treated subcutaneously with azoxymethane to induce colorectal cancer. Dietary intervention with zometa or fosamax (0, 20, or 100 ppm) or metformin (1,000 ppm) or the combinations (zometa/fosamax 20 ppm plus metformin 1,000 ppm) began 4 weeks after azoxymethane treatment, at premalignant lesions stage. Rats were killed 40 weeks post drug intervention to assess colorectal cancer preventive efficacy. Dietary zometa (20 ppm) inhibited noninvasive adenocarcinomas multiplicity by 37% (P < 0.03) when compared with control diet fed group. Fosamax at 20 ppm and 100 ppm significantly reduced adenocarcinoma incidence (P < 0.005) and inhibited the noninvasive adenocarcinoma multiplicities by 43.8% (P < 0.009) and 60.8% (P < 0.004), respectively, compared with the group fed control diet. At 1,000 ppm dose, metformin failed to suppress colon adenocarcinoma formation. However, the lower dose combinations of zometa or fosamax with metformin resulted in significant inhibition of noninvasive adenocarcinoma by 48% (P < 0.006) and 64% (P < 0.0002), and invasive adenocarcinoma by 49% (P < 0.0005) and 38% (P < 0.006), respectively. Biomarker analysis of combination drug-treated tumors showed a decrease in cell proliferation with increased apoptosis when compared with untreated tumors. Overall, our results suggest that the combination of low doses of zometa or fosamax with metformin showed synergistic effect and significantly inhibited colon adenocarcinoma incidence and multiplicity.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stanley Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Adam S Asch
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Vernon E Steele
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- VA Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
13
|
Park YE, Bava U, Lin JM, Cornish J, Naot D, Reid IR. Bone-Bound Bisphosphonates Inhibit Proliferation of Breast Cancer Cells. Calcif Tissue Int 2019; 105:497-505. [PMID: 31324954 DOI: 10.1007/s00223-019-00590-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
Abstract
Bisphosphonates are used in treating patients with breast cancer. In vitro studies have shown that bisphosphonates act directly on tumour cells, inhibiting cell proliferation and inducing apoptosis. In most such studies, drugs were added to culture media exposing cells to high bisphosphonate concentrations in solution. However, since bisphosphonates bind to bone hydroxyapatite with high affinity and remain bound for very long periods of time, these experimental systems are not an optimal model for the action of the drugs in vivo. The aim of this study was to determine whether bone-bound zoledronate has direct effects on adjacent breast cancer cells. Bone slices were pre-incubated with bisphosphonate solutions, washed, and seeded with cells of the breast cancer cell lines, MCF7 or MDA-MB-231. Proliferation was assessed by cell counts and thymidine incorporation for up to 72 h. Inhibition of the mevalonate pathway was tested by measuring the levels of unprenylated Rap1A, and apoptosis was examined by the presence of cleaved caspase-8 on western blots. The proliferation rate of breast cancer cells on zoledronate-treated bone was significantly lower compared to cells on control bone. Other bisphosphonates showed a similar inhibitory effect, with an order of potency similar to their clinical potencies. Unprenylated Rap1A accumulated in MCF7 cells on zoledronate-treated bone, suggesting zoledronate acted through the inhibition of the mevalonate pathway. Accumulation of cleaved caspase-8 in MDA-MB-231 cells on bisphosphonate-treated bone indicated increased apoptosis in the cells. In conclusion, bone-bound zoledronate inhibits breast cancer cell proliferation, an activity that may contribute to its clinical anti-tumour effects.
Collapse
Affiliation(s)
- Young-Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Usha Bava
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jian-Ming Lin
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Dorit Naot
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ian R Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
14
|
Sousa S, Clézardin P. Bone-Targeted Therapies in Cancer-Induced Bone Disease. Calcif Tissue Int 2018; 102:227-250. [PMID: 29079995 DOI: 10.1007/s00223-017-0353-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 01/14/2023]
Abstract
Cancer-induced bone disease is a major source of morbidity and mortality in cancer patients. Thus, effective bone-targeted therapies are essential to improve disease-free, overall survival and quality of life of cancer patients with bone metastases. Depending of the cancer-type, bone metastases mainly involve the modulation of osteoclast and/or osteoblast activity by tumour cells. To inhibit metastatic bone disease effectively, it is imperative to understand its underlying mechanisms and identify the target cells for therapy. If the aim is to prevent bone metastasis, it is essential to target not only bone metastatic features in the tumour cells, but also tumour-nurturing bone microenvironment properties. The currently available bone-targeted agents mainly affect osteoclasts, inhibiting bone resorption (e.g. bisphosphonates, denosumab). Some agents targeting osteoblasts begin to emerge which target osteoblasts (e.g. romosozumab), activating bone formation. Moreover, certain drugs initially thought to target only osteoclasts are now known to have a dual action (activating osteoblasts and inhibiting osteoclasts, e.g. proteasome inhibitors). This review will focus on the evolution of bone-targeted therapies for the treatment of cancer-induced bone disease, summarizing preclinical and clinical findings obtained with anti-resorptive and bone anabolic therapies.
Collapse
Affiliation(s)
- Sofia Sousa
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France.
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France.
| | - Philippe Clézardin
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France
- European Cancer and Bone Metastasis Laboratory, Department of Bone Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Brown HK, Schiavone K, Gouin F, Heymann MF, Heymann D. Biology of Bone Sarcomas and New Therapeutic Developments. Calcif Tissue Int 2018; 102:174-195. [PMID: 29238848 PMCID: PMC5805807 DOI: 10.1007/s00223-017-0372-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Bone sarcomas are tumours belonging to the family of mesenchymal tumours and constitute a highly heterogeneous tumour group. The three main bone sarcomas are osteosarcoma, Ewing sarcoma and chondrosarcoma each subdivided in diverse histological entities. They are clinically characterised by a relatively high morbidity and mortality, especially in children and adolescents. Although these tumours are histologically, molecularly and genetically heterogeneous, they share a common involvement of the local microenvironment in their pathogenesis. This review gives a brief overview of their specificities and summarises the main therapeutic advances in the field of bone sarcoma.
Collapse
Affiliation(s)
- Hannah K Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Kristina Schiavone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - François Gouin
- European Associated Laboratory, "Sarcoma Research Unit", Faculty of Medicine, INSERM, UMR1238, INSERM, Nantes, France
- Faculty of Medicine, University of Nantes, 44035, Nantes, France
| | - Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- Faculty of Medicine, University of Nantes, 44035, Nantes, France.
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France.
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
16
|
Fanale D, Amodeo V, Bazan V, Insalaco L, Incorvaia L, Barraco N, Castiglia M, Rizzo S, Santini D, Giordano A, Castorina S, Russo A. Can the microRNA expression profile help to identify novel targets for zoledronic acid in breast cancer? Oncotarget 2017; 7:29321-32. [PMID: 27081088 PMCID: PMC5045398 DOI: 10.18632/oncotarget.8722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/27/2023] Open
Abstract
Zoledronic acid (ZOL), belonging to third generation bisphosphonate family, is a potent inhibitor of osteoclast-mediated bone resorption, widely used to effectively prevent osteolysis in breast cancer patients who develop bone metastases. Low doses of ZOL have been shown to exhibit a direct anticancer role, by inhibiting cell adhesion, invasion, cytoskeleton remodelling and proliferation in MCF-7 breast cancer cells. In order to identify the molecular mechanisms and signaling pathways underlying the anticancer activity exerted by ZOL, we analyzed for the first time the microRNA expression profile in breast cancer cells. A large-scale microarray analysis of 377 miRNAs was performed on MCF7 cells treated with 10 μM ZOL for 24 h compared to untreated cells. Furthermore, the expression of specific ZOL-induced miRNAs was analyzed in MCF-7 and SkBr3 cells through Real-time PCR. Low-dose treatment with ZOL significantly altered expression of 54 miRNAs. Nine upregulated and twelve downregulated miRNAs have been identified after 24 h of treatment. Also, ZOL induced expression of 11 specific miRNAs and silenced expression of 22 miRNAs. MiRNA data analysis revealed the involvement of differentially expressed miRNAs in PI3K/Akt, MAPK, Wnt, TGF-β, Jak-STAT and mTOR signaling pathways, and regulation of actin cytoskeleton. Our results have been shown to be perfectly coherent with the recent findings reported in literature concerning changes in expression of some miRNAs involved in bone metastasis formation, progression, therapy resistance in breast cancer. In conclusion, this data supports the hypothesis that ZOL-induced modification of the miRNA expression profile contributes to the anticancer efficacy of this agent.
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valeria Amodeo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lavinia Insalaco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marta Castiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Sergio Rizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniele Santini
- University Campus Bio-Medico, Department of Medical Oncology, Rome, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Sergio Castorina
- Fondazione Mediterranea "G.B. Morgagni", Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
Statin and Bisphosphonate Induce Starvation in Fast-Growing Cancer Cell Lines. Int J Mol Sci 2017; 18:ijms18091982. [PMID: 28914765 PMCID: PMC5618631 DOI: 10.3390/ijms18091982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
Statins and bisphosphonates are increasingly recognized as anti-cancer drugs, especially because of their cholesterol-lowering properties. However, these drugs act differently on various types of cancers. Thus, the aim of this study was to compare the effects of statins and bisphosphonates on the metabolism (NADP+/NADPH-relation) of highly proliferative tumor cell lines from different origins (PC-3 prostate carcinoma, MDA-MB-231 breast cancer, U-2 OS osteosarcoma) versus cells with a slower proliferation rate like MG-63 osteosarcoma cells. Global gene expression analysis revealed that after 6 days of treatment with pharmacologic doses of the statin simvastatin and of the bisphosphonate ibandronate, simvastatin regulated more than twice as many genes as ibandronate, including many genes associated with cell cycle progression. Upregulation of starvation-markers and a reduction of metabolism and associated NADPH production, an increase in autophagy, and a concomitant downregulation of H3K27 methylation was most significant in the fast-growing cancer cell lines. This study provides possible explanations for clinical observations indicating a higher sensitivity of rapidly proliferating tumors to statins and bisphosphonates.
Collapse
|
18
|
Qiu L, Yang H, Lv G, Li K, Liu G, Wang W, Wang S, Zhao X, Xie M, Lin J. Insights into the mevalonate pathway in the anticancer effect of a platinum complex on human gastric cancer cells. Eur J Pharmacol 2017; 810:120-127. [DOI: 10.1016/j.ejphar.2017.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/06/2023]
|
19
|
Du C, Wang Y, Li H, Huang Y, Jiang O, You Y, Luo F. Zoledronic acid augments the radiosensitivity of cancer cells through perturbing S- and M-phase cyclins and p21 CIP1 expression. Oncol Lett 2017; 14:4237-4242. [PMID: 28943933 DOI: 10.3892/ol.2017.6710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy and adjuvant chemotherapy have become the standard treatments for multiple types of cancer. Although cancer cells are usually sensitive to radiotherapy, metastasis and local failure still occur mainly due to developed resistance to radiotherapy. Thus, it is critical to improve therapeutics for cancer treatment. The present study demonstrated that third-generation bisphosphonate zoledronic acid (ZOL), even at a low concentration, augments the radiosensitivity of cancer cells exposed to ionizing radiation (IR) by inducing S-phase arrest and subsequently promoting apoptosis. This function of ZOL was associated with elevated levels of cyclin A and cyclin B in the S and M phases, as well as decreased p21CIP1 expression. In addition, ZOL also inhibited malignant the invasiveness of cancer cells. Notably, these effects could be enhanced concurrently with IR. The present data indicated that combined treatment with ZOL plus IR may be a novel technique to augment the radiosensitivity of cancer cells.
Collapse
Affiliation(s)
- Chi Du
- Department of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610004, P.R. China.,Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Yuyi Wang
- Department of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610004, P.R. China
| | - Haijun Li
- Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Yi Huang
- Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Ou Jiang
- Department of Oncology, The Second People's Hospital of Neijiang, Luzhou Medical College, Neijiang, Sichuan 641003, P.R. China
| | - Yanjie You
- Pathological Examinations and Research Center, Luohe, Henan 462002, P.R. China.,Department of Pharmacy, Luohe Medical College, Luohe, Henan 462002, P.R. China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610004, P.R. China
| |
Collapse
|
20
|
Lee RS, Sohn S, Shin KH, Kang MK, Park NH, Kim RH. Bisphosphonate inhibits the expression of cyclin A2 at the transcriptional level in normal human oral keratinocytes. Int J Mol Med 2017; 40:623-630. [PMID: 28713904 PMCID: PMC5548072 DOI: 10.3892/ijmm.2017.3066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/29/2017] [Indexed: 01/07/2023] Open
Abstract
Nitrogen-containing bisphosphonates (N-BPs) are the most widely used anti-resorptive agents in the treatment of bone-related diseases. N-BPs inhibit bone resorption by specifically targeting osteoclasts, bone-resorbing cells. However, soft tissue toxicity, such as oral or gastrointestinal (GI) ulcerations has frequently been reported in N-BP users, suggesting that N-BPs may also directly target cells other than osteoclasts. Previously, we reported that BPs inhibit proliferation without inducing the apoptosis of normal human oral keratinocytes (NHOKs). However, the molecular mechanisms through which N-BPs inhibit the proliferation of NHOKs are not yet fully understood. In this study, we performed gene expression profiling in N-BP-treated NHOKs and identified cyclin A2 as one of the most commonly downregulated genes. When the NHOKs were treated with N-BPs, we found that the level of cyclin A2 was suppressed in a dose- and time-dependent manner. In addition, the protein level of cyclin A2 was also significantly lower in oral epithelial cells in N-BP-treated oral mucosal tissue constructs. Cyclin A2 promoter reporter assay revealed that N-BPs inhibited the luciferase activity, indicating that the inhibition of cyclin A2 expression occurs at the transcriptional level. Furthermore, N-BPs did not alter the expression of cyclin A2 in normal human oral fibroblasts (NHOFs), suggesting that the effect of N-BPs on cyclin A2 expression may be cell-type specific. Thus, the findings of our study demonstrate that the inhibition of NHOK proliferation by N-BPs is mediated, at least in part, by the suppression of cyclin A2 expression at the transcriptional level, which may explain the underlying mechanisms of soft tissue toxicity by N-BPs.
Collapse
Affiliation(s)
- Rachel S Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Suhjin Sohn
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Wu CC, Huang YF, Hsieh CP, Chueh PJ, Chen YL. Combined Use of Zoledronic Acid Augments Ursolic Acid-Induced Apoptosis in Human Osteosarcoma Cells through Enhanced Oxidative Stress and Autophagy. Molecules 2016; 21:E1640. [PMID: 27916903 PMCID: PMC6274426 DOI: 10.3390/molecules21121640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023] Open
Abstract
Ursolic acid (UA), a naturally occurring pentacyclic triterpene acid found in many medicinal herbs and edible plants, triggers apoptosis in several tumor cell lines but not in human bone cancer cells. Most recently, we have demonstrated that UA exposure reduces the viability of human osteosarcoma MG-63 cells through enhanced oxidative stress and apoptosis. Interestingly, an inhibitor of osteoclast-mediated bone resorption, zoledronic acid (ZOL), also a third-generation nitrogen-containing bisphosphonate, is effective in the treatment of bone metastases in patients with various solid tumors. In this present study, we found that UA combined with ZOL to significantly suppress cell viability, colony formation, and induce apoptosis in two lines of human osteosarcoma cells. The pre-treatment of the antioxidant had reversed the oxidative stress and cell viability inhibition in the combined treatment, indicating that oxidative stress is important in the combined anti-tumor effects. Moreover, we demonstrated that ZOL combined with UA significantly induced autophagy and co-administration of autophagy inhibitor reduces the growth inhibitory effect of combined treatment. Collectively, these data shed light on the pathways involved in the combined effects of ZOL and UA that might serve as a potential therapy against osteosarcoma.
Collapse
Affiliation(s)
- Chia-Chieh Wu
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Fu Huang
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Chen-Pu Hsieh
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Pin-Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yao-Li Chen
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Transplant Medicine & Surgery Research Centre, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Surgery, Changhua Christian Hospital, 135 Nansiao St., Changhua 50006, Taiwan.
| |
Collapse
|
22
|
Liu H, Wang SH, Chen SC, Chen CY, Lo JL, Lin TM. Immune modulation of CD4 +CD25 + regulatory T cells by zoledronic acid. BMC Immunol 2016; 17:45. [PMID: 27887569 PMCID: PMC5124310 DOI: 10.1186/s12865-016-0183-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
Background CD4+CD25+ regulatory T (Treg) cells suppress tumor immunity by inhibiting immune cells. Manipulation of Treg cells represents a new strategy for cancer treatment. Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, inhibits the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts to inhibit osteoclastogenesis. In a mouse model of bisphosphonate-related osteonecrosis of the jaw, administration of ZA suppressed Treg-cell activity and activated inflammatory Th17 cells. However, the interaction between ZA and Treg cells remained unclear. This study investigated the immune modulation of Treg cells by ZA. Methods Flow cytometry was used to analyze the phenotypic and immunosuppressive characteristics of Treg cells treated with ZA. Chemotactic migration was evaluated using transwell assays. Quantitative real-time PCR (qRT-PCR) was used to investigate the effect of ZA on the expression of suppressive molecules by Treg cells. Results Proliferation of isolated Treg cells in culture was inhibited by ZA, although ZA did not induce apoptosis. qRT-PCR and flow cytometry showed that ZA significantly downregulated the expression of CCR4, CTLA4, PD-1 and RANKL on Treg cells. Chemotactic migration and immunosuppressive functions were also significantly attenuated in Treg cells pretreated with ZA, and these effects were dose-dependent. Co-culture with Treg cells significantly increased the migration rate of breast cancer cells, while pretreatment of Treg cells with ZA attenuated this effect. Conclusions Our findings demonstrated that ZA acted as an immune modulator by significantly inhibiting the expansion, migration, immunosuppressive function and pro-metastatic ability of Treg cells. Immunomodulation of Treg cells by ZA represents a new strategy for cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0183-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsien Liu
- Department of Surgery, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shih-Han Wang
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.
| | - Shin-Cheh Chen
- Department of Surgery, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ching-Ying Chen
- Department of Medical Research, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan
| | - Jo-Lin Lo
- Department of Internal Medicine, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan
| | - Tsun-Mei Lin
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan. .,Department of Medical Research, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan. .,Department of Laboratory Medicine, E-DA Hospital/I-SHOU University, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Heymann MF, Brown HK, Heymann D. Drugs in early clinical development for the treatment of osteosarcoma. Expert Opin Investig Drugs 2016; 25:1265-1280. [DOI: 10.1080/13543784.2016.1237503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Hannah K. Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Jiang Y, Zhong B, Kawamura K, Morinaga T, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Combination of a third generation bisphosphonate and replication-competent adenoviruses augments the cytotoxicity on mesothelioma. BMC Cancer 2016; 16:455. [PMID: 27405588 PMCID: PMC4942884 DOI: 10.1186/s12885-016-2483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80 % of mesothelioma specimens have the wild-type p53 gene, whereas they contain homozygous deletions in the INK4A/ARF locus that encodes p14ARF and the 16INK4A genes. Consequently, the majority of mesothelioma is defective of the p53 pathways. We examined whether zoledronic acid (ZOL), a third generation bisphosphonate, and adenoviruses with a deletion of the E1B-55kD gene (Ad-delE1B55), which augments p53 levels in the infected tumors, could produce combinatory anti-tumor effects on human mesothelioma cells bearing the wild-type p53 gene. Methods Cytotoxicity of ZOL and Ad-delE1B55 was assessed with a WST assay. Cell cycle changes were tested with flow cytometry. Expression levels of relevant molecules were examined with western blot analysis to investigate a possible mechanism of cytotoxicity. Furthermore, the expressions of Ad receptors on target cells and infectivity were estimated with flow cytometry. Viral replication was assayed with the tissue culture infection dose method. Results A combinatory use of ZOL and Ad-delE1B55 suppressed cell growth and increased sub-G1 or S-phase populations compared with a single agent, depending on cells tested. The combinatory treatment up-regulated p53 levels and subsequently enhanced the cleavage of caspase-3, 8, 9 and poly (ADP-ribose) polymerase, but expression of molecules involved in autophagy pathways were inconsistent. ZOL-treated cells also increased Ad infectivity with a dose-dependent manner and augmented Ad replication although the expression levels of integrin molecules, one of the Ad receptors, were down-regulated. Conclusions These findings indicated that ZOL and Ad-delE1B55 achieved combinatory anti-tumor effects through augmented apoptotic pathways or increased viral replication. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2483-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
25
|
Conry RM, Rodriguez MG, Pressey JG. Zoledronic acid in metastatic osteosarcoma: encouraging progression free survival in four consecutive patients. Clin Sarcoma Res 2016; 6:6. [PMID: 27127605 PMCID: PMC4848872 DOI: 10.1186/s13569-016-0046-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background Zoledronic acid (ZA) is a third-generation bisphosphonate in widespread clinical use to reduce pain and skeletal events in patients from a variety of malignancies with bone metastases. Pre-clinical studies indicate that ZA inhibits osteosarcoma through direct anti-proliferative effects, immune activation and anti-angiogenic activity. Methods The purpose of this study was to evaluate the antitumor efficacy of ZA at standard dose until progression in patients with stage IV osteosarcoma lacking a standard of care treatment option proven to influence survival. Researchers retrospectively reviewed medical records of all patients at our institution with high-grade osteosarcoma presumed to be incurable due to metastases progressive after primary combination chemotherapy who received single agent ZA in an effort to delay progression. Results In our four-patient cohort following initiation of ZA, the median progression-free survival was 19 months, and median overall survival was 56+ months. Two of four patients have remained progression-free since starting ZA. The other two initially progressed after 18–20 months on ZA followed by metastasectomy of lung or dural metastases and further stability for over a year following resumption of ZA. After a 20-month progression-free interval on ZA alone, one patient had partial response following addition of pazopanib to ZA that likely contributed to long term disease control. The four patients experienced no significant toxicities despite protracted dosing of ZA for up to 5 years, and none have required chemotherapy since beginning ZA. Conclusions Single agent ZA was associated with encouraging progression-free survival in four consecutive patients with metastatic osteosarcoma. Prospective trials of single agent ZA are warranted as protracted maintenance therapy in surgically incurable osteosarcoma relapsed or refractory to first line combination chemotherapy with radiographically measurable metastases.
Collapse
Affiliation(s)
- Robert M Conry
- Division of Hematology Oncology, University of Alabama at Birmingham, 2145 Bonner Way, Birmingham, AL 35243 USA
| | - Michael G Rodriguez
- Department of Radiology, University of Alabama at Birmingham, 619 19th St South, Birmingham, AL 35249 USA
| | - Joseph G Pressey
- Department of Pediatrics, University of Alabama at Birmingham, 1600 7th Avenue South, Birmingham, AL 35233 USA ; Cancer & Blood Disorders Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| |
Collapse
|
26
|
Ory B, Baud'huin M, Verrecchia F, Royer BBL, Quillard T, Amiaud J, Battaglia S, Heymann D, Redini F, Lamoureux F. Blocking HSP90 Addiction Inhibits Tumor Cell Proliferation, Metastasis Development, and Synergistically Acts with Zoledronic Acid to Delay Osteosarcoma Progression. Clin Cancer Res 2015; 22:2520-33. [PMID: 26712686 DOI: 10.1158/1078-0432.ccr-15-1925] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants the development of new strategies to improve overall patient survival. Among them, HSP90 is a molecular chaperone involved in the maturation and stability of various oncogenic proteins leading to tumor cells survival and disease progression. We assessed the antitumor properties of a synthetic HSP90 inhibitor, PF4942847, alone or in combination with zoledronic acid in osteosarcoma. EXPERIMENTAL DESIGN The effects of PF4942847 were evaluated on human osteosarcoma cells growth and apoptosis. Signaling pathways were analyzed by Western blotting. The consequence of HSP90 therapy combined or not with zoledronic acid was evaluated in mice bearing HOS-MNNG xenografts on tumor growth, associated bone lesions, and pulmonary metastasis. The effect of PF4942847 on osteoclastogenesis was assessed on human CD14(+) monocytes. RESULTS In osteosarcoma cell lines, PF4942847 inhibited cell growth in a dose-dependent manner (IC50 ±50 nmol/L) and induced apoptosis with an increase of sub-G1 fraction and cleaved PARP. These biologic events were accompanied by decreased expression of Akt, p-ERK, c-Met, and c-RAF1. When administered orally to mice bearing osteosarcoma tumors, PF4942847 significantly inhibited tumor growth by 80%, prolonged survival compared with controls, and inhibited pulmonary metastases by blocking c-Met, FAK, and MMP9 signaling. In contrast to 17-allylamino-17-demethoxygeldanamycin (17-AAG), PF4942847 did not induce osteoclast differentiation, and synergistically acted with zoledronic acid to delay osteosarcoma progression and prevent bone lesions. CONCLUSIONS All these data provide a strong rationale for clinical evaluation of PF4942847 alone or in combination with zoledronic acid in osteosarcoma. Clin Cancer Res; 22(10); 2520-33. ©2015 AACR.
Collapse
Affiliation(s)
- Benjamin Ory
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Marc Baud'huin
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France. CHU de Nantes, Nantes, France
| | - Franck Verrecchia
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Thibaut Quillard
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Jérôme Amiaud
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Séverine Battaglia
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Dominique Heymann
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France. CHU de Nantes, Nantes, France
| | - Francoise Redini
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Francois Lamoureux
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France.
| |
Collapse
|
27
|
Liu W, Qiao RH, Wang DM, Huang XW, Li B, Wang D. UHRF1 promotes human osteosarcoma cell invasion by downregulating the expression of E‑cadherin in an Rb1‑dependent manner. Mol Med Rep 2015; 13:315-20. [PMID: 26548607 DOI: 10.3892/mmr.2015.4515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/25/2015] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin‑like with plant homeodomain (PHD) and RING‑finger domain 1 (UHRF1) maintains methylation patterns following DNA replication and is expressed at high levels in various types of human cancer. UHRF1 has been identified as a novel oncogene involved in the pathogenesis of hepatocellular carcinoma. Previous studies have demonstrated that inhibition of the expression of UHRF1 suppresses the proliferation of cancer cells. However, the role of UHRF1 in human osteosarcoma has not been investigated. The present study examined the expression levels of UHRF1 and retinoblastoma 1 (Rb1) in human osteosarcoma cell lines by western blot analysis. Stable overexpression of UHRF1 or knockdown of Rb1 was achieved by lentiviral transfection. Subsequently, a Cell Counting Kit-8 assay and a cell invasion assay were performed to detect the biological functions of UHRF1 in vitro. The results of the present study demonstrated that UHRF1 promoted the proliferation of human osteosarcoma cells. The present study also reported that UHRF1 was able to enhance the invasion of osteosarcoma cells in a retinoblastoma 1 (Rb1)‑dependent manner. UHRF1 promoted invasion in Rb1‑positive osteosarcoma cells, but not in Saos‑2 cells with homozygous loss of Rb1. Similarly, knockdown of Rb1 in Rb1‑positive osteosarcoma cells enhanced levels of invasion and eliminated the regulation of invasion by UHRF1. UHRF1 was found to inhibit the mRNA and protein expression levels of Rb1. Furthermore, deletion of Rb1 was found to suppress the expression of E‑cadherin and promote epithelial‑to‑mesenchymal transition (EMT). In addition, the overexpression of UHRF1 inhibited the expression of E‑cadherin and promoted EMT via the suppression of Rb1. These data demonstrated that UHRF1 promotes osteosarcoma cell invasion by downregulating the expression of E‑cadherin and increasing EMT in an Rb1‑dependent manner.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 215006, P.R. China
| | - Rui Hong Qiao
- Department of Orthopedics, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 215006, P.R. China
| | - Dong Ming Wang
- Department of Orthopedics, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 215006, P.R. China
| | - Xiao Wei Huang
- Department of Gastroenterology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 226001, P.R. China
| | - Bing Li
- Department of Orthopedics, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 215006, P.R. China
| | - Dong Wang
- Department of Orthopedics, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 215006, P.R. China
| |
Collapse
|
28
|
Trastuzumab enhanced the cytotoxicity of Vγ9Vδ2 T cells against zoledronate-sensitized osteosarcoma cells. Int Immunopharmacol 2015; 28:160-7. [DOI: 10.1016/j.intimp.2015.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 11/17/2022]
|
29
|
Lamoureux F, Baud'huin M, Ory B, Guiho R, Zoubeidi A, Gleave M, Heymann D, Rédini F. Clusterin inhibition using OGX-011 synergistically enhances zoledronic acid activity in osteosarcoma. Oncotarget 2015; 5:7805-19. [PMID: 25138053 PMCID: PMC4202162 DOI: 10.18632/oncotarget.2308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants new strategies still needed to improve overall patient survival. Among new therapeutic approaches, zoledronic acid (ZOL) represents a promising adjuvant molecule to chemotherapy to limit the osteolytic component of bone tumors. However, ZOL triggers the elevation of heat shock proteins (Hsp), including Hsp27 and clusterin (CLU), which could enhance tumor cell survival and treatment resistance. We hypothesized that targeting CLU using siRNA or the antisense drug, OGX-011, will suppress treatment-induced CLU induction and enhance ZOL-induced cell death in osteosarcoma (OS) cells. Methods The combined effects of OGX-011 and ZOL were investigated in vitro on cell growth, viability, apoptosis and cell cycle repartition of ZOL-sensitive or -resistant human OS cell lines (SaOS2, U2OS, MG63 and MNNG/HOS). Results In OS cell lines, ZOL increased levels of HSPs, especially CLU, in a dose- and time-dependent manner by mechanism including increased HSF1 transcription activity. The OS resistant cells to ZOL exhibited higher CLU expression level than the sensitive cells. Moreover, CLU overexpression protects OS sensitive cells to ZOL-induced cell death by modulating the MDR1 and farnesyl diphosphate synthase expression. OGX-011 suppressed treatment-induced increases in CLU and synergistically enhanced the activity of ZOL on cell growth and apoptosis. These biologic events were accompanied by decreased expression of HSPs, MDR1 and HSF1 transcriptional activity. In vivo, OGX-011, administered 3 times a week (IP, 20mg/kg), potentiated the effect of ZOL (s.c; 50μg/kg), significantly inhibiting tumor growth by 50% and prolonging survival in MNNG/HOS xenograft model compared to ZOL alone. Conclusion These results indicate that ZOL-mediated induction of CLU can be attenuated by OGX-011, with synergistic effects on delaying progression of osteosarcoma.
Collapse
Affiliation(s)
- Francois Lamoureux
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes F-44035, France. INSERM, UMR 957, Nantes F-44035, France. LUNAM Université. Equipe labellisée LIGUE 2012, Nantes, cedex
| | - Marc Baud'huin
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes F-44035, France. INSERM, UMR 957, Nantes F-44035, France. LUNAM Université. CHU de Nantes, Nantes F-44035, France. Equipe labellisée LIGUE 2012, Nantes, cedex
| | - Benjamin Ory
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes F-44035, France. INSERM, UMR 957, Nantes F-44035, France. LUNAM Université. Equipe labellisée LIGUE 2012, Nantes, cedex
| | - Romain Guiho
- Université de Nantes, Nantes atlantique universités,Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes F-44035, France. INSERM, UMR 957, Nantes F-44035, France. LUNAM Université. Equipe labellisée LIGUE 2012, Nantes, cedex
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Dominique Heymann
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes F-44035, France. INSERM, UMR 957, Nantes F-44035, France. LUNAM Université. CHU de Nantes, Nantes F-44035, France. Equipe labellisée LIGUE 2012, Nantes, cedex
| | - Françoise Rédini
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes F-44035, France. INSERM, UMR 957, Nantes F-44035, France. LUNAM Université. Equipe labellisée LIGUE 2012, Nantes, cedex
| |
Collapse
|
30
|
Vélez C, Zayas B, Kumar A. Biological Activity of N-Hydroxyethyl-4-aza-2,3-didehydropodophyllotoxin Derivatives upon Colorectal Adenocarcinoma Cells. ACTA ACUST UNITED AC 2015; 4:1-11. [PMID: 25554737 PMCID: PMC4279218 DOI: 10.4236/ojmc.2014.41001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Etoposide is a chemotherapy drug derived from the natural lignin podophyllotoxin. Our novel generated Aza-podophyllotoxin compounds (AZP 8a & AZP 9a) are analogues of podophyllotoxin and were previously screened for anti-cancer activity through the NCI 60 cell line screening panel showing activity on various cell types including colon cancer. This study expands the toxicological screening by studying apoptosis and various hallmark events as part of the mechanism of action of these compounds on colon cancer cells. The COLO 205 cell line was selected and exposed to AZP to determine the IC50 doses at 24 hours treatment. Apoptosis hallmark events such as migration of phosphatidylserine (PS) to the cell membrane, DNA fragmentation, cell cycle effects, mitochondrial membrane permeabilization and caspase activation were included. Experiments were performed in triplicates for all tested compounds including AZP 8a, AZP 9a, camptothecin as positive control and vehicle as negative control. Our results present contrasting apoptotic activity between the experimental compounds. Compound 8a presented migration of PS (annexin V assay), DNA fragmentation and cell cycle arrest at S phase. Compound 9a presented PS migration with fragmented DNA, cell cycle arrest at S phase, mitochondrial membrane permeabilization and activation of caspase 3, 8 and 9. Compound 8a without the oxygen atoms in ring A appears to cause effects similarly to autophagy as induced by etoposide, a cancer drug analogue of our heterocyclic compounds. Compound 9a with the oxygen atoms in expanded ring A presented induction of cell death following activation of a classical apoptosis pathway. Our results suggest that minor structural differences among these AZP can account for the difference in biological response and cancer cell toxicity.
Collapse
Affiliation(s)
- Christian Vélez
- Universidad Metropolitana, School of Environmental Affairs San Juan, Puerto Rico, USA
| | - Beatriz Zayas
- Universidad Metropolitana, School of Environmental Affairs San Juan, Puerto Rico, USA
| | - Ajay Kumar
- Universidad Metropolitana, School of Environmental Affairs San Juan, Puerto Rico, USA
| |
Collapse
|
31
|
Lamoureux F, Baud’huin M, Rodriguez Calleja L, Jacques C, Berreur M, Rédini F, Lecanda F, Bradner JE, Heymann D, Ory B. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat Commun 2014; 5:3511. [DOI: 10.1038/ncomms4511] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/25/2014] [Indexed: 12/22/2022] Open
|
32
|
Zhong S, Ji DF, Li YG, Lin TB, Lv ZQ, Chen HP. Activation of P27kip1-cyclin D1/E-CDK2 pathway by polysaccharide from Phellinus linteus leads to S-phase arrest in HT-29 cells. Chem Biol Interact 2013; 206:222-9. [PMID: 24060681 DOI: 10.1016/j.cbi.2013.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/27/2013] [Accepted: 09/12/2013] [Indexed: 12/25/2022]
Abstract
Our previous study showed that polysaccharide (P1) from Phellinus linteus exhibits a significant inhibitive activity on human colorectal carcinoma cells (HT-29). However its novel molecular mechanism remains unknown. To obtain insights into P1's mechanism of action, we examined its effects on cell proliferation in vitro and in vivo, cell cycle distribution, apoptosis, autophagy, and expression of several cell cycle interrelated proteins in HT-29 cells. Interestingly, we found that volume and weight of the solid tumor significantly decreased in P1 (200mg/kg)-treated mice compared with the control. However, slightly increased the body weight of the P1 treated tumor-bearing mice, with no significant increased ALT, AST levels in serum and LPO concentration in liver and kidney indicated that P1 has no toxicity to mammals at a dose of 200mg/kg. Furthermore, P1 caused a significantly dose-dependent increase in the S-phase cell cycle, but no apoptosis and autophagy in HT-29 cells. RT-PCR and Western blot results showed significantly down-regulated expressions of cyclin D1, cyclin E, and CDK2, as well as increased expressions of P27kip1 in P1 (100 μg/mL)-treated HT-29 cells. These results suggested that the activation of P27kip1-cyclin D1/E-CDK2 pathway is involved in P1-induced S-phase cell cycle arrest in HT-29 cells.
Collapse
Affiliation(s)
- Shi Zhong
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | | | | | | | | | | |
Collapse
|
33
|
Okamoto S, Jiang Y, Kawamura K, Shingyoji M, Fukamachi T, Tada Y, Takiguchi Y, Tatsumi K, Shimada H, Hiroshima K, Kobayashi H, Tagawa M. Zoledronic acid produces combinatory anti-tumor effects with cisplatin on mesothelioma by increasing p53 expression levels. PLoS One 2013; 8:e60297. [PMID: 23555949 PMCID: PMC3610651 DOI: 10.1371/journal.pone.0060297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/26/2013] [Indexed: 12/29/2022] Open
Abstract
We examined anti-tumor effects of zoledronic acid (ZOL), one of the bisphosphonates agents clinically used for preventing loss of bone mass, on human mesothelioma cells bearing the wild-type p53 gene. ZOL-treated cells showed activation of caspase-3/7, -8 and -9, and increased sub-G1 phase fractions. A combinatory use of ZOL and cisplatin (CDDP), one of the first-line anti-cancer agents for mesothelioma, synergistically or additively produced the cytotoxicity on mesothelioma cells. Moreover, the combination achieved greater anti-tumor effects on mesothelioma developed in the pleural cavity than administration of either ZOL or CDDP alone. ZOL-treated cells as well as CDDP-treated cells induced p53 phosphorylation at Ser 15, a marker of p53 activation, and up-regulated p53 protein expression levels. Down-regulation of p53 levels with siRNA however did not influence the ZOL-mediated cytotoxicity but negated the combinatory effects by ZOL and CDDP. In addition, ZOL treatments augmented cytotoxicity of adenoviruses expressing the p53 gene on mesothelioma. These data demonstrated that ZOL-mediated augmentation of p53, which was not linked with ZOL-induced cytotoxicity, played a role in the combinatory effects with a p53 up-regulating agent, and suggests a possible clinical use of ZOL to mesothelioma with anti-cancer agents.
Collapse
Affiliation(s)
- Shinya Okamoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Masato Shingyoji
- Department of Thoracic Disease, Chiba Cancer Center, Chiba, Japan
| | - Toshihiko Fukamachi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Hiroshi Kobayashi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- * E-mail:
| |
Collapse
|
34
|
Posthumadeboer J, van Egmond PW, Helder MN, de Menezes RX, Cleton-Jansen AM, Beliën JAM, Verheul HMW, van Royen BJ, Kaspers GJJL, van Beusechem VW. Targeting JNK-interacting-protein-1 (JIP1) sensitises osteosarcoma to doxorubicin. Oncotarget 2013; 3:1169-81. [PMID: 23045411 PMCID: PMC3717953 DOI: 10.18632/oncotarget.600] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumour in children and adolescents. Despite aggressive therapy, survival outcomes remain unsatisfactory, especially for patients with metastatic disease or patients with a poor chemotherapy response. Chemoresistance contributes to treatment failure. To increase the efficacy of conventional chemotherapy, essential survival pathways should be targeted concomitantly. Here, we performed a loss-of-function siRNA screen of the human kinome in SaOS-2 cells to identify critical survival kinases after doxorubicin treatment. Gene silencing of JNK-interacting-protein-1 (JIP1) elicited the most potent sensitisation to doxorubicin. This candidate was further explored as potential target for chemosensitisation in OS. A panel of OS cell lines and human primary osteoblasts was examined for sensitisation to doxorubicin using small molecule JIP1-inhibitor BI-78D3. JIP1 expression and JIP1-inhibitor effects on JNK-signalling were investigated by Western blot analysis. JIP1 expression in human OS tumours was assessed by immunohistochemistry on tissue micro arrays. BI-78D3 blocked JNK-signalling and sensitised three out of four tested OS cell lines, but not healthy osteoblasts, to treatment with doxorubicin. Combination treatment increased the induction of apoptosis. JIP1 was found to be expressed in two-thirds of human primary OS tissue samples. Patients with JIP1 positive tumours showed a trend to inferior overall survival. Collectively, JIP1 appears a clinically relevant novel target in OS to enhance the efficacy of doxorubicin treatment by means of RNA interference or pharmacological inhibition.
Collapse
Affiliation(s)
- Jantine Posthumadeboer
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lamplot JD, Denduluri S, Qin J, Li R, Liu X, Zhang H, Chen X, Wang N, Pratt A, Shui W, Luo X, Nan G, Deng ZL, Luo J, Haydon RC, He TC, Luu HH. The Current and Future Therapies for Human Osteosarcoma. CURRENT CANCER THERAPY REVIEWS 2013; 9:55-77. [PMID: 26834515 PMCID: PMC4730918 DOI: 10.2174/1573394711309010006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common non-hematologic malignant tumor of bone in adults and children. As sarcomas are more common in adolescents and young adults than most other forms of cancer, there are a significant number of years of life lost secondary to these malignancies. OS is associated with a poor prognosis secondary to a high grade at presentation, resistance to chemotherapy and a propensity to metastasize to the lungs. Current OS management involves both chemotherapy and surgery. The incorporation of cytotoxic chemotherapy into therapeutic regimens escalated cure rates from <20% to current levels of 65-75%. Furthermore, limb-salvage surgery is now offered to the majority of OS patients. Despite advances in chemotherapy and surgical techniques over the past three decades, there has been stagnation in patient survival outcome improvement, especially in patients with metastatic OS. Thus, there is a critical need to identify novel and directed therapy for OS. Several Phase I trials for sarcoma therapies currently ongoing or recently completed have shown objective responses in OS. Novel drug delivery mechanisms are currently under phase II and III clinical trials. Furthermore, there is an abundance of preclinical research which holds great promise in the development of future OS-directed therapeutics. Our continuously improving knowledge of the molecular and cell-signaling pathways involved in OS will translate into more effective therapies for OS and ultimately improved patient survival. The present review will provide an overview of current therapies, ongoing clinical trials and therapeutic targets under investigation for OS.
Collapse
Affiliation(s)
- Joseph D. Lamplot
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sahitya Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaqiang Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongyu Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Affiliated Tangdu Hospital of the Fourth Military Medical University, Xi’an 710032, China
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Oncology, the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing 400038, China
| | - Abdullah Pratt
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Shui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhong-Liang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jinyong Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
36
|
PosthumaDeBoer J, van Royen B, Helder M. Mechanisms of therapy resistance in osteosarcoma: a review. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2052-6199-1-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Bone sarcomas: from biology to targeted therapies. Sarcoma 2012; 2012:301975. [PMID: 23226965 PMCID: PMC3514839 DOI: 10.1155/2012/301975] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 10/10/2012] [Indexed: 12/20/2022] Open
Abstract
Primary malignant bone tumours, osteosarcomas, and Ewing sarcomas are rare diseases which occur mainly in adolescents and young adults. With the current therapies, some patients remain very difficult to treat, such as tumour with poor histological response to preoperative CT (or large initial tumour volume for Ewing sarcomas not operated), patients with multiple metastases at or those who relapsed. In order to develop new therapies against these rare tumours, we need to unveil the key driving factors and molecular abnormalities behind the malignant characteristics and to broaden our understanding of the phenomena sustaining the metastatic phenotype and treatment resistance in these tumours. In this paper, starting with the biology of these tumours, we will discuss potential therapeutic targets aimed at increasing local tumour control, limiting metastatic spread, and finally improving patient survival.
Collapse
|
38
|
Zoledronic acid produces antitumor effects on mesothelioma through apoptosis and S-phase arrest in p53-independent and Ras prenylation-independent manners. J Thorac Oncol 2012; 7:873-82. [PMID: 22481236 DOI: 10.1097/jto.0b013e31824c7d43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION We examined whether zoledronic acid (ZOL), the third generation of bisphosphonates, produced cytotoxic effects on human mesothelioma cells in vitro and in vivo, and investigated a possible involvement of p53, Ras, and extracellular signal-regulated kinase1/2 (ERK1/2) pathways. METHODS Cytotoxicity and cell cycles were assessed with a colorimetric assay and flow cytometry, respectively. Expression levels of apoptosis-linked proteins and prenylation of small guanine-nucleotide-binding regulatory proteins were tested with p53-small interfering RNA, an ERK kinase1/2-inhibitor, and prenyl alcohols. The antitumor activity was examined in an orthotopic animal model. RESULTS ZOL treatments suppressed growth of mesothelioma cells bearing the wild-type p53 gene through apoptosis induction accompanied by activation of caspases, or S-phase arrest by up-regulated cyclin A and B1. ZOL induced p53 phosphorylation and subsequent activation of the downstream pathways. Down-regulated p53 expression with the small interfering RNA, however, showed that both apoptosis and S-phase arrest were irrelevant to the p53 activation. Geranylgeranyl but not farnesyl pyrophosphate inhibited ZOL-induced apoptosis and S-phase arrest, and the geranylgeraniol supplement decreased ZOL-mediated Rap1A but not Ras unprenylation. Inhibition of ERK1/2 pathways suppressed ZOL-induced apoptosis but not S-phase arrest. We further demonstrated that ZOL, administrated intrapleurally, inhibited the tumor growth in the pleural cavity. CONCLUSIONS These data indicate that ZOL induces apoptosis or S-phase arrest, both of which are independent of p53 activation and Ras unprenylation, and suggest that ZOL is a possible therapeutic agent to mesothelioma partly through non-Ras- and ERK1/2-mediated pathways.
Collapse
|
39
|
Zoledronic acid induces S-phase arrest via a DNA damage response in normal human oral keratinocytes. Arch Oral Biol 2012; 57:906-17. [DOI: 10.1016/j.archoralbio.2011.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/11/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023]
|
40
|
Chang J, Wang W, Zhang H, Hu Y, Yin Z. Bisphosphonates regulate cell proliferation, apoptosis and pro-osteoclastic expression in MG-63 human osteosarcoma cells. Oncol Lett 2012; 4:299-304. [PMID: 22844373 DOI: 10.3892/ol.2012.723] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/09/2012] [Indexed: 01/06/2023] Open
Abstract
Bisphosphonates are well established in the management of cancer-induced skeletal complications. Recent studies suggest that nitrogen-containing bisphosphonates (N-BPs) promote the apoptosis of cancer cells as well as osteoclasts in bone metastatic sites. To investigate whether N-BPs exhibit a direct antitumor effect on osteoclasts, the current study investigated the effects of zoledronic acid (ZOL) on MG-63 cells in vitro. MG-63 cells were treated with ZOL. The inhibitory effect of ZOL on the growth of MG-63 cells was measured by MTT assay. ZOL-induced apoptosis of the MG-63 cells was examined by Hoechst 33258 staining, electron microscopy, Annexin V-FITC and propidium iodide staining. Reverse-transcription polymerase chain reaction (RT-PCR) and western blotting analysis were employed to assess the expression of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL). The MTT assay showed that ZOL induced a distinct dose- and time-dependent reduction of cell viability with an IC(50) value of 52.37±1.0 μM for 72 h. Flow cytometric analysis further revealed that the cell apoptosis was induced by arrest of the cell cycle in the G(1) phase. RT-PCR and western blot analysis demonstrated that ZOL upregulated OPG expression. These results suggest that ZOL has direct effects on osteosarcoma cell growth and apoptosis. Increased OPG expression is an indirect effect, possibly via changes in the local microenvironment.
Collapse
Affiliation(s)
- Jun Chang
- Department of Orthopaedics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | | | | | | | | |
Collapse
|
41
|
Anti-RANKL therapy for bone tumours: Basic, pre-clinical and clinical evidences. J Bone Oncol 2012; 1:2-11. [PMID: 26909248 PMCID: PMC4723324 DOI: 10.1016/j.jbo.2012.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/28/2012] [Indexed: 01/24/2023] Open
Abstract
Bone remodelling is related to coordinated phases of bone resorption and bone apposition allowing the maintenance of bone integrity, the phosphocalcic homoeostasis all along the life and consequently the bone adaptation to mechanical constraints or/and to endocrine fluctuations. Unfortunately, bone is a frequent site of tumour development originated from bone cell lineages (primary bone tumours: bone sarcomas) or from nonosseous origins (bone metastases: carcinomas). These tumour cells disrupt the balance between osteoblast and osteoclast activities resulting in a disturbed bone remodelling weakening the bone tissue, in a strongly altered bone microenvironment and consequently facilitating the tumour growth. At the early stage of tumour development, osteoclast differentiation and recruitment of mature osteoclasts are strongly activated resulting in a strong bone matrix degradation and release of numerous growth factors initially stored into this organic/calcified matrix. In turn these soluble factors stimulate the proliferation of tumour cells and exacerbate their migration and their ability to initiate metastases. Because Receptor Activator of NFκB Ligand (RANKL) is absolutely required for in vivo osteoclastogenesis, its role in the bone tumour growth has been immediately pointed out and has consequently allowed the development of new targeted therapies of these malignant diseases. The present review summarises the role of RANKL in the bone tumour microenvironment, the most recent pre-clinical and clinical evidences of its targeting in bone metastases and bone sarcomas. The following sections position RANKL targeted therapy among the other anti-resorptive therapies available and underline the future directions which are currently under investigations.
Collapse
|
42
|
Michailidou M, Holen I. Combinations of bisphosphonates and classical anticancer drugs: a preclinical perspective. Recent Results Cancer Res 2012; 192:145-69. [PMID: 22307374 DOI: 10.1007/978-3-642-21892-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastases are frequent complications in advanced breast and prostate cancer among others, resulting in increased risk of fractures, pain, hypercalcaemia of malignancy and a reduction in patient independence and mobility. Bisphosphonates (BPs) are in wide clinical use for the treatment of cancer-induced bone disease associated with advanced cancer, due to their potent ability to reduce skeletal-related events (SREs) and improve quality of life. Despite the profound effect on bone health, the majority of clinical studies have failed to demonstrate an overall survival benefit of BP therapy. There is increasing preclinical evidence to suggest that inclusion of the most potent nitrogen-containing BPs (NBPs) in combination therapy results in increased antitumour effects and improved survival, but that the particular schedules used are of key importance to achieve optimal benefit. Recent clinical data have suggested that there may be effects of adjuvant NBP therapy on breast tumours outside the skeleton. These findings have led to renewed interest in the use of BPs in cancer therapy, in particular how they can be included as part of adjuvant protocols. Here we review the key data reported from preclinical model systems investigating the effects of combination therapy including BPs with particular emphasis on breast and prostate cancer.
Collapse
|
43
|
Trisciuoglio D, Ragazzoni Y, Pelosi A, Desideri M, Carradori S, Gabellini C, Maresca G, Nescatelli R, Secci D, Bolasco A, Bizzarri B, Cavaliere C, D'Agnano I, Filetici P, Ricci-Vitiani L, Rizzo MG, Del Bufalo D. CPTH6, a thiazole derivative, induces histone hypoacetylation and apoptosis in human leukemia cells. Clin Cancer Res 2011; 18:475-86. [PMID: 22068659 DOI: 10.1158/1078-0432.ccr-11-0579] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously identified novel thiazole derivatives able to reduce histone acetylation and histone acetyltransferase (HAT) activity in yeast. Among these compounds, 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) has been selected and used throughout this study. EXPERIMENTAL DESIGN The effect of CPTH6 on histone acetylation, cell viability and differentiation, cell-cycle distribution, and apoptosis in a panel of acute myeloid leukemia and solid tumor cell lines has been evaluated. RESULTS Here, we showed that CPTH6 leads to an inhibition of Gcn5 and pCAF HAT activity. Moreover, it inhibits H3/H4 histones and α-tubulin acetylation of a panel of leukemia cell lines. Concentration- and time-dependent inhibition of cell viability, paralleled by accumulation of cells in the G(0)/G(1) phase and depletion from the S/G(2)M phases, was observed. The role of mitochondrial pathway on CPTH6-induced apoptosis was shown, being a decrease of mitochondrial membrane potential and the release of cytochrome c, from mitochondria to cytosol, induced by CPTH6. Also the involvement of Bcl-2 and Bcl-xL on CPTH6-induced apoptosis was found after overexpression of the two proteins in leukemia cells. Solid tumor cell lines from several origins were shown to be differently sensitive to CPTH6 treatment in terms of cell viability, and a correlation between the inhibitory efficacy on H3/H4 histones acetylation and cytotoxicity was found. Differentiating effect on leukemia and neuroblastoma cell lines was also induced by CPTH6. CONCLUSIONS These results make CPTH6 a suitable tool for discovery of molecular targets of HAT and, potentially, for the development of new anticancer therapies, which warrants further investigations.
Collapse
Affiliation(s)
- Daniela Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Heymann D, Rédini F. Bone sarcomas: pathogenesis and new therapeutic approaches. ACTA ACUST UNITED AC 2011. [DOI: 10.1138/20110531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Brown HK, Ottewell PD, Coleman RE, Holen I. The kinetochore protein Cenp-F is a potential novel target for zoledronic acid in breast cancer cells. J Cell Mol Med 2011; 15:501-13. [PMID: 20015195 PMCID: PMC3922372 DOI: 10.1111/j.1582-4934.2009.00995.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The anti-resorptive agent zoledronic acid inhibits key enzymes in the mevalonate pathway, disrupting post-translational modification and thereby correct protein localization and function. Inhibition of prenylation may also be responsible for the reported anti-tumour effects of zoledronic acid, but the specific molecular targets have not been identified. Cenp-F/mitosin, a kinetochore-associated protein involved in the correct separation of chromosomes during mitosis, has been shown to undergo post-translational prenylation and may therefore be a novel target contributing to the anti-tumour effects of zoledronic acid. We investigated whether zoledronic acid causes loss of Cenp-F from the kinetochore in breast cancer cells, to determine if the reported anti-tumour effects may be mediated by impairing correct chromosome separation. MDA-MB-436, MDA-MB-231 and MCF-7 breast cancer cells and MCF-10A non-malignant breast epithelial cells were treated with zoledronic acid in vitro, and the effect on Cenp-F localization was analysed by immunoflourescence microscopy. Zoledronic acid caused loss of Cenp-F from the kinetochore, accompanied by an increase in the number of cells in pro-, /prometa- and metaphase in all of the cancer cell lines. There was also a significant increase in the number of lagging chromosomes in mitotic cells. The effects of zoledronic acid could be reversed by inclusion of an intermediary of the mevalonate pathway, showing that the loss of Cenp-F from the kinetochore was caused by the inhibition of farnesylation. In contrast, no effect was seen on Cenp-F in non-malignant MCF-10A cells. This is the first report showing a specific effect of zoledronic acid on a protein involved in the regulation of chromosome segregation, identifying Cenp-F as a potential new molecular target for NBPs in tumour cells.
Collapse
Affiliation(s)
- Hannah K Brown
- Academic Unit of Clinical Oncology, Medical School, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
47
|
A novel parthenin analog exhibits anti-cancer activity: activation of apoptotic signaling events through robust NO formation in human leukemia HL-60 cells. Chem Biol Interact 2011; 193:204-15. [PMID: 21741372 DOI: 10.1016/j.cbi.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 06/08/2011] [Accepted: 06/15/2011] [Indexed: 12/11/2022]
Abstract
This study describes the anti-cancer activity of P19, an analog of parthenin. P19 induced apoptosis in HL-60 cells and inhibited cell proliferation with 48h IC50 of 3.5μM. At 10mg/kg dose, it doubled the median survival time of L1210 leukemic mice and at 25mg/kg it inhibited Ehrlich ascites tumor growth by 60%. Investigation of the mechanism of P19 induced apoptosis in HL-60 cells revealed that N-acetyl-l-cysteine (NAC) and s-methylisothiourea (sMIT) could reverse several molecular events that lead to cell death by inhibiting nitric oxide (NO) formation. It selectively produced massive NO in cells while quenching the basal ROS levels with concurrent elevation of GSH. P19 disrupted mitochondrial integrity leading to cytochrome c release and caspase-9 activation. P19 also caused caspase-8 activation by selectively elevating the expression of DR4 and DR5. All these events lead to the activation of caspase-3 leading to PARP-1 cleavage and DNA fragmentation. However, knocking down of AIF by siRNA also suppressed the apoptosis substantially thus indicating caspase independent apoptosis, too. Further, contrary to enhanced iNOS expression, its transcription factor, NF-κB (p65) was cleaved with a simultaneous increase in cytosolic IκB-alpha. In addition, P19 potently inhibited pro-survival proteins pSTAT3 and survivin. The multi-modal pro-apoptotic activity of P19 raises its potential usefulness as a promising anti-cancer therapeutic.
Collapse
|
48
|
Meyers PA, Healey JH, Chou AJ, Wexler LH, Merola PR, Morris CD, Laquaglia MP, Kellick MG, Abramson SJ, Gorlick R. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer 2011; 117:1736-44. [PMID: 21472721 PMCID: PMC3059356 DOI: 10.1002/cncr.25744] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/05/2010] [Accepted: 09/20/2010] [Indexed: 11/06/2022]
Abstract
BACKGROUND This study evaluated the safety and feasibility of the addition of pamidronate to chemotherapy for treatment of osteosarcoma. METHODS The authors treated 40 patients with osteosarcoma with cisplatin, doxorubicin, and methotrexate with the addition of pamidronate 2 mg/kg/dose (max dose 90 mg) monthly for 12 doses. Survival, event-free survival (EFS), and durability of orthopedic reconstruction were evaluated. RESULTS For patients with localized disease, event-free survival (EFS) at 5 years was 72% and overall survival 93%. For patients with metastatic disease, EFS at 5 years was 45% and overall survival 64%. Toxicity was similar to patients treated with chemotherapy alone. Thirteen of 14 uncemented implants demonstrated successful osteointegration. Among allograft reconstructions, there were 2 graft failures, 4 delayed unions, and 6 successful grafts. Overall, 5 of 33 reconstructions failed. There were no stress fractures or growth disturbances. CONCLUSIONS Pamidronate can be safely incorporated with chemotherapy for the treatment of osteosarcoma. It does not impair the efficacy of chemotherapy. Pamidronate may improve the durability of limb reconstruction.
Collapse
Affiliation(s)
- Paul A Meyers
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bosch-Barrera J, Merajver SD, Menéndez JA, Van Poznak C. Direct antitumour activity of zoledronic acid: preclinical and clinical data. Clin Transl Oncol 2011; 13:148-55. [DOI: 10.1007/s12094-011-0634-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Broadhead ML, Clark JCM, Dass CR, Choong PFM, Myers DE. Therapeutic targeting of osteoclast function and pathways. Expert Opin Ther Targets 2011; 15:169-81. [DOI: 10.1517/14728222.2011.546351] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|