1
|
Kufareva I, Gustavsson M, Holden LG, Qin L, Zheng Y, Handel TM. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes. Methods Enzymol 2016; 570:389-420. [PMID: 26921956 DOI: 10.1016/bs.mie.2015.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Lauren G Holden
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ling Qin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Yi Zheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tracy M Handel
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Koole C, Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM. Differential impact of amino acid substitutions on critical residues of the human glucagon-like peptide-1 receptor involved in peptide activity and small-molecule allostery. J Pharmacol Exp Ther 2015; 353:52-63. [PMID: 25630467 DOI: 10.1124/jpet.114.220913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that has a critical role in the regulation of glucose homeostasis, principally through the regulation of insulin secretion. The receptor system is highly complex, able to be activated by both endogenous [GLP-1(1-36)NH2, GLP-1(1-37), GLP-1(7-36)NH2, GLP-1(7-37), oxyntomodulin], and exogenous (exendin-4) peptides in addition to small-molecule allosteric agonists (compound 2 [6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline], BETP [4-(3-benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine]). Furthermore, the GLP-1R is subject to single-nucleotide polymorphic variance, resulting in amino acid changes in the receptor protein. In this study, we investigated two polymorphic variants previously reported to impact peptide-mediated receptor activity (M149) and small-molecule allostery (C333). These residues were mutated to a series of alternate amino acids, and their functionality was monitored across physiologically significant signaling pathways, including cAMP, extracellular signal-regulated kinase 1 and 2 phosphorylation, and intracellular Ca(2+) mobilization, in addition to peptide binding and cell-surface expression. We observed that residue 149 is highly sensitive to mutation, with almost all peptide responses significantly attenuated at mutated receptors. However, most reductions in activity were able to be restored by the small-molecule allosteric agonist compound 2. Conversely, mutation of residue 333 had little impact on peptide-mediated receptor activation, but this activity could not be modulated by compound 2 to the same extent as that observed at the wild-type receptor. These results provide insight into the importance of residues 149 and 333 in peptide function and highlight the complexities of allosteric modulation within this receptor system.
Collapse
Affiliation(s)
- Cassandra Koole
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Denise Wootten
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - John Simms
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Laurence J Miller
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Arthur Christopoulos
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Patrick M Sexton
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| |
Collapse
|
3
|
Abstract
Experimental structure determination for G protein-coupled receptors (GPCRs) and especially their complexes with protein and peptide ligands is at its infancy. In the absence of complex structures, molecular modeling and docking play a large role not only by providing a proper 3D context for interpretation of biochemical and biophysical data, but also by prospectively guiding experiments. Experimentally confirmed restraints may help improve the accuracy and information content of the computational models. Here we present a hybrid molecular modeling protocol that integrates heterogeneous experimental data with force field-based calculations in the stochastic global optimization of the conformations and relative orientations of binding partners. Some experimental data, such as pharmacophore-like chemical fields or disulfide-trapping restraints, can be seamlessly incorporated in the protocol, while other types of data are more useful at the stage of solution filtering. The protocol was successfully applied to modeling and design of a stable construct that resulted in crystallization of the first complex between a chemokine and its receptor. Examples from this work are used to illustrate the steps of the protocol. The utility of different types of experimental data for modeling and docking is discussed and caveats associated with data misinterpretation are highlighted.
Collapse
|
4
|
Dong M, Koole C, Wootten D, Sexton PM, Miller LJ. Structural and functional insights into the juxtamembranous amino-terminal tail and extracellular loop regions of class B GPCRs. Br J Pharmacol 2014; 171:1085-101. [PMID: 23889342 DOI: 10.1111/bph.12293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022] Open
Abstract
Class B guanine nucleotide-binding protein GPCRs share heptahelical topology and signalling via coupling with heterotrimeric G proteins typical of the entire superfamily of GPCRs. However, they also exhibit substantial structural differences from the more extensively studied class A GPCRs. Even their helical bundle region, most conserved across the superfamily, is predicted to differ from that of class A GPCRs. Much is now known about the conserved structure of the amino-terminal domain of class B GPCRs, coming from isolated NMR and crystal structures, but the orientation of that domain relative to the helical bundle is unknown, and even less is understood about the conformations of the juxtamembranous amino-terminal tail or of the extracellular loops linking the transmembrane segments. We now review what is known about the structure and function of these regions of class B GPCRs. This comes from indirect analysis of structure-function relationships elucidated by mutagenesis and/or ligand modification and from the more direct analysis of spatial approximation coming from photoaffinity labelling and cysteine trapping studies. Also reviewed are the limited studies of structure of some of these regions. No dominant theme was recognized for the structures or functional roles of distinct regions of these juxtamembranous portions of the class B GPCRs. Therefore, it is likely that a variety of molecular strategies can be engaged for docking of agonist ligands and for initiation of conformational changes in these receptors that would be expected to converge to a common molecular mechanism for activation of intracellular signalling cascades.
Collapse
Affiliation(s)
- M Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | |
Collapse
|
5
|
Vohra S, Taddese B, Conner AC, Poyner DR, Hay DL, Barwell J, Reeves PJ, Upton GJG, Reynolds CA. Similarity between class A and class B G-protein-coupled receptors exemplified through calcitonin gene-related peptide receptor modelling and mutagenesis studies. J R Soc Interface 2012; 10:20120846. [PMID: 23235263 PMCID: PMC3565703 DOI: 10.1098/rsif.2012.0846] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR structural templates is difficult due to lack of homology. The plant GPCR, GCR1, has homology to both class A and class B GPCRs. We have used this to generate a class A–class B alignment, and by incorporating maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg2.39, His2.43 and Glu3.46, which makes a polar lock with T6.37. These alignments and models provide useful tools for understanding class B GPCR function.
Collapse
Affiliation(s)
- Shabana Vohra
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dong M, Pinon DI, Miller LJ. Insights into the impact of phenolic residue incorporation at each position along secretin for receptor binding and biological activity. ACTA ACUST UNITED AC 2012; 180:5-11. [PMID: 23142313 DOI: 10.1016/j.regpep.2012.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/28/2012] [Accepted: 10/17/2012] [Indexed: 11/28/2022]
Abstract
Understanding of the structural importance of each position along a peptide ligand can provide important insights into the molecular basis for its receptor binding and biological activity. This has typically been evaluated using serial replacement of each natural residue with an alanine. In the current report, we have further complemented alanine scanning data with the serial replacement of each residue within secretin-27, the natural ligand for the prototypic class B G protein-coupled secretin receptor, using a photolabile phenolic residue. This not only provided the opportunity to probe spatial approximations between positions along a docked ligand with its receptor, but also provided structure-activity insights when compared with tolerance for alanine replacement of the same residues. The pattern of sensitivity to phenolic residue replacement was periodic within the carboxyl-terminal region of this peptide ligand, corresponding with alanine replacements in that region. This was supportive of the alpha-helical conformation of the peptide in that region and its docking within a groove in the receptor amino-terminal domain. In contrast, the pattern of sensitivity to phenolic residue replacement was almost continuous in the amino-terminal region of this peptide ligand, again similar to alanine replacements, however, there were key positions in which either the phenolic residue or alanine was differentially preferred. This provided insights into the receptor environment of the portion of this ligand most critical for its biological activity. As the structure of the intact receptor is elucidated, these data will provide a guide for ligand docking to the core domain and to help clarify the molecular basis of receptor activation.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, United States
| | | | | |
Collapse
|
7
|
Miller LJ, Dong M, Harikumar KG. Ligand binding and activation of the secretin receptor, a prototypic family B G protein-coupled receptor. Br J Pharmacol 2012; 166:18-26. [PMID: 21542831 DOI: 10.1111/j.1476-5381.2011.01463.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The secretin receptor is a prototypic member of family B G protein-coupled receptors that binds and responds to a linear 27-residue peptide natural ligand. The carboxyl-terminal region of this peptide assumes a helical conformation that occupies the peptide-binding cleft within the structurally complex disulphide-bonded amino-terminal domain of this receptor. The amino terminus of secretin is directed toward the core helical bundle domain of this receptor that seems to be structurally distinct from the analogous region of family A G protein-coupled receptors. This amino-terminal region of secretin is critical for its biological activity, to stimulate Gs coupling and the agonist-induced cAMP response. While the natural peptide ligand is known to span the two key receptor domains, with multiple residue-residue approximation constraints well established, the orientation of the receptor amino terminus relative to the receptor core helical bundle domain is still unclear. Fluorescence studies have established that the mid-region and carboxyl-terminal end of secretin are protected by the receptor peptide-binding cleft and the amino terminus of secretin is most exposed to the aqueous milieu as it is directed toward the receptor core, with the mid-region of the peptide becoming more exposed upon receptor activation. Like other family B peptide hormone receptors, the secretin receptor is constitutively present in a structurally specific homo-dimeric complex built around the lipid-exposed face of transmembrane segment four. This complex is important for facilitating G protein association and achieving the high affinity state of this receptor.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA.
| | | | | |
Collapse
|
8
|
Dong M, Te JA, Xu X, Wang J, Pinon DI, Storjohann L, Bordner AJ, Miller LJ. Lactam constraints provide insights into the receptor-bound conformation of secretin and stabilize a receptor antagonist. Biochemistry 2011; 50:8181-92. [PMID: 21851058 DOI: 10.1021/bi2008036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The natural ligands for family B G protein-coupled receptors are moderate-length linear peptides having diffuse pharmacophores. The amino-terminal regions of these ligands are critical for biological activity, with their amino-terminal truncation leading to production of orthosteric antagonists. The carboxyl-terminal regions of these peptides are thought to occupy a ligand-binding cleft within the disulfide-bonded amino-terminal domains of these receptors, with the peptides in amphipathic helical conformations. In this work, we have characterized the binding and activity of a series of 11 truncated and lactam-constrained secretin(5-27) analogues at the prototypic member of this family, the secretin receptor. One peptide in this series with lactam connecting residues 16 and 20 [c[E(16),K(20)][Y(10)]sec(5-27)] improved the binding affinity of its unconstrained parental peptide 22-fold while retaining the absence of endogenous biological activity and competitive antagonist characteristics. Homology modeling with molecular mechanics and molecular dynamics simulations established that this constrained peptide occupies the ligand-binding cleft in an orientation similar to that of natural full-length secretin and provided insights into why this peptide was more effective than other truncated conformationally constrained peptides in the series. This lactam bridge is believed to stabilize an extended α-helical conformation of this peptide while in solution and not to interfere with critical residue-residue approximations while docked to the receptor.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dong M, Lam PCH, Pinon DI, Hosohata K, Orry A, Sexton PM, Abagyan R, Miller LJ. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore. J Biol Chem 2011; 286:23888-99. [PMID: 21566140 DOI: 10.1074/jbc.m111.245969] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular basis of ligand binding and activation of family B G protein-coupled receptors is not yet clear due to the lack of insight into the structure of intact receptors. Although NMR and crystal structures of amino-terminal domains of several family members support consistency in general structural motifs that include a peptide-binding cleft, there are variations in the details of docking of the carboxyl terminus of peptide ligands within this cleft, and there is no information about siting of the amino terminus of these peptides. There are also no empirical data to orient the receptor amino terminus relative to the core helical bundle domain. Here, we prepared a series of five new probes, incorporating photolabile moieties into positions 2, 15, 20, 24, and 25 of full agonist secretin analogues. Each bound specifically to the receptor and covalently labeled single distinct receptor residues. Peptide mapping of labeled wild-type and mutant receptors identified that the position 15, 20, and 25 probes labeled residues within the distal amino terminus of the receptor, whereas the position 24 probe labeled the amino terminus adjacent to TM1. Of note, the position 2 probe labeled a residue within the first extracellular loop of the receptor, a region not previously labeled, providing an important new constraint for docking the amino-terminal region of secretin to its receptor core. These additional experimentally derived constraints help to refine our understanding of the structure of the secretin-intact receptor complex and provide new insights into understanding the molecular mechanism for activation of family B G protein-coupled receptors.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dong M, Le A, Te JA, Pinon DI, Bordner AJ, Miller LJ. Importance of each residue within secretin for receptor binding and biological activity. Biochemistry 2011; 50:2983-93. [PMID: 21388146 PMCID: PMC3071462 DOI: 10.1021/bi200133u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Secretin is a linear 27-residue peptide hormone that stimulates pancreatic and biliary ductular bicarbonate and water secretion by acting at its family B G protein-coupled receptor. While, like other family members, the carboxyl-terminal region of secretin is most important for high affinity binding and its amino-terminal region is most important for receptor selectivity and receptor activation, determinants for these activities are distributed throughout the entire length of this peptide. In this work, we have systematically investigated changing each residue within secretin to alanine and evaluating the impact on receptor binding and biological activity. The residues most critical for receptor binding were His1, Asp3, Gly4, Phe6, Thr7, Ser8, Leu10, Asp15, Leu19, and Leu23. The residues most critical for biological activity included His1, Gly4, Thr7, Ser8, Glu9, Leu10, Leu19, Leu22, and Leu23, with Asp3, Phe6, Ser11, Leu13, Asp15, Leu26, and Val27 also contributing. While the importance of residues in positions analogous to His1, Asp3, Phe6, Thr7, and Leu23 is conserved for several closely related members of this family, Leu19 is uniquely important for secretin. We, therefore, have further studied this residue by molecular modeling and molecular dynamics simulations. Indeed, the molecular dynamics simulations showed that mutation of Leu19 to alanine was destabilizing, with this effect greater than that observed for the analogous position in the other close family members. This could reflect reduced contact with the receptor or an increase in the solvent-accessible surface area of the hydrophobic residues in the carboxyl terminus of secretin as bound to its receptor.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Angela Le
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Jerez A. Te
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Delia I. Pinon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Andrew J. Bordner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| |
Collapse
|
11
|
Dejda A, Bourgault S, Doan ND, Létourneau M, Couvineau A, Vaudry H, Vaudry D, Fournier A. Identification by photoaffinity labeling of the extracellular N-terminal domain of PAC1 receptor as the major binding site for PACAP. Biochimie 2011; 93:669-677. [PMID: 21185349 DOI: 10.1016/j.biochi.2010.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/15/2010] [Indexed: 02/07/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts many crucial biological functions through the interaction with its specific PAC1 receptor (PAC1-R), a class B G protein-coupled receptor (GPCR). To identify the binding sites of PACAP in the PAC1-R, three peptide derivatives containing a photoreactive p-benzoyl-phenylalanine (Bpa) residue were developed. These photosensitive PACAP analogs were fully biologically active and competent to displace radiolabeled Ac-PACAP27 from the PAC1-R. Subsequently, the (125)I-labeled photoprobes were used to anchor the PAC1-R expressed in Chinese hamster ovary cells. Photolabeling led to the formation of two protein complexes of 76 and 67 kDa, representing different glycosylated forms of the receptor. Proteinase and chemical cleavages of the peptide-receptor complexes revealed that (125)I[Bpa(0), Nle(17)]PACAP27, (125)I[Bpa(6), Nle(17)]PACAP27 and (125)I[Nle(17), Bpa(22)]PACAP27 covalently labeled the Ser(98) - Met(111) segment, the Ser(124) - Glu(125) dipeptide and the Ser(141) - Met(172) fragment, respectively. Taking into account the topology of the PAC1-R, these segments are mainly located within the extracellular N-terminal domain, indicating that this PAC1-R domain is the major binding site of PACAP27. The present study constitutes the first characterization of the binding domains of PACAP to its specific receptor and suggests heterogeneity within the binding mode of peptide ligands to class B GPCRs.
Collapse
Affiliation(s)
- Agnieszka Dejda
- Laboratoire d'Études Moléculaires et Pharmacologiques des Peptides (LEMPP), INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Ville de Laval, Qc, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Miller LJ, Chen Q, Lam PCH, Pinon DI, Sexton PM, Abagyan R, Dong M. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling. J Biol Chem 2011; 286:15895-907. [PMID: 21454562 DOI: 10.1074/jbc.m110.217901] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen Q, Pinon DI, Miller LJ, Dong M. Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor: a region critical for biological activity. J Biol Chem 2010; 285:24508-18. [PMID: 20529866 DOI: 10.1074/jbc.m110.135749] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7-36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr(145), adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr(205), within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.
Collapse
Affiliation(s)
- Quan Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
14
|
Dong M, Narang P, Pinon DI, Bordner AJ, Miller LJ. Refinement of the pharmacophore of an agonist ligand of the secretin receptor using conformationally constrained cyclic hexapeptides. Peptides 2010; 31:1094-8. [PMID: 20214947 PMCID: PMC2872052 DOI: 10.1016/j.peptides.2010.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
Abstract
There is a compelling need for the development of small molecule agonists acting at family B G protein-coupled receptors. A possible lead for the development of such drugs was reported when it was recognized that sequences endogenous to the amino terminus of the secretin receptor and certain other receptors in this family possess weak full agonist activity (Dong et al. Mol Pharmacol 2006;70:206-213). In the current report, we extended those observations by building the active dipeptide motif found in the secretin receptor (WD) into each position around a conformationally constrained d-amino acid-containing cyclic hexapeptide, and determining the biological activity of each peptide at the secretin receptor. Indeed, only two positions for WD around this constrained ring resulted in biological activity at the receptor, providing further insights into the structural specificity of this phenomenon. Molecular modeling supported the presence of a unique WD backbone conformation shared only by these active peptides, and provided a more constrained template for future receptor-active agonist drug development.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Pooja Narang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Delia I. Pinon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Andrew J. Bordner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| |
Collapse
|
15
|
Dong M, Lam PCH, Pinon DI, Orry A, Sexton PM, Abagyan R, Miller LJ. Secretin occupies a single protomer of the homodimeric secretin receptor complex: insights from photoaffinity labeling studies using dual sites of covalent attachment. J Biol Chem 2010; 285:9919-9931. [PMID: 20100828 DOI: 10.1074/jbc.m109.089730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secretin receptor, a prototypic family B G protein-coupled receptor, forms a constitutive homodimeric complex that is stable even in the presence of hormone. Recently, a model of this agonist-bound receptor was built based on high resolution structures reported for amino-terminal domains of other family members. Although this model provided the best solution for all extant data, including 10 photoaffinity labeling constraints, a new such constraint now obtained with a position 16 photolabile probe was inconsistent with this model. As the secretin receptor forms constitutive homodimers, we explored whether secretin might dock across both protomers of the complex, an observation that could also contribute to the negative cooperativity observed. To directly explore this, we prepared six secretin analogue probes that simultaneously incorporated two photolabile benzoylphenylalanines as sites of covalent attachment, in positions known to label distinct receptor subdomains. Each bifunctional probe was a full agonist that labeled the receptor specifically and saturably, with electrophoretic migration consistent with labeling a single protomer of the homodimeric secretin receptor. No band representing radiolabeled receptor dimer was observed with any bifunctional probe. The labeled monomeric receptor bands were cleaved with cyanogen bromide to demonstrate that both of the photolabile benzoylphenylalanines within a single probe had established covalent adducts with a single receptor in the complex. These data are consistent with a model of secretin occupying a single secretin receptor protomer within the homodimeric receptor complex. A new molecular model accommodating all constraints is now proposed.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Polo C-H Lam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92037; Molsoft LLC, La Jolla, California 92037
| | - Delia I Pinon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Andrew Orry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92037; Molsoft LLC, La Jolla, California 92037
| | - Patrick M Sexton
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville 3052, Australia
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92037; Molsoft LLC, La Jolla, California 92037
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259.
| |
Collapse
|
16
|
Harikumar KG, Simms J, Christopoulos G, Sexton PM, Miller LJ. Molecular basis of association of receptor activity-modifying protein 3 with the family B G protein-coupled secretin receptor. Biochemistry 2010; 48:11773-85. [PMID: 19886671 DOI: 10.1021/bi901326k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three receptor activity-modifying proteins (RAMPs) have been recognized as being important for the trafficking and function of a subset of family B G protein-coupled receptors, although the structural basis for this has not been well established. In the current work, we use morphological fluorescence techniques, bioluminescence resonance energy transfer, and bimolecular fluorescence complementation to demonstrate that the secretin receptor associates specifically with RAMP3, but not with RAMP1 or RAMP2. We use truncation constructs, peptide competition experiments, and chimeric secretin-GLP1 receptor constructs to establish that this association is structurally specific, dependent on the intramembranous region of the RAMP and TM6 and TM7 of this receptor. There were no observed changes in secretin-stimulated cAMP, intracellular calcium, ERK1/2 phosphorylation, or receptor internalization in receptor-bearing COS or CHO-K1 cells in the presence or absence of exogenous RAMP transfection, although the secretin receptor trafficks normally to the cell surface in these cells in a RAMP-independent manner, resulting in both free and RAMP-associated receptor on the cell surface. RAMP3 association with this receptor was shown to be capable of rescuing a receptor mutant (G241C) that is normally trapped intracellularly in the biosynthetic machinery. Similarly, secretin receptor expression had functional effects on adrenomedullin activity, with increasing secretin receptor expression competing for RAMP3 association with the calcitonin receptor-like receptor to yield a functional adrenomedullin receptor. These data provide important new insights into the structural basis for RAMP3 interaction with a family B G protein-coupled receptor, potentially providing a highly selective target for drug action. This may be representative of similar interactions between other members of this receptor family and RAMP proteins.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|
17
|
Dong M, Miller LJ. Effects of pH and temperature on photoaffinity labeling of Family B G protein-coupled receptors. REGULATORY PEPTIDES 2009; 158:110-5. [PMID: 19454296 PMCID: PMC2761513 DOI: 10.1016/j.regpep.2009.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/30/2022]
Abstract
The efficiency of covalent labeling of a receptor by a photolabile analogue of its natural ligand is dependent on the spatial approximation of the probe and its target. Systematic application of intrinsic photoaffinity labeling to the secretin receptor, a prototypic Family B G protein-coupled receptor, demonstrated reduced efficiency of labeling for amino-terminal and mid-region sites of labeling relative to carboxyl-terminal sites. Reduction of pH from 7.4 to 5.5 and reduction of temperature from 25 degrees C to 4 degrees C improved the efficiency of covalent labeling of the receptor with these probes. This correlated with sites of labeling at the interface between the receptor amino terminus and the receptor core, a region containing histidine residues that have their ionization affected in this pH range. Application to the calcitonin receptor, another Family B G protein-coupled receptor, yielded analogous results. These results support the consistent mode of docking peptide ligands to this group of receptors.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | | |
Collapse
|
18
|
Chen Q, Pinon DI, Miller LJ, Dong M. Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes. J Biol Chem 2009; 284:34135-44. [PMID: 19815559 DOI: 10.1074/jbc.m109.038109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked. Therefore, we developed and characterized two high affinity, full-agonist photolabile GLP1 probes having sites for covalent attachment in positions 24 and 35. Both probes labeled the receptor specifically and saturably. Subsequent peptide mapping using chemical and proteinase cleavages of purified wild-type and mutant GLP1 receptor identified that the Arg(131)-Lys(136) segment at the juxtamembrane region of the receptor amino terminus contained the site of labeling for the position 24 probe, and the specific receptor residue labeled by this probe was identified as Glu(133) by radiochemical sequencing. Similarly, nearby residue Glu(125) within the same region of the receptor amino-terminal domain was identified as the site of labeling by the position 35 probe. These data represent the first direct demonstration of spatial approximation between GLP1 and its intact receptor as docked, providing two important constraints for the modeling of this interaction. This should expand our understanding of the molecular basis of natural agonist ligand binding to the GLP1 receptor and may be relevant to other family members.
Collapse
Affiliation(s)
- Quan Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
19
|
Dong M, Cox RF, Miller LJ. Juxtamembranous region of the amino terminus of the family B G protein-coupled calcitonin receptor plays a critical role in small-molecule agonist action. J Biol Chem 2009; 284:21839-21847. [PMID: 19447889 DOI: 10.1074/jbc.m109.011924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Family B G protein-coupled calcitonin receptor is an important drug target. The aim of this work was to elucidate the molecular mechanism of action of small-molecule agonist ligands acting at this receptor, comparing it with the action mechanism of the receptor's natural peptide ligand. cAMP responses to four non-peptidyl ligands and calcitonin were studied in COS-1 cells expressing wild-type and chimeric calcitonin-secretin receptors. All compounds were full agonists at the calcitonin receptor with no activity at the secretin receptor. Only chimeric constructs including the calcitonin receptor amino terminus exhibited responses to any of these ligands. We progressively truncated this domain and tested constructs for cAMP responses. Although calcitonin was able to activate the calcitonin receptor fully with the first 58 residues absent, its potency was 3 orders of magnitude lower than that at the wild-type receptor. After truncation of 114 residues, there was no response to calcitonin. In contrast, small-molecule ligands were fully active at receptors having up to 149 amino-terminal residues absent. Those compounds finally became inactive after truncation of 153 residues. Deletion and/or alanine replacement of the region of the calcitonin receptor between residues 150 and 153 resulted in marked reduction in cAMP responses to these compounds, with some compound-specific differences observed, supporting a critical role for this region. Binding studies further supported distinct sites of action of small molecules relative to that of calcitonin. These findings focus attention on the potential importance of the juxtamembranous region of the amino terminus of the Family B calcitonin receptor for agonist drug action.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Richard F Cox
- GlaxoSmithKline, Research Triangle Park, North Carolina 27709
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| |
Collapse
|
20
|
Harikumar KG, Miller LJ. Application of fluorescence resonance energy transfer techniques to establish ligand-receptor orientation. Methods Mol Biol 2009; 552:293-304. [PMID: 19513658 DOI: 10.1007/978-1-60327-317-6_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fluorescence resonance energy transfer (FRET) has been utilized to determine distances between a fluorescence donor and a fluorescence acceptor having appropriately overlapping spectra. In this chapter, we utilize this approach to establish distances between a fluorescence donor situated in a distinct position within a docked ligand and a fluorescence acceptor situated in a distinct position within its receptor. This technique is applicable to receptor expressed in the environment of an intact cell containing the full complement of signaling and regulatory proteins. A number of controls are necessary, including those establishing the normal function of the modified ligand and receptor, the absence of energy transfer to non-receptor proteins, and the specificity of transfer between the donor of interest and the acceptor of interest. We have utilized the example of FRET between a secretin peptide incorporating Alexa(488) and a secretin receptor construct derivatized with Alexa(568). The latter was prepared by the derivatization of a mono-cysteine-reactive receptor construct with a fluorescent methanethiosulfonate reagent. This approach can provide important spatial information that can be useful in the meaningful docking of a ligand at its receptor.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
21
|
Miller LJ. Informed Development of Drugs Acting at Family B G Protein-Coupled Receptors. Ann N Y Acad Sci 2008; 1144:203-9. [DOI: 10.1196/annals.1418.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Receptor-mediated signal transduction pathways and the regulation of pancreatic acinar cell function. Curr Opin Gastroenterol 2008; 24:573-9. [PMID: 19122497 DOI: 10.1097/mog.0b013e32830b110c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Recent studies on pancreatic acinar cell function have led to a more detailed understanding of the signal transduction mechanisms regulating digestive enzyme synthesis and secretion as well as pancreatic growth. This review identifies and puts into context these recent studies, which further understanding in these areas. RECENT FINDINGS Receptors present on acinar cells, particularly those for cholecystokinin and secretin, have been better characterized as to the molecular nature of the ligand-receptor interaction. Other reports have described the receptors for natriuretic peptides and fibroblast growth factor on acini. Intracellular Ca(2+) signaling remains at the center of stimulus secretion coupling and its regulation by inositol 1,4,5-trisphosphate, nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose has been further defined. Work downstream of intracellular mediators has focused on molecular mechanisms of exocytosis particularly involving small G proteins, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and cytoskeletal proteins. Considerable progress has been made defining the complex in acinar cells and its regulation. In addition to secretion, recent studies have further defined the regulation of pancreatic growth both in adaptive regulation to diet and hormones, particularly cholecystokinin, and in the regeneration that occurs after pancreatitis or partial pancreatectomy. This regulation involves calcineurin-nuclear factor of activated T cells, mammalian target of rapamycin, mitogen-activated protein kinase, Notch signaling pathways as well as various tyrosine kinases. SUMMARY Understanding the mechanisms that regulate pancreatic acinar cell function is contributing to our knowledge of normal pancreatic function and alterations in diseases such as pancreatitis and pancreatic cancer.
Collapse
|
23
|
Dong M, Lam PCH, Pinon DI, Sexton PM, Abagyan R, Miller LJ. Spatial approximation between secretin residue five and the third extracellular loop of its receptor provides new insight into the molecular basis of natural agonist binding. Mol Pharmacol 2008; 74:413-22. [PMID: 18467541 PMCID: PMC3879803 DOI: 10.1124/mol.108.047209] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amino terminus of class II G protein-coupled receptors plays an important role in ligand binding and receptor activation. Understanding of the conformation of the amino-terminal domain of these receptors has been substantially advanced with the solution of nuclear magnetic resonance and crystal structures of this region of receptors for corticotrophin-releasing factor, pituitary adenylate cyclase-activating polypeptide, and gastric inhibitory polypeptide. However, the orientation of the amino terminus relative to the receptor core and how the receptor gets activated upon ligand binding remain unclear. In this work, we have used photoaffinity labeling to identify a critical spatial approximation between residue five of secretin and a residue within the proposed third extracellular loop of the secretin receptor. This was achieved by purification, deglycosylation, cyanogen bromide cleavage, and sequencing of labeled wild-type and mutant secretin receptors. This constraint has been used to refine our evolving molecular model of secretin docked at the intact receptor, which for the first time includes refined helical bundle and loop regions and reflects a peptide-binding groove within the receptor amino terminus that directs the amino terminus of the peptide toward the receptor body. This model is fully consistent with the endogenous agonist mechanism for class II G protein-coupled receptor activation, where ligand binding promotes the interaction of a portion of the receptor amino terminus with the receptor body to activate it.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CHO Cells
- COS Cells
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Models, Molecular
- Molecular Sequence Data
- Photoaffinity Labels/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rats
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/agonists
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Secretin/chemistry
- Secretin/genetics
- Secretin/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | | | | | | | | | | |
Collapse
|
24
|
Exploration of the endogenous agonist mechanism for activation of secretin and VPAC1 receptors using synthetic glycosylated peptides. J Mol Neurosci 2008; 36:254-9. [PMID: 18409024 DOI: 10.1007/s12031-008-9058-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Current understanding of the molecular basis of activation of class II G protein-coupled receptors remains limited, despite recent solution of NMR and crystal structures of amino-terminal domains of several family members. One mechanism proposed for the activation of these receptors involves an agonist-stimulated change in conformation of the receptor amino terminus. This results in the exposure of a "hidden endogenous agonist" (WDN sequence in secretin and VPAC1 receptors) within the receptor amino terminus that interacts with the receptor core, thereby changing its conformation and exposing its G protein-binding region. The Asn in this WDN sequence is known to be glycosylated in both secretin and VPAC1 receptors, raising concern about whether this posttranslational modification might interfere with the proposed mechanism. Therefore, we prepared glycosylated forms of cyclic WDN and the longer cyclic peptide, LWDNM, and tested them for agonist activity at secretin and VPAC1 receptor-bearing cell lines. Both glycosylated peptides stimulated full cAMP responses in the cell lines. Clearly, glycosylation did not interfere with this mechanism and may actually facilitate the correct orientation of the pharmacophore of the endogenous agonist ligand. These data provide further evidence for this proposed mechanism for the activation of this family of receptors.
Collapse
|
25
|
Harikumar KG, Morfis MM, Sexton PM, Miller LJ. Pattern of intra-family hetero-oligomerization involving the G-protein-coupled secretin receptor. J Mol Neurosci 2008; 36:279-85. [PMID: 18401761 DOI: 10.1007/s12031-008-9060-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/26/2008] [Indexed: 01/18/2023]
Abstract
Oligomerization of G-protein-coupled receptors (GPCRs) is emerging as a mechanism for regulation and functional modification, although it has been studied most extensively for Family A receptors. Family B receptors have clear structural differences from Family A. In this paper, we have systematically evaluated GPCRs that are capable of association with the prototypic Family B secretin receptor. All of the receptor constructs were shown to traffic normally to the plasma membrane. We utilized receptor bioluminescence resonance energy transfer (BRET) to determine the presence of constitutive and ligand-dependent receptor association. Extensive intra-family and no cross-family association was observed. Of the nine Family B receptors studied, all constitutively yielded a significant BRET signal with the secretin receptor, except for the calcitonin receptor. Each of the associating hetero-oligomeric receptor pairs generated a BRET signal of similar intensity, less than that of homo-oligomeric secretin receptors. BRET signals from some receptor pairs were reduced by ligand occupation, but none were increased by this treatment. Thus, Family B GPCR oligomerization occurs, with many structurally related members associating with each other. The specific functional implications of this need to be further evaluated.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
26
|
Dong M, Gao F, Pinon DI, Miller LJ. Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors. Mol Endocrinol 2008; 22:1489-99. [PMID: 18372345 DOI: 10.1210/me.2008-0025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Agonist drugs targeting the glucagon-like peptide-1 (GLP1) receptor represent important additions to the clinical management of patients with diabetes mellitus. In the current report, we have explored whether the recently described concept of a receptor-active endogenous agonist sequence within the amino terminus of the secretin receptor may also be applicable to the GLP1 receptor. If so, this could provide a lead for the development of additional small molecule agonists targeting this and other important family members. Indeed, the region of the GLP1 receptor analogous to that containing the active WDN within the secretin receptor was found to possess full agonist activity at the GLP1 receptor. The minimal fragment within this region that had full agonist activity was NRTFD. Despite having no primary sequence identity with the WDN, it was also active at the secretin receptor, where it had similar potency and efficacy to WDN, suggesting common structural features. Molecular modeling demonstrated that an intradomain salt bridge between the side chains of arginine and aspartate could yield similarities in structure with cyclic WDN. This directly supports the relevance of the endogenous agonist concept to the GLP1 receptor and provides new insights into the rational development and refinement of new types of drugs activating this important receptor.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA.
| | | | | | | |
Collapse
|
27
|
Harikumar KG, Lam PCH, Dong M, Sexton PM, Abagyan R, Miller LJ. Fluorescence Resonance Energy Transfer Analysis of Secretin Docking to Its Receptor. J Biol Chem 2007; 282:32834-43. [PMID: 17827151 DOI: 10.1074/jbc.m704563200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full structural characterization of G protein-coupled receptors has been limited to rhodopsin, with its uniquely stable structure and ability to be crystallized. For other members of this important superfamily, direct structural insights have been limited to NMR structures of soluble domains. Two members of the Class II family have recently had the structures of their isolated amino-terminal regions solved by NMR, yet it remains unclear how that domain is aligned with the heptahelical transmembrane bundle domain of those receptors. Indeed, three distinct orientations have been suggested for different members of this family. In the current work, we have utilized fluorescence resonance energy transfer to establish the distances between four residues distributed throughout fully biologically active, high affinity analogues of secretin and distinct residues in each of four extracellular regions of the intact secretin receptor. These 16 distance constraints were utilized along with nine photoaffinity labeling spatial approximation constraints to study the three proposed orientations of the peptide-binding amino terminus and helical bundle domains of this receptor. In the best model, the carboxyl terminus of secretin was found to bind in a groove above the beta-hairpin region of the receptor amino terminus, with its amino-terminal end adjacent to the third extracellular loop and top of transmembrane segment VI. This refined model of the intact receptor was also fully consistent with the spatial approximation of the Trp(48)-Asp(49)-Asn(50) endogenous agonist segment with the third extracellular loop region that it has been shown to photolabel. This provides strong evidence for the orientation of peptide-binding and signaling domains of a prototypic Class II G protein-coupled receptor.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, USA
| | | | | | | | | | | |
Collapse
|