1
|
Pham TN, Vu HT, Tasaki T, Pham-The T, Tran NN, Nishijo M, Tran TV, Tran HA, Takiguchi T, Nishino Y. Associations Between Perinatal Dioxin Exposure and Circadian Clock Gene mRNA Expression in Children in Dioxin-Contaminated Areas of Vietnam. TOXICS 2025; 13:191. [PMID: 40137518 PMCID: PMC11945973 DOI: 10.3390/toxics13030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025]
Abstract
We investigated the impact of perinatal dioxin exposure (indicated by dioxin levels in maternal breast milk) on clock gene mRNA expression in buccal cells of 9-year-old children from the Da Nang birth cohort in Vietnam using reverse transcription polymerase chain reaction. Of the 56 boys and 34 girls (67% detection rate) in whom PER1 was detected, BMAL1 was detected in only 16 boys and 15 girls. Dioxin levels were significantly higher in girls with BMAL1 detection than in girls without detection. In girls, higher relative BMAL1 expression levels were associated with greater levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin and toxic equivalents of polychlorinated dibenzodioxins and polychlorinated dibenzofurans. Moreover, BMAL1 expression levels were correlated with shorter night sleep duration on weekdays, greater sleep duration on holidays, and higher hyperactivity scores. After adjusting for maternal parity, relative PER1 expression levels were higher in boys with higher toxic equivalents of polychlorinated dibenzofuran than those in girls. Although higher PER1 expression levels were correlated with greater verbal aggression and hostility scores in girls, no such associations were found in boys. These findings suggest the possible existence of sex-specific effects of perinatal dioxin exposure on circadian rhythms regulated by clock genes, particularly BMAL1, leading to sleep and behavioral problems in later life.
Collapse
Affiliation(s)
- Thao Ngoc Pham
- Department of Functional Diagnosis, Military Hospital 103, Vietnam Military Medical University, Hanoi 12108, Vietnam;
| | - Hoa Thi Vu
- Department of Military Hygiene, Vietnam Military Medical University, Hanoi 12108, Vietnam;
| | - Takafumi Tasaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Tai Pham-The
- Biomedical and Pharmaceutical Research Centre, Vietnam Military Medical University, Hanoi 12108, Vietnam;
| | - Nghi Ngoc Tran
- Ministry of Health, Vietnamese Government, Hanoi 10060, Vietnam;
| | - Muneko Nishijo
- Epidemiology and Public Health, Kanazawa Medical University, Ishikawa 920-0293, Japan; (T.T.); (Y.N.)
| | - Tien Viet Tran
- Department of Infectious and Tropical Diseases, Military Hospital 103, Vietnam Military Medical University, Hanoi 12108, Vietnam;
| | - Hai Anh Tran
- Department of Physiology, Vietnam Military Medical University, Hanoi 12108, Vietnam;
| | - Tomoya Takiguchi
- Epidemiology and Public Health, Kanazawa Medical University, Ishikawa 920-0293, Japan; (T.T.); (Y.N.)
| | - Yoshikazu Nishino
- Epidemiology and Public Health, Kanazawa Medical University, Ishikawa 920-0293, Japan; (T.T.); (Y.N.)
| |
Collapse
|
2
|
Chen J, Chen X, Agrawal V, Moore CS, Blackwell T, Rathaur N, Gladson S, Rathinasabapathy A, Hemnes A, Austin E, West J. Estrogen and Cyp1b1 Regulate Pparγ in Pulmonary Hypertension Through a Ubiquitin-Dependent Mechanism. Pulm Circ 2025; 15:e70054. [PMID: 39958970 PMCID: PMC11825585 DOI: 10.1002/pul2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
Female sex increases risk of Group I pulmonary arterial hypertension by roughly threefold, but the mechanism is unclear. Low expression of Cyp1b1, an enzyme that metabolizes estrogens, is associated with disease penetrance, particularly in women. We previously found that lower Pparγ levels in murine PAH models, which may drive disease, are rescued by estrogen blockade. The goal of the current studies was to examine interaction of estrogen, Cyp1b1, and energy metabolism in cell culture and in knockout mice. We found that both estrogen and siRNA to Cyp1b1 resulted in reduction of Pparγ at a protein, but not transcript level, in addition to regulating Pparγ cofactors. siCyp1b1 reduced both basal and maximal respiration rates in a fatty acid oxidation Seahorse protocol. This Pparγ inhibition could be eliminated by blocking ubiquitination. RNA-seq suggested that Cyp1b1 may be having important pulmonary hypertension effects both in concert with and independently of its effect on estrogen. Cyp1b1 knockout mice have lower Pparγ levels than WT mice both in normoxia and hypoxia, and develop mild pulmonary hypertension on a high fat diet. RNA-seq on their lungs reflected similar pathways to those altered in endothelial cells alone - lipid metabolism, cytokines, and vasoreactivity-associated genes, among others, but added genes associated with circadian rhythm. These data suggest multiple potential points for intervention in estrogen and Cyp1b1 mediated etiology of PAH, in particular Pparγ ubiquitination, but also suggests that both the difference between E2 and 16aOHE and the impact of Cyp1b1 is more complex than simply "degree of estrogenicity".
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangsha CityChina
| | - Xinping Chen
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Genetics Associates, IncNashvilleTennesseeUSA
| | - Vineet Agrawal
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Christy S. Moore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tom Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nivedita Rathaur
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- The Wistar InstitutePhiladelphiaPennsylvaniaUSA
| | - Santhi Gladson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anandharajan Rathinasabapathy
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Eric Austin
- Department of PediatricsVanderbilt University Medical CenterNashvilleUSA
| | - James West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
3
|
Pácha J, Balounová K, Soták M. Circadian regulation of transporter expression and implications for drug disposition. Expert Opin Drug Metab Toxicol 2020; 17:425-439. [PMID: 33353445 DOI: 10.1080/17425255.2021.1868438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Solute Carrier (SLC) and ATP-binding cassette (ABC) transporters expressed in the intestine, liver, and kidney determine the absorption, distribution, and excretion of drugs. In addition, most molecular and cellular processes show circadian rhythmicity controlled by circadian clocks that leads to diurnal variations in the pharmacokinetics and pharmacodynamics of many drugs and affects their therapeutic efficacy and toxicity.Area covered: This review provides an overview of the current knowledge on the circadian rhythmicity of drug transporters and the molecular mechanisms of their circadian control. Evidence for coupling drug transporters to circadian oscillators and the plausible candidates conveying circadian clock signals to target drug transporters, particularly transcription factors operating as the output of clock genes, is discussed.Expert opinion: The circadian machinery has been demonstrated to interact with the uptake and efflux of various drug transporters. The evidence supports the concept that diurnal changes that affect drug transporters may influence the pharmacokinetics of the drugs. However, more systematic studies are required to better define the timing of pharmacologically important drug transporter regulation and determine tissue- and sex-dependent differences. Finally, the transfer of knowledge based on the results and conclusions obtained primarily from animal models will require careful validation before it is applied to humans.
Collapse
Affiliation(s)
- Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Balounová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matúš Soták
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
5
|
Schmitt EE, Barhoumi R, Metz RP, Porter WW. Circadian Regulation of Benzo[a]Pyrene Metabolism and DNA Adduct Formation in Breast Cells and the Mouse Mammary Gland. Mol Pharmacol 2017; 91:178-188. [PMID: 28007926 PMCID: PMC5325081 DOI: 10.1124/mol.116.106740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022] Open
Abstract
The circadian clock plays a role in many biologic processes, yet very little is known about its role in metabolism of drugs and carcinogens. The purpose of this study was to define the impact of circadian rhythms on benzo-a-pyrene (BaP) metabolism in the mouse mammary gland and develop a circadian in vitro model for investigating changes in BaP metabolism resulting from cross-talk between the molecular clock and aryl hydrocarbon receptor. Female 129sv mice (12 weeks old) received a single gavage dose of 50 mg/kg BaP at either noon or midnight, and mammary tissues were isolated 4 or 24 hours later. BaP-induced Cyp1a1 and Cyp1b1 mRNA levels were higher 4 hours after dosing at noon than at 4 hours after dosing at midnight, and this corresponded with parallel changes in Per gene expression. In our in vitro model, we dosed MCF10A mammary cells at different times after serum shock to study how time of day shifts drug metabolism in cells. Analysis of CYP1A1 and CYP1B1 gene expression showed the maximum enzyme-induced metabolism response 12 and 20 hours after shock, as determined by ethoxyresorufin-O-deethylase activity, metabolism of BaP, and formation of DNA-BaP adducts. The pattern of PER-, BMAL-, and aryl hydrocarbon receptor-induced P450 gene expression and BaP metabolism was similar to BaP-induced Cyp1A1 and Cyp1B1 and molecular clock gene expression in mouse mammary glands. These studies indicate time-of-day exposure influences BaP metabolism in mouse mammary glands and describe an in vitro model that can be used to investigate the circadian influence on the metabolism of carcinogens.
Collapse
Affiliation(s)
- Emily E Schmitt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Richard P Metz
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
6
|
Jaeger C, Tischkau SA. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:133-141. [PMID: 27559298 PMCID: PMC4990151 DOI: 10.4137/ehi.s38343] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/01/2023]
Abstract
The prevalence of metabolic syndrome, a clustering of three or more risk factors that include abdominal obesity, increased blood pressure, and high levels of glucose, triglycerides, and high-density lipoproteins, has reached dangerous and costly levels worldwide. Increases in morbidity and mortality result from a combination of factors that promote altered glucose metabolism, insulin resistance, and metabolic dysfunction. Although diet and exercise are commonly touted as important determinants in the development of metabolic dysfunction, other environmental factors, including circadian clock disruption and activation of the aryl hydrocarbon receptor (AhR) by dietary or other environmental sources, must also be considered. AhR binds a range of ligands, which prompts protein-protein interactions with other Per-Arnt-Sim (PAS)-domain-containing proteins and subsequent transcriptional activity. This review focuses on the reciprocal crosstalk between the activated AhR and the molecular circadian clock. AhR exhibits a rhythmic expression and time-dependent sensitivity to activation by AhR agonists. Conversely, AhR activation influences the amplitude and phase of expression of circadian clock genes, hormones, and the behavioral responses of the clock system to changes in environmental illumination. Both the clock and AhR status and activation play significant and underappreciated roles in metabolic homeostasis. This review highlights the state of knowledge regarding how AhR may act together with the circadian clock to influence energy metabolism. Understanding the variety of AhR-dependent mechanisms, including its interactions with the circadian timing system that promote metabolic dysfunction, reveals new targets of interest for maintenance of healthy metabolism.
Collapse
|
7
|
Biological Rhythms in the Skin. Int J Mol Sci 2016; 17:ijms17060801. [PMID: 27231897 PMCID: PMC4926335 DOI: 10.3390/ijms17060801] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism's rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional-translational autoregulatory loops. This master clock, following environmental cues, regulates an organism's sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin.
Collapse
|
8
|
Interplay between Dioxin-mediated signaling and circadian clock: a possible determinant in metabolic homeostasis. Int J Mol Sci 2014; 15:11700-12. [PMID: 24987953 PMCID: PMC4139808 DOI: 10.3390/ijms150711700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR) is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.
Collapse
|
9
|
Anderson G, Beischlag TV, Vinciguerra M, Mazzoccoli G. The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem Pharmacol 2013; 85:1405-16. [PMID: 23438471 DOI: 10.1016/j.bcp.2013.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
Life forms populating the Earth must face environmental challenges to assure individual and species survival. The strategies predisposed to maintain organismal homeostasis and grant selective advantage rely on anticipatory phenomena facing periodic modifications, and compensatory phenomena facing unpredictable changes. Biological processes bringing about these responses are respectively driven by the circadian timing system, a complex of biological oscillators entrained to the environmental light/dark cycle, and by regulatory and metabolic networks that precisely direct the body's adjustments to variations of external conditions and internal milieu. A critical role in organismal homeostatic functions is played by the aryl hydrocarbon receptor (AHR) complex, which senses environmental and endogenous compounds, influences metabolic responses controlling phase I/II gene expression, and modulates vital phenomena such as development, inflammation and adaptive immunity. A physiological cross-talk between circadian and AHR signaling pathways has been evidenced. The alteration of AHR signaling pathway deriving from genetic damage with polymorphisms or mutations, or produced by exogenous or endogenous AHR activation, and chronodisruption caused by mismatch between the body's internal clock and geophysical time/social schedules, are capable of triggering pathological mechanisms involved in metabolic, immune-related and neoplastic diseases. On the other hand, the molecular components of the circadian clock circuitry and AHR signaling pathway may represent useful tools for preventive interventions and valuable targets of therapeutic approaches.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Centre/Communications, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
10
|
Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med 2012; 18:1249-60. [PMID: 22811066 DOI: 10.2119/molmed.2012.00077] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/17/2012] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms show universally a 24-h oscillation pattern in metabolic, physiological and behavioral functions of almost all species. This pattern is due to a fundamental adaptation to the rotation of Earth around its own axis. Molecular mechanisms of generation of circadian rhythms organize a biochemical network in suprachiasmatic nucleus and peripheral tissues, building cell autonomous clock pacemakers. Rhythmicity is observed in transcriptional expression of a wide range of clock-controlled genes that regulate a variety of normal cell functions, such as cell division and proliferation. Desynchrony of this rhythmicity seems to be implicated in several pathologic conditions, including tumorigenesis and progression of cancer. In 2007, the International Agency for Research on Cancer (IARC) categorized "shiftwork that involves circadian disruption [as] probably carcinogenic to humans" (Group 2A in the IARC classification system of carcinogenic potency of an agentagent) (Painting, Firefighting, and Shiftwork; IARC; 2007). This review discusses the potential relation between disruptions of normal circadian rhythms with genetic driving machinery of cancer. Elucidation of the role of clockwork disruption, such as exposure to light at night and sleep disruption, in cancer biology could be important in developing new targeted anticancer therapies, optimizing individualized chronotherapy and modifying lighting environment in workplaces or homes.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology and Metabolism, Hippocration General Hospital, Athens, Greece.
| | | |
Collapse
|
11
|
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that is bound and activated by many toxic ubiquitous environmental contaminants, including the halogenated aromatic hydrocarbon, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AhR belongs to a family of proteins that contain basic helix-loop-helix/Per-ARNT-SIM (bHLH/PAS) domains. The circadian clock protein, BMAL1, is also a bHLH-PAS transcription factor and has been shown to interact with the AhR. AhRs are expressed in nearly every mammalian tissue, including the suprachiasmatic nuclei (SCN), and previous studies have suggested that activation of the AhR with dioxins affects rhythmicity in circadian clocks. In this study, the authors tested the hypothesis that activation of the aryl hydrocarbon receptor with the potent dioxin, TCDD, alters the organization of the mammalian circadian system by measuring bioluminescence from tissues explanted from PER2::LUCIFERASE mice. They found that in vitro treatment of explanted tissues with TCDD did not alter the periods, amplitudes, or damping rates of the PER2::LUC rhythms compared with controls. Likewise, in vivo treatment with TCDD had no effect on the phase relationship between central and peripheral oscillators. Together, these data demonstrate that activation of the AhR with TCDD does not directly or systemically alter the mouse circadian system.
Collapse
Affiliation(s)
- Julie S Pendergast
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
12
|
Elliott A, Joiakim A, Mathieu PA, Duniec-Dmuchowski Z, Kocarek TA, Reiners JJ. p-Anilinoaniline enhancement of dioxin-induced CYP1A1 transcription and aryl hydrocarbon receptor occupancy of CYP1A1 promoter: role of the cell cycle. Drug Metab Dispos 2012; 40:1032-40. [PMID: 22344700 PMCID: PMC3336796 DOI: 10.1124/dmd.111.042549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is targeted by ubiquitination for degradation by the proteasome shortly after its activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In silico screening identified p-anilinoaniline (pAA) as a putative inhibitor of an E2 ligase that partners with an E3 ligase implicated in AhR ubiquitination. We investigated whether pAA could modify AhR-dependent activation of its target gene CYP1A1. pAA (1-200 μM) alone did not affect AhR content, or stimulate CYP1A1 mRNA accumulation in human mammary epithelial MCF10A cultures. However, pretreatment with ≥100 μM pAA suppressed TCDD-induced CYP1A1 activation and AhR degradation via its functioning as an AhR antagonist. At a lower concentration (25 μM), pAA cotreatment increased TCDD-induced CYP1A1 mRNA accumulation, without inhibiting AhR turnover or altering CYP1A1 mRNA half-life. Whereas TCDD alone did not affect MCF10A proliferation, 25 μM pAA was cytostatic and induced a G(1) arrest that lasted ∼7 h and induced an S phase arrest that peaked 5 to 8 h later. TCDD neither affected MCF10A cell cycle progression nor did it alter pAA effects on the cell cycle. The magnitude of CYP1A1 activation depended upon the time elapsed between pAA pretreatment and TCDD addition. Maximal AhR occupancy of the CYP1A1 promoter and accumulation of CYP1A1 heterogeneous nuclear RNA and mRNA occurred when pAA-pretreated cultures were exposed to TCDD in late G(1) and early/mid S phase. TCDD-mediated induction of CYP2S1 was also cell cycle-dependent in MCF10A cultures. Similar studies with HepG2 cultures indicated that the cell cycle dependence of CYP1A1 induction is cell context-dependent.
Collapse
Affiliation(s)
- Althea Elliott
- Institute of Environmental Health Sciences, 259 Mack Ave., Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wang C, Xu CX, Krager SL, Bottum KM, Liao DF, Tischkau SA. Aryl hydrocarbon receptor deficiency enhances insulin sensitivity and reduces PPAR-α pathway activity in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1739-44. [PMID: 21849270 PMCID: PMC3261983 DOI: 10.1289/ehp.1103593] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/17/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND Numerous man-made pollutants activate the aryl hydrocarbon receptor (AhR) and are risk factors for type 2 diabetes. AhR signaling also affects molecular clock genes to influence glucose metabolism. OBJECTIVE We investigated mechanisms by which AhR activation affects glucose metabolism. METHODS Glucose tolerance, insulin resistance, and expression of peroxisome proliferator-activated receptor-α (PPAR-α) and genes affecting glucose metabolism or fatty acid oxidation and clock gene rhythms were investigated in wild-type (WT) and AhR-deficient [knockout (KO)] mice. AhR agonists and small interfering RNA (siRNA) were used to examine the effect of AhR on PPAR-α expression and glycolysis in the liver cell line Hepa-1c1c7 (c7) and its c12 and c4 derivatives. Brain, muscle ARNT-like protein 1 (Bmal1) siRNA and Ahr or Bmal1 expression plasmids were used to analyze the effect of BMAL1 on PPAR-α expression in c7 cells. RESULTS KO mice displayed enhanced insulin sensitivity and improved glucose tolerance, accompanied by decreased PPAR-α and key gluconeogenic and fatty acid oxidation enzymes. AhR agonists increased PPAR-α expression in c7 cells. Both Ahr and Bmal1 siRNA reduced PPAR-α and metabolism genes. Moreover, rhythms of BMAL1 and blood glucose were altered in KO mice. CONCLUSIONS These results indicate a link between AhR signaling, circadian rhythms, and glucose metabolism. Furthermore, hepatic activation of the PPAR-α pathway provides a mechanism underlying AhR-mediated insulin resistance.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62974-9629, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ma Q. Influence of light on aryl hydrocarbon receptor signaling and consequences in drug metabolism, physiology and disease. Expert Opin Drug Metab Toxicol 2011; 7:1267-93. [DOI: 10.1517/17425255.2011.614947] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Tischkau SA, Jaeger CD, Krager SL. Circadian clock disruption in the mouse ovary in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Lett 2011; 201:116-22. [PMID: 21182907 PMCID: PMC3039055 DOI: 10.1016/j.toxlet.2010.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 12/29/2022]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) by the highly toxic, prototypical ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or other dioxin-like compounds compromises ovarian function by altering follicle maturation and steroid synthesis. Although alteration of transcription after nuclear translocation and heterodimerization of AhR with its binding partner, aryl hydrocarbon nuclear transporter (ARNT), is often cited as a primary mechanism for mediating the toxic effects of dioxins, recent evidence indicates that crosstalk between AhR and several other signaling pathways also occurs. Like the circadian clock genes, AhR is a member of the basic helix-loop-helix, Per-ARNT-SIM (bHLH-PAS) domain family of proteins. Thus, these studies tested the hypothesis that TCDD can act to alter circadian clock regulation in the ovary. Adult female c57bl6/J mice entrained to a typical 12h light/12h dark cycle were exposed to a single 1 μg/kg dose of TCDD by gavage. Six days after exposure, animals were released into constant darkness and ovaries were collected every 4h over a 24h period. Quantitative real-time PCR and immunoblot analysis demonstrated that TCDD exposure alters expression of the canonical clock genes, Bmal1 and Per2 in the ovary. AhR transcript and protein, which displayed a circadian pattern of expression in the ovaries of control mice, were also altered after TCDD treatment. Immunohistochemistry studies revealed co-localization of AhR with BMAL1 in various ovarian cell types. Furthermore, co-immunoprecipitation demonstrated time-of-day dependent interactions of AhR with BMAL1 that were enhanced after TCDD treatment. Collectively these studies suggest that crosstalk between classical AhR signaling and the molecular circadian clockworks may be responsible for altered ovarian function after TCDD exposure.
Collapse
Affiliation(s)
- Shelley A Tischkau
- Department of Pharmacology, Southern Illinois University, School of Medicine, 801N. Rutledge, Springfield, IL 62794-9629, USA.
| | | | | |
Collapse
|
16
|
Lew BJ, Manickam R, Lawrence BP. Activation of the aryl hydrocarbon receptor during pregnancy in the mouse alters mammary development through direct effects on stromal and epithelial tissues. Biol Reprod 2011; 84:1094-102. [PMID: 21270426 DOI: 10.1095/biolreprod.110.087544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AHR), an environment-sensing transcription factor, causes profound impairment of mammary gland differentiation during pregnancy. Defects include decreased ductal branching, poorly formed alveolar structures, suppressed expression of milk proteins, and failure to nutritionally support offspring. AHR is activated by numerous environmental toxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and plays an as yet poorly understood role in development and reproduction. To better understand how AHR activation affects pregnancy-associated mammary gland differentiation, we used a combination of ex vivo differentiation, mammary epithelial transplantation, and AHR-deficient mice to determine whether AHR modulates mammary development through a direct effect on mammary epithelial cells (MECs) or by altering paracrine or systemic factors that drive pregnancy-associated differentiation. Studies using mutant mice that express an AHR protein lacking the DNA-binding domain show that defects in pregnancy-associated differentiation require AHR:DNA interactions. We then used fluorescence-based cell sorting to compare changes in gene expression in MECs and whole mammary tissue to gain insight into affected signaling pathways. Our data indicate that activation of the AHR during pregnancy directly affects mammary tissue development via both a direct effect on MECs and through changes in cells of the fat pad, and point to gene targets in MECs and stromal tissues as putative AHR targets.
Collapse
Affiliation(s)
- Betina J Lew
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, New York, USA
| | | | | |
Collapse
|
17
|
Gachon F, Firsov D. The role of circadian timing system on drug metabolism and detoxification. Expert Opin Drug Metab Toxicol 2010; 7:147-58. [PMID: 21192771 DOI: 10.1517/17425255.2011.544251] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION It has been known for a long time that the efficiency and toxicity of drugs change during a 24-h period. However, the molecular mechanisms involved in these processes have started to emerge only recently. AREAS COVERED This review aims to highlight recent discoveries showing the direct role of the molecular circadian clock in xenobiotic metabolism at the transcriptional and post-transcriptional levels in the liver and intestine, and the different ways of elimination of these metabolized drugs via biliary and urine excretions. Most of the related literature focuses on transcriptional regulation by the circadian clock of xenobiotic metabolism in the liver; however, the role of this timing system in the excretion of metabolized drugs and the importance of the kidney in this phenomenon are generally neglected. The goal of this review is to describe the molecular mechanisms involved in rhythmic drug metabolism and excretion. EXPERT OPINION Chronopharmacology is used to analyze the metabolism of drugs in mammals according to the time of day. The circadian timing system plays a key role in the changes of toxicity of drugs by influencing their metabolisms in the liver and intestine in addition to their excretion via bile flow and urine.
Collapse
Affiliation(s)
- Frédéric Gachon
- University of Lausanne, Department of Pharmacology and Toxicology, CH-1005 Lausanne, Switzerland.
| | | |
Collapse
|
18
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
19
|
Qu X, Metz RP, Porter WW, Neuendorff N, Earnest BJ, Earnest DJ. The clock genes period 1 and period 2 mediate diurnal rhythms in dioxin-induced Cyp1A1 expression in the mouse mammary gland and liver. Toxicol Lett 2010; 196:28-32. [PMID: 20371273 PMCID: PMC2872133 DOI: 10.1016/j.toxlet.2010.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/15/2022]
Abstract
Transcription factors expressing Per-Arnt-Sim (PAS) domains are key components of the mammalian circadian clockworks found in most cells and tissues. Because these transcription factors interact with other PAS genes mediating xenobiotic metabolism and because toxin responses are often marked by daily variation, we determined whether the toxin-mediated activation of the signaling pathway involving several PAS genes, the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT), fluctuates rhythmically and whether this diurnal oscillation is affected by targeted disruption of key PAS genes in the circadian clockworks, Period 1 (Per1) and Per2. Treatment with the prototypical Ahr ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on a key target of AhR signaling, Cyp1A1, in both the mammary gland and liver of all animals. In wild type mice, the amplitude of this TCDD-induced Cyp1A1 expression in the mammary gland and liver was significantly greater (23-43-fold) during the night than during the daytime. However, the diurnal variation in the TCDD induction of mammary gland and liver Cyp1A1 expression was abolished in Per1(ldc), Per2(ldc) and Per1(ldc)/Per2(ldc) mutant mice, suggesting that Per1, Per2 and their timekeeping function in the circadian clockworks mediate the diurnal modulation of AhR-regulated responses to TCDD in the mammary gland and liver.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Richard P. Metz
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458
| | - Weston W. Porter
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458
| | - Nichole Neuendorff
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, College Station, Texas 77843-1114, USA
| | - Barbara J. Earnest
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843-3258, USA
| | - David J. Earnest
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843-3258, USA
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, College Station, Texas 77843-1114, USA
| |
Collapse
|
20
|
Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab 2010; 11:47-57. [PMID: 20074527 DOI: 10.1016/j.cmet.2009.11.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 09/30/2009] [Accepted: 11/03/2009] [Indexed: 12/11/2022]
Abstract
The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.
Collapse
|
21
|
Does the clock make the poison? Circadian variation in response to pesticides. PLoS One 2009; 4:e6469. [PMID: 19649249 PMCID: PMC2714471 DOI: 10.1371/journal.pone.0006469] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 06/30/2009] [Indexed: 02/01/2023] Open
Abstract
Background Circadian clocks govern daily physiological and molecular rhythms, and putative rhythms in expression of xenobiotic metabolizing (XM) genes have been described in both insects and mammals. Such rhythms could have important consequences for outcomes of chemical exposures at different times of day. To determine whether reported XM gene expression rhythms result in functional rhythms, we examined daily profiles of enzyme activity and dose responses to the pesticides propoxur, deltamethrin, fipronil, and malathion. Methodology/Principal Findings Published microarray expression data were examined for temporal patterns. Male Drosophila were collected for ethoxycoumarin-O-deethylase (ECOD), esterase, glutathione-S-transferase (GST), and, and uridine 5′-diphosphoglucosyltransferase (UGT) enzyme activity assays, or subjected to dose-response tests at four hour intervals throughout the day in both light/dark and constant light conditions. Peak expression of several XM genes cluster in late afternoon. Significant diurnal variation was observed in ECOD and UGT enzyme activity, however, no significant daily variation was observed in esterase or GST activity. Daily profiles of susceptibility to lethality after acute exposure to propoxur and fipronil showed significantly increased resistance in midday, while susceptibility to deltamethrin and malathion varied little. In constant light, which interferes with clock function, the daily variation in susceptibility to propoxur and in ECOD and UGT enzyme activity was depressed. Conclusions/Significance Expression and activities of specific XM enzymes fluctuate during the day, and for specific insecticides, the concentration resulting in 50% mortality varies significantly during the day. Time of day of chemical exposure should be an important consideration in experimental design, use of pesticides, and human risk assessment.
Collapse
|
22
|
Qu X, Metz RP, Porter WW, Cassone VM, Earnest DJ. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver. Toxicol Appl Pharmacol 2009; 234:370-7. [PMID: 19038280 PMCID: PMC2711551 DOI: 10.1016/j.taap.2008.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 11/25/2022]
Abstract
The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1(ldc) and Per1(ldc)/Per2(ldc)). In vitro experiments yielded similar results demonstrating that siRNA inhibition of Per1 significantly increases the TCDD-induced expression of Cyp1A1 and Cyp1B1 in Hepa1c1c7 cells. Per2 inhibition in siRNA-infected Hepa1c1c7 cells had the opposite effect and significantly decreased both the induction of these p450 genes as well as AhR and Arnt expression in response to TCDD treatment. These findings suggest that Per1 may play a distinctive role in modulating AhR-regulated responses to TCDD in the liver.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology, College Station, Texas 77843-3258, USA
- Center for Research on Biological Clocks, College Station, Texas 77843-3258, USA
| | - Richard P. Metz
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA
| | - Weston W. Porter
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA
| | - Vincent M. Cassone
- Department of Biology, College Station, Texas 77843-3258, USA
- Center for Research on Biological Clocks, College Station, Texas 77843-3258, USA
| | - David J. Earnest
- Department of Biology, College Station, Texas 77843-3258, USA
- Center for Research on Biological Clocks, College Station, Texas 77843-3258, USA
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, College Station, Texas 77843-1114, USA
| |
Collapse
|
23
|
Shimba S, Watabe Y. Crosstalk between the AHR signaling pathway and circadian rhythm. Biochem Pharmacol 2009; 77:560-5. [DOI: 10.1016/j.bcp.2008.09.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 01/28/2023]
|
24
|
Mukai M, Lin TM, Peterson RE, Cooke PS, Tischkau SA. Behavioral rhythmicity of mice lacking AhR and attenuation of light-induced phase shift by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Rhythms 2008; 23:200-10. [PMID: 18487412 PMCID: PMC2597295 DOI: 10.1177/0748730408316022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcription factors belonging to the Per/Arnt/Sim (PAS) domain family are highly conserved and many are involved in circadian rhythm regulation. One member of this family, aryl hydrocarbon receptor (AhR), is an orphan receptor whose physiological role is unknown. Recent findings have led to the hypothesis that AhR has a role in circadian rhythm, which is the focus of the present investigation. First, time-of-day-dependent mRNA expression of AhR and its signaling target, cytochrome p4501A1 (Cyp1a1), was determined in C57BL/6J mice by quantitative RT-PCR. Circadian expression of AhR and Cyp1a1 was observed both in the suprachiasmatic nucleus (SCN) and liver. Next, the circadian phenotype of mice lacking AhR (AhRKO) was investigated using behavioral monitoring. Intact AhRKO mice had robust circadian rhythmicity with a similar tau under constant conditions compared to wild-type mice, but a significant difference in tau was observed between genotypes in ovariectomized female mice. Time to reentrainment following 6-h advances or delays of the light/dark cycle was not significantly different between genotypes. However, mice exposed to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 1 microg/kg of body weight) displayed decreased phase shifts in response to light and had altered expression of Per1 and Bmal1. These results suggest that chronic activation of AhR may affect the ability of the circadian timekeeping system to adjust to alterations in environmental lighting by affecting canonical clock genes. Further studies are necessary to decipher the mechanism of how AhR agonists could disrupt light-induced phase shifts. If AhR does have a role in circadian rhythm, it may share redundant roles with other PAS domain proteins and/or the role of AhR may not be exhibited in the behavioral activity rhythm, but could be important elsewhere in the peripheral circadian system.
Collapse
Affiliation(s)
- Motoko Mukai
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802
| | - Tien-Min Lin
- School of Pharmacy, University of Wisconsin, Madison, WI 53705
| | | | - Paul S. Cooke
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802
| | - Shelley A. Tischkau
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802
- Neuroscience Program, University of Illinois, Urbana, IL 61802
| |
Collapse
|