1
|
Holmgård DSG, Zhou L, Kristensen JL, Jensen AA. The Heterogeneous Kinetic Origins of the Binding Properties of Orthosteric Ligands at Heteromeric Nicotinic Acetylcholine Receptors. J Med Chem 2025; 68:6683-6697. [PMID: 40043102 DOI: 10.1021/acs.jmedchem.5c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
A plethora of agonists and competitive antagonists have been developed to explore the therapeutic potential in neuronal nicotinic acetylcholine receptors (nAChRs). Based on equilibrium and kinetic [3H]epibatidine binding studies, we report that the kinetic fingerprints of [3H]epibatidine at five heteromeric αβ nAChRs and of seven classical agonists at α4β2 and α3β4 nAChRs differ substantially. While this diversity depends on both the agonist and receptor subtype, the overall pattern of kinetic determinants emerging from this profiling is complex. The dramatically different binding kinetics displayed by two alkaloids and competitive antagonists, (+)-DHβE and (+)-cocculine, at the α4β2 nAChR further exemplify how dissimilar kinetics can underlie very comparable pharmacological properties exhibited by close structural analogs. Thus, our findings elucidate the heterogeneous kinetic basis for orthosteric ligand binding to αβ nAChRs and emphasize how the binding affinities, selectivity profiles, and structure-activity relationships of these ligands are rooted in their kinetic traits at the receptors.
Collapse
Affiliation(s)
- David S G Holmgård
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Libin Zhou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Unversitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Yang D, Qi G, Delev D, Maskos U, Feldmeyer D. Linking altered neuronal and synaptic properties to nicotinic receptor Alpha5 subunit gene dysfunction: a translational investigation in rat mPFC and human cortical layer 6. Transl Psychiatry 2025; 15:12. [PMID: 39824806 PMCID: PMC11748723 DOI: 10.1038/s41398-025-03230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats. Neuronal and synaptic properties were determined for the three rat genotypes. Compared with neurons in WT rats, L6 regular spiking (RS) neurons in the α5KO group exhibited altered electrophysiological properties, while those in α5SNP rats remained unchanged. L6 RS neurons in mPFC of α5SNP and α5KO rats differed from WT rats in dendritic morphology, spine density and spontaneous synaptic activity. Galantamine was applied to identified L6 neuron populations to specifically boost the nicotinic responses mediated by α5*nAChRs. Remarkably, it restored nicotinic modulation in neurons of α5SNP rats, while no such effect was observed in α5KO rats. Additionally, galantamine functioned as a positive allosteric modulator of α5*nAChRs in RS neurons, both in rat and human cortical L6, but did not affect burst spiking (BS) neurons. Our findings suggest that dysfunction in the α5 subunit gene leads to aberrant neuronal and synaptic properties, shedding light on the underlying mechanisms of cognitive deficits observed in human populations carrying α5SNPs. They highlight a potential pharmacological target for restoring the relevant behavioral output.
Collapse
Affiliation(s)
- Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.
| | - Guanxiao Qi
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Uwe Maskos
- Institut Pasteur, Université de Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Paris, Cedex 15, France
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany.
| |
Collapse
|
3
|
Qi G, Yang D, Messore F, Bast A, Yáñez F, Oberlaender M, Feldmeyer D. FOXP2-immunoreactive corticothalamic neurons in neocortical layers 6a and 6b are tightly regulated by neuromodulatory systems. iScience 2025; 28:111646. [PMID: 39868047 PMCID: PMC11758397 DOI: 10.1016/j.isci.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
The FOXP2/Foxp2 gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei. Synaptic connections established by both L6a and L6b FOXP2+ PCs have low release probabilities and respond strongly to acetylcholine (ACh), triggering action potential (AP) trains. Notably, L6b FOXP2- PCs are more sensitive to ACh than L6a, and L6b FOXP2+ PCs also react robustly to dopamine. Thus, FOXP2 labels L6a and L6b CT PCs, which are precisely regulated by neuromodulators, highlighting their roles as potent modulators of thalamic activity.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
| | - Danqing Yang
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Hospital, 52074 Aachen, Germany
| | - Fernando Messore
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Brain and Behavior, 53175 Bonn, Germany
| | - Arco Bast
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Brain and Behavior, 53175 Bonn, Germany
| | - Felipe Yáñez
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- International Max Planck Research School (IMPRS) for Intelligent Systems, 72076 Tübingen, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behaviour – Caesar, 53175 Bonn, Germany
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 Amsterdam, the Netherlands
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Hospital, 52074 Aachen, Germany
- Jülich-Aachen-Research Alliance ‘Brain’ - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
4
|
Akinola LS, Gonzales J, Buzzi B, Mathews HL, Papke RL, Stitzel JA, Damaj MI. Investigating the role of nicotinic acetylcholine receptors in menthol's effects in mice. Drug Alcohol Depend 2024; 257:111262. [PMID: 38492255 PMCID: PMC11031278 DOI: 10.1016/j.drugalcdep.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as β2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of β2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jerry A Stitzel
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA; Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Papke RL. The many enigmas of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:327-354. [PMID: 38467485 PMCID: PMC11318566 DOI: 10.1016/bs.apha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This review discusses the diverse effects of nicotine on the various nicotinic acetylcholine receptors of the central and peripheral nervous system and how those effects may promote the usage and addiction to tobacco products.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
6
|
Feldmeyer D. Structure and function of neocortical layer 6b. Front Cell Neurosci 2023; 17:1257803. [PMID: 37744882 PMCID: PMC10516558 DOI: 10.3389/fncel.2023.1257803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Cortical layer 6b is considered by many to be a remnant of the subplate that forms during early stages of neocortical development, but its role in the adult is not well understood. Its neuronal complement has only recently become the subject of systematic studies, and its axonal projections and synaptic input structures have remained largely unexplored despite decades of research into neocortical function. In recent years, however, layer 6b (L6b) has attracted increasing attention and its functional role is beginning to be elucidated. In this review, I will attempt to provide an overview of what is currently known about the excitatory and inhibitory neurons in this layer, their pre- and postsynaptic connectivity, and their functional implications. Similarities and differences between different cortical areas will be highlighted. Finally, layer 6b neurons are highly responsive to several neuropeptides such as orexin/hypocretin, neurotensin and cholecystokinin, in some cases exclusively. They are also strongly controlled by neurotransmitters such as acetylcholine and norepinephrine. The interaction of these neuromodulators with L6b microcircuitry and its functional consequences will also be discussed.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine 10 (INM-10), Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
7
|
Kamens HM, Flarend G, Horton WJ. The role of nicotinic receptors in alcohol consumption. Pharmacol Res 2023; 190:106705. [PMID: 36813094 PMCID: PMC10083870 DOI: 10.1016/j.phrs.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
The use of alcohol causes significant morbidity and mortality across the globe. Alcohol use disorder (AUD) is defined by the excessive use of this drug despite a negative impact on the individual's life. While there are currently medications available to treat AUD, they have limited efficacy and several side effects. As such, it is essential to continue to look for novel therapeutics. One target for novel therapeutics is nicotinic acetylcholine receptors (nAChRs). Here we systematically review the literature on the involvement of nAChRs in alcohol consumption. Data from both genetic and pharmacology studies provide evidence that nAChRs modulate alcohol intake. Interestingly, pharmacological modulation of all nAChR subtypes examined can decrease alcohol consumption. The reviewed literature demonstrates that nAChRs should continue to be investigated as novel therapeutics for AUD.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Geneva Flarend
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
8
|
Venkatesan S, Chen T, Liu Y, Turner EE, Tripathy SJ, Lambe EK. Chrna5 and lynx prototoxins identify acetylcholine super-responder subplate neurons. iScience 2023; 26:105992. [PMID: 36798433 PMCID: PMC9926215 DOI: 10.1016/j.isci.2023.105992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Attention depends on cholinergic excitation of prefrontal neurons but is sensitive to perturbation of α5-containing nicotinic receptors encoded by Chrna5. However, Chrna5-expressing (Chrna5+) neurons remain enigmatic, despite their potential as a target to improve attention. Here, we generate complex transgenic mice to probe Chrna5+ neurons and their sensitivity to endogenous acetylcholine. Through opto-physiological experiments, we discover that Chrna5+ neurons contain a distinct population of acetylcholine super-responders. Leveraging single-cell transcriptomics, we discover molecular markers conferring subplate identity on this subset. We determine that Chrna5+ super-responders express a unique complement of GPI-anchored lynx prototoxin genes (Lypd1, Ly6g6e, and Lypd6b), predicting distinct nicotinic receptor regulation. To manipulate lynx regulation of endogenous nicotinic responses, we developed a pharmacological strategy guided by transcriptomic predictions. Overall, we reveal Chrna5-Cre mice as a transgenic tool to target the diversity of subplate neurons in adulthood, yielding new molecular strategies to manipulate their cholinergic activation relevant to attention disorders.
Collapse
Affiliation(s)
- Sridevi Venkatesan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Tianhui Chen
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Yupeng Liu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Shreejoy J. Tripathy
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Evelyn K. Lambe
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Caligiuri SPB, Howe WM, Wills L, Smith ACW, Lei Y, Bali P, Heyer MP, Moen JK, Ables JL, Elayouby KS, Williams M, Fillinger C, Oketokoun Z, Lehmann VE, DiFeliceantonio AG, Johnson PM, Beaumont K, Sebra RP, Ibanez-Tallon I, Kenny PJ. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc Natl Acad Sci U S A 2022; 119:e2209870119. [PMID: 36346845 PMCID: PMC9674224 DOI: 10.1073/pnas.2209870119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2023] Open
Abstract
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William M Howe
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary P Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zainab Oketokoun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Vanessa E Lehmann
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Paul M Johnson
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Ibanez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
11
|
Akinola LS, Bagdas D, Alkhlaif Y, Jackson A, Gurdap CO, Rahimpour E, Carroll FI, Papke RL, Damaj MI. Pharmacological characterization of 5-iodo-A-85380, a β2-selective nicotinic receptor agonist, in mice. J Psychopharmacol 2022; 36:1280-1293. [PMID: 36321267 PMCID: PMC9817006 DOI: 10.1177/02698811221132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Because of their implications in several pathological conditions, α4β2* nicotinic acetylcholine receptors (nAChRs) are potential targets for the treatment of nicotine dependence, pain, and many psychiatric and neurodegenerative diseases. However, they exist in various subtypes, and finding selective tools to investigate them has proved challenging. The nicotinic receptor agonist, 5-iodo-A-85380 (5IA), has helped in delineating the function of β2-containing subtypes in vitro; however, much is still unknown about its behavioral effects. Furthermore, its effectiveness on α6-containing subtypes is limited. AIMS To investigate the effects of 5IA on nociception (formalin, hot-plate, and tail-flick tests), locomotion, hypothermia, and conditioned reward after acute and repeated administration, and to examine the potential role of β2 and α6 nAChR subunits in these effects. Lastly, its selectivity for expressed low sensitivity (LS) and high sensitivity (HS) α4β2 receptors is investigated. RESULTS 5IA dose-dependently induced hypothermia, locomotion suppression, conditioned place preference, and antinociception (only in the formalin test but not in the hot-plate or tail-flick tests). Furthermore, these effects were mediated by β2 but not α6 nicotinic subunits. Finally, we show that 5-iodo-A-85380 potently activates both stoichiometries of α4β2 nAChRs with differential efficacies, being a full agonist on HS α4(2)β2(3) nAChRs, and a partial agonist on LS α4(3)β2(2) nAChRs and α6-containing subtypes as well.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Asti Jackson
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
| | - Elnaz Rahimpour
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, USA
| |
Collapse
|
12
|
Papke RL, Karaffa M, Horenstein NA, Stokes C. Coffee and cigarettes: Modulation of high and low sensitivity α4β2 nicotinic acetylcholine receptors by n-MP, a biomarker of coffee consumption. Neuropharmacology 2022; 216:109173. [PMID: 35772522 PMCID: PMC9524580 DOI: 10.1016/j.neuropharm.2022.109173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Smokers report particular appreciation for coffee with their first cigarettes of the day. We investigated with voltage-clamp experiments, effects of aqueous extracts (coffees) of unroasted and roasted coffee beans on the activity of human brain nicotinic acetylcholine receptor (nAChR) subtypes expressed in Xenopus oocytes, looking at complex brews, low molecular weight (LMW) fractions, and specific compounds present in coffee. When co-applied with PNU-120596, a positive allosteric modulator (PAM), the coffees stimulated currents from cells expressing α7 nAChR that were larger than ACh controls. The PAM-dependent responses to green bean coffee were three-fold greater than those to dark roasted coffee, consistent with α7 receptor activation by choline, a component of coffee that is partially degraded in the roasting process. Coffees were tested on both high sensitivity (HS) and low sensitivity (LS) forms of α4β2 nAChR, which are associated with nicotine addiction. To varying degrees, these receptors were both activated and inhibited by the coffees and LMW extracts. We also examined the activity of nine small molecules present in coffee. Only two compounds, 1-methylpyridinium and 1-1-dimethylpiperidium, produced during the process of roasting coffee beans, showed significant effects on nAChR. The compounds were competitive antagonists of the HS α4β2 receptors, but were PAMs for LS α4β2 receptors. HS receptors in smokers are likely to progressively desensitize through a day of smoking but may be hypersensitive in the mornings when brain nicotine levels are low. A smoker's first cup of coffee may therefore balance the effects of the day's first cigarette in the brain.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610-0267, (RLP, MK, CS), USA.
| | - Madison Karaffa
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610-0267, (RLP, MK, CS), USA
| | - Nicole A Horenstein
- Department of Chemistry, University of Florida, Gainesville, FL, 32611-7200, (NAH), USA
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL, 32610-0267, (RLP, MK, CS), USA
| |
Collapse
|
13
|
Structural Insights into the Role of β3 nAChR Subunit in the Activation of Nicotinic Receptors. Molecules 2022; 27:molecules27144642. [PMID: 35889515 PMCID: PMC9319688 DOI: 10.3390/molecules27144642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The β3 subunit of nicotinic acetylcholine receptors (nAChRs) participates in heteropentameric assemblies with some α and other β neuronal subunits forming a plethora of various subtypes, differing in their electrophysiological and pharmacological properties. While β3 has for several years been considered an accessory subunit without direct participation in the formation of functional binding sites, recent electrophysiology data have disputed this notion and indicated the presence of a functional (+) side on the extracellular domain (ECD) of β3. In this study, we present the 2.4 Å resolution crystal structure of the monomeric β3 ECD, which revealed rather distinctive loop C features as compared to those of α nAChR subunits, leading to intramolecular stereochemical hindrance of the binding site cavity. Vigorous molecular dynamics simulations in the context of full length pentameric β3-containing nAChRs, while not excluding the possibility of a β3 (+) binding site, demonstrate that this site cannot efficiently accommodate the agonist nicotine. From the structural perspective, our results endorse the accessory rather than functional role of the β3 nAChR subunit, in accordance with earlier functional studies on β3-containing nAChRs.
Collapse
|
14
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
15
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Patel AV, Codeluppi SA, Ervin KSJ, St-Denis MB, Choleris E, Bailey CDC. Developmental Age and Biological Sex Influence Muscarinic Receptor Function and Neuron Morphology within Layer VI of the Medial Prefrontal Cortex. Cereb Cortex 2021; 32:3137-3158. [PMID: 34864929 DOI: 10.1093/cercor/bhab406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Acetylcholine (ACh) neurotransmission within the medial prefrontal cortex (mPFC) plays an important modulatory role to support mPFC-dependent cognitive functions. This role is mediated by ACh activation of its nicotinic (nAChR) and muscarinic (mAChR) classes of receptors, which are both present on mPFC layer VI pyramidal neurons. While the expression and function of nAChRs have been characterized thoroughly for rodent mPFC layer VI neurons during postnatal development, mAChRs have not been characterized in detail. We employed whole-cell electrophysiology with biocytin filling to demonstrate that mAChR function is greater during the juvenile period of development than in adulthood for both sexes. Pharmacological experiments suggest that each of the M1, M2, and M3 mAChR subtypes contributes to ACh responses in these neurons in a sex-dependent manner. Analysis of dendrite morphology identified effects of age more often in males, as the amount of dendrite matter was greatest during the juvenile period. Interestingly, a number of positive correlations were identified between the magnitude of ACh/mAChR responses and dendrite morphology in juvenile mice that were not present in adulthood. To our knowledge, this work describes the first detailed characterization of mAChR function and its correlation with neuron morphology within layer VI of the mPFC.
Collapse
Affiliation(s)
- Ashutosh V Patel
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sierra A Codeluppi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kelsy S J Ervin
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Myles B St-Denis
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
17
|
Proulx É, Power SK, Oliver DK, Sargin D, McLaurin J, Lambe EK. Apamin Improves Prefrontal Nicotinic Impairment in Mouse Model of Alzheimer's Disease. Cereb Cortex 2021; 30:563-574. [PMID: 31188425 DOI: 10.1093/cercor/bhz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Disruption of attention is an early and disabling symptom of Alzheimer's disease (AD). The underlying cellular mechanisms are poorly understood and treatment options for patients are limited. These early attention deficits are evident in the TgCRND8 mouse, a well-established murine model of AD that recapitulates several features of the disease. Here, we report severe impairment of the nicotinic receptor-mediated excitation of prefrontal attentional circuitry in TgCRND8 mice relative to wild-type littermate controls. We demonstrate that this impairment can be remedied by apamin, a bee venom neurotoxin peptide that acts as a selective antagonist to the SK family of calcium-sensitive potassium channels. We probe this seeming upregulation of calcium-sensitive inhibition and find that the attenuated nicotinic firing rates in TgCRND8 attention circuits are mediated neither by greater cellular calcium signals nor by elevated SK channel expression. Instead, we find that TgCRND8 mice show enhanced functional coupling of nicotinic calcium signals to inhibition. This SK-mediated inhibition exerts a powerful negative feedback on nicotinic excitation, dampening attention-relevant signaling in the TgCRND8 brain. These mechanistic findings identify a new cellular target involved in the modulation of attention and a novel therapeutic target for early attention deficits in AD.
Collapse
Affiliation(s)
- É Proulx
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - S K Power
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - D K Oliver
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - D Sargin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - J McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Biological Sciences and Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
| | - E K Lambe
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada M5G 1E2.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| |
Collapse
|
18
|
Marcovich I, Moglie MJ, Carpaneto Freixas AE, Trigila AP, Franchini LF, Plazas PV, Lipovsek M, Elgoyhen AB. Distinct Evolutionary Trajectories of Neuronal and Hair Cell Nicotinic Acetylcholine Receptors. Mol Biol Evol 2021; 37:1070-1089. [PMID: 31821508 PMCID: PMC7086180 DOI: 10.1093/molbev/msz290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expansion and pruning of ion channel families has played a crucial role in the evolution of nervous systems. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels with distinct roles in synaptic transmission at the neuromuscular junction, the central and peripheral nervous system, and the inner ear. Remarkably, the complement of nAChR subunits has been highly conserved along vertebrate phylogeny. To ask whether the different subtypes of receptors underwent different evolutionary trajectories, we performed a comprehensive analysis of vertebrate nAChRs coding sequences, mouse single-cell expression patterns, and comparative functional properties of receptors from three representative tetrapod species. We found significant differences between hair cell and neuronal receptors that were most likely shaped by the differences in coexpression patterns and coassembly rules of component subunits. Thus, neuronal nAChRs showed high degree of coding sequence conservation, coupled to greater coexpression variance and conservation of functional properties across tetrapod clades. In contrast, hair cell α9α10 nAChRs exhibited greater sequence divergence, narrow coexpression pattern, and great variability of functional properties across species. These results point to differential substrates for random change within the family of gene paralogs that relate to the segregated roles of nAChRs in synaptic transmission.
Collapse
Affiliation(s)
- Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo J Moglie
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agustín E Carpaneto Freixas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Centre for Developmental Neurobiology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, London, United Kingdom
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci 2021; 78:1051-1064. [PMID: 32472188 PMCID: PMC11071962 DOI: 10.1007/s00018-020-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, β2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4β2 and α4β2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and β2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.
Collapse
Affiliation(s)
- Marie S Prevost
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Hichem Bouchenaki
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Nathalie Barilone
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Marc Gielen
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France.
- Sorbonne Université, 21, rue de l'école de médecine, 75006, Paris, France.
| | | |
Collapse
|
20
|
Mussina K, Toktarkhanova D, Filchakova O. Nicotinic Acetylcholine Receptors of PC12 Cells. Cell Mol Neurobiol 2021; 41:17-29. [PMID: 32335772 PMCID: PMC11448595 DOI: 10.1007/s10571-020-00846-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have gained much attention in the scientific community since they play a significant role in multiple physiological and pathophysiological processes. Multiple approaches to study the receptors exist, with characterization of the receptors' functionality at a single cellular level using cell culturing being one of them. Derived from an adrenal medulla tumor, PC12 cells express nicotinic receptor subunits and form functional nicotinic receptors. Thus, the cells offer a convenient environment to address questions related to the functionality of the receptors. The review summarizes the findings on nicotinic receptors' expression and functions which were conducted using PC12 cells. Specific focus is given to α3-containing receptors as well as α7 receptor. Critical evaluation of findings is provided alongside insights into what can still be learned about nAChRs, using PC12 cells.
Collapse
Affiliation(s)
- Kamilla Mussina
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Dana Toktarkhanova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan.
| |
Collapse
|
21
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Venkatesan S, Jeoung HS, Chen T, Power SK, Liu Y, Lambe EK. Endogenous Acetylcholine and Its Modulation of Cortical Microcircuits to Enhance Cognition. Curr Top Behav Neurosci 2020; 45:47-69. [PMID: 32601996 DOI: 10.1007/7854_2020_138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acetylcholine regulates the cerebral cortex to sharpen sensory perception and enhance attentional focus. The cellular and circuit mechanisms of this cholinergic modulation are under active investigation in sensory and prefrontal cortex, but the universality of these mechanisms across the cerebral cortex is not clear. Anatomical maps suggest that the sensory and prefrontal cortices receive distinct cholinergic projections and have subtle differences in the expression of cholinergic receptors and the metabolic enzyme acetylcholinesterase. First, we briefly review this anatomical literature and the recent progress in the field. Next, we discuss in detail the electrophysiological effects of cholinergic receptor subtypes and the cell and circuit consequences of their stimulation by endogenous acetylcholine as established by recent optogenetic work. Finally, we explore the behavioral ramifications of in vivo manipulations of endogenous acetylcholine. We find broader similarities than we expected between the cholinergic regulation of sensory and prefrontal cortex, but there are some differences and some gaps in knowledge. In visual, auditory, and somatosensory cortex, the cell and circuit mechanisms of cholinergic sharpening of sensory perception have been probed in vivo with calcium imaging and optogenetic experiments to simultaneously test mechanism and measure the consequences of manipulation. By contrast, ascertaining the links between attentional performance and cholinergic modulation of specific prefrontal microcircuits is more complicated due to the nature of the required tasks. However, ex vivo optogenetic manipulations point to differences in the cholinergic modulation of sensory and prefrontal cortex. Understanding how and where acetylcholine acts within the cerebral cortex to shape cognition is essential to pinpoint novel treatment targets for the perceptual and attention deficits found in multiple psychiatric and neurological disorders.
Collapse
Affiliation(s)
| | - Ha-Seul Jeoung
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Tianhui Chen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Saige K Power
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yupeng Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020; 177:108256. [PMID: 32738308 PMCID: PMC7554201 DOI: 10.1016/j.neuropharm.2020.108256] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
Nicotine is a highly addictive drug found in tobacco that drives its continued use despite the harmful consequences. The initiation of nicotine abuse involves the mesolimbic dopamine system, which contributes to the rewarding sensory stimuli and associative learning processes in the beginning stages of addiction. Nicotine binds to neuronal nicotinic acetylcholine receptors (nAChRs), which come in a diverse collection of subtypes. The nAChRs that contain the α4 and β2 subunits, often in combination with the α6 subunit, are particularly important for nicotine's ability to increase midbrain dopamine neuron firing rates and phasic burst firing. Chronic nicotine exposure results in numerous neuroadaptations, including the upregulation of particular nAChR subtypes associated with long-term desensitization of the receptors. When nicotine is no longer present, for example during attempts to quit smoking, a withdrawal syndrome develops. The expression of physical withdrawal symptoms depends mainly on the α2, α3, α5, and β4 nicotinic subunits in the epithalamic habenular complex and its target regions. Thus, nicotine affects diverse neural systems and an array of nAChR subtypes to mediate the overall addiction process. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Ruthie E Wittenberg
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shannon L Wolfman
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariella De Biasi
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Corrie LW, Stokes C, Wilkerson JL, Carroll FI, McMahon LR, Papke RL. Nicotinic Acetylcholine Receptor Accessory Subunits Determine the Activity Profile of Epibatidine Derivatives. Mol Pharmacol 2020; 98:328-342. [PMID: 32690626 PMCID: PMC7485586 DOI: 10.1124/molpharm.120.000037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Epibatidine is a potent analgetic agent with very high affinity for brain nicotinic acetylcholine receptors (nAChR). We determined the activity profiles of three epibatidine derivatives, RTI-36, RTI-76, and RTI-102, which have affinity for brain nAChR equivalent to that of epibatidine but reduced analgetic activity. RNAs coding for nAChR monomeric subunits and/or concatamers were injected into Xenopus oocytes to obtain receptors of defined subunit composition and stoichiometry. The epibatidine analogs produced protracted activation of high sensitivity (HS) α4- and α2-containing receptors with the stoichiometry of 2alpha:3beta subunits but not low sensitivity (LS) receptors with the reverse ratio of alpha and beta subunits. Although not strongly activated by the epibatidine analogs, LS α4- and α2-containing receptors were potently desensitized by the epibatidine analogs. In general, the responses of α4(2)β2(2)α5 and β3α4β2α6β2 receptors were similar to those of the HS α4β2 receptors. RTI-36, the analog closest in structure to epibatidine, was the most efficacious of the three compounds, also effectively activating α7 and α3β4 receptors, albeit with lower potency and less desensitizing effect. Although not the most efficacious agonist, RTI-76 was the most potent desensitizer of α4- and α2-containing receptors. RTI-102, a strong partial agonist for HS α4β2 receptors, was effectively an antagonist for LS α4β2 receptors. Our results highlight the importance of subunit stoichiometry and the presence or absence of specific accessory subunits for determining the activity of these drugs on brain nAChR, affecting the interpretation of in vivo studies since in most cases these structural details are not known. SIGNIFICANCE STATEMENT: Epibatidine and related compounds are potent ligands for the high-affinity nicotine receptors of the brain, which are therapeutic targets and mediators of nicotine addiction. Far from being a homogeneous population, these receptors are diverse in subunit composition and vary in subunit stoichiometry. We show the importance of these structural details for drug activity profiles, which present a challenge for the interpretation of in vivo experiments since conventional methods, such as in situ hybridization and immunohistochemistry, cannot illuminate these details.
Collapse
Affiliation(s)
- Lu Wenchi Corrie
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Jenny L Wilkerson
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - F Ivy Carroll
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Lance R McMahon
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| |
Collapse
|
25
|
Cooper SY, Henderson BJ. The Impact of Electronic Nicotine Delivery System (ENDS) Flavors on Nicotinic Acetylcholine Receptors and Nicotine Addiction-Related Behaviors. Molecules 2020; 25:E4223. [PMID: 32942576 PMCID: PMC7571084 DOI: 10.3390/molecules25184223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, combustible cigarette smoking has slowly declined by nearly 11% in America; however, the use of electronic cigarettes has increased tremendously, including among adolescents. While nicotine is the main addictive component of tobacco products and a primary concern in electronic cigarettes, this is not the only constituent of concern. There is a growing market of flavored products and a growing use of zero-nicotine e-liquids among electronic cigarette users. Accordingly, there are few studies that examine the impact of flavors on health and behavior. Menthol has been studied most extensively due to its lone exception in combustible cigarettes. Thus, there is a broad understanding of the neurobiological effects that menthol plus nicotine has on the brain including enhancing nicotine reward, altering nicotinic acetylcholine receptor number and function, and altering midbrain neuron excitability. Although flavors other than menthol were banned from combustible cigarettes, over 15,000 flavorants are available for use in electronic cigarettes. This review seeks to summarize the current knowledge on nicotine addiction and the various brain regions and nicotinic acetylcholine receptor subtypes involved, as well as describe the most recent findings regarding menthol and green apple flavorants, and their roles in nicotine addiction and vaping-related behaviors.
Collapse
Affiliation(s)
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA;
| |
Collapse
|
26
|
Forget B, Icick R, Robert J, Correia C, Prevost MS, Gielen M, Corringer PJ, Bellivier F, Vorspan F, Besson M, Maskos U. Alterations in nicotinic receptor alpha5 subunit gene differentially impact early and later stages of cocaine addiction: a translational study in transgenic rats and patients. Prog Neurobiol 2020; 197:101898. [PMID: 32841724 DOI: 10.1016/j.pneurobio.2020.101898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Cocaine addiction is a chronic and relapsing disorder with an important genetic component. Human candidate gene association studies showed that the single nucleotide polymorphism (SNP) rs16969968 in the α5 subunit (α5SNP) of nicotinic acetylcholine receptors (nAChRs), previously associated with increased tobacco dependence, was linked to a lower prevalence of cocaine use disorder (CUD). Three additional SNPs in the α5 subunit, previously shown to modify α5 mRNA levels, were also associated with CUD, suggesting an important role of the subunit in this pathology. To investigate the link between this subunit and CUD, we submitted rats knockout for the α5 subunit gene (α5KO), or carrying the α5SNP, to cocaine self-administration (SA) and showed that the acquisition of cocaine-SA was impaired in α5SNP rats while α5KO rats exhibited enhanced cocaine-induced relapse associated with altered neuronal activity in the nucleus accumbens. In addition, we observed in a human cohort of patients with CUD that the α5SNP was associated with a slower transition from first cocaine use to CUD. We also identified a novel SNP in the β4 nAChR subunit, part of the same gene cluster in the human genome and potentially altering CHRNA5 expression, associated with shorter time to relapse to cocaine use in patients. In conclusion, the α5SNP is protective against CUD by influencing early stages of cocaine exposure while CHRNA5 expression levels may represent a biomarker for the risk to relapse to cocaine use. Drugs modulating α5 containing nAChR activity may thus represent a novel therapeutic strategy against CUD.
Collapse
Affiliation(s)
- Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Jonathan Robert
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Caroline Correia
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Marie S Prevost
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marc Gielen
- Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pierre-Jean Corringer
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
27
|
Chrna5 is Essential for a Rapid and Protected Response to Optogenetic Release of Endogenous Acetylcholine in Prefrontal Cortex. J Neurosci 2020; 40:7255-7268. [PMID: 32817066 DOI: 10.1523/jneurosci.1128-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022] Open
Abstract
Optimal attention performance requires cholinergic modulation of corticothalamic neurons in the prefrontal cortex. These pyramidal cells express specialized nicotinic acetylcholine receptors containing the α5 subunit encoded by Chrna5 Disruption of this gene impairs attention, but the advantage α5 confers on endogenous cholinergic signaling is unknown. To ascertain this underlying mechanism, we used optogenetics to stimulate cholinergic afferents in prefrontal cortex brain slices from compound-transgenic wild-type and Chrna5 knock-out mice of both sexes. These electrophysiological experiments identify that Chrna5 is critical for the rapid onset of the postsynaptic cholinergic response. Loss of α5 slows cholinergic excitation and delays its peak, and these effects are observed in two different optogenetic mouse lines. Disruption of Chrna5 does not otherwise perturb the magnitude of the response, which remains strongly mediated by nicotinic receptors and tightly controlled by autoinhibition via muscarinic M2 receptors. However, when conditions are altered to promote sustained cholinergic receptor stimulation, it becomes evident that α5 also works to protect nicotinic responses against desensitization. Rescuing Chrna5 disruption thus presents the double challenge of improving the onset of nicotinic signaling without triggering desensitization. Here, we identify that an agonist for the unorthodox α-α nicotinic binding site can allosterically enhance the cholinergic pathway considered vital for attention. Treatment with NS9283 restores the rapid onset of the postsynaptic cholinergic response without triggering desensitization. Together, this work demonstrates the advantages of speed and resilience that Chrna5 confers on endogenous cholinergic signaling, defining a critical window of interest for cue detection and attentional processing.SIGNIFICANCE STATEMENT The α5 nicotinic receptor subunit (Chrna5) is important for attention, but its advantage in detecting endogenous cholinergic signals is unknown. Here, we show that α5 subunits permit rapid cholinergic responses in prefrontal cortex and protect these responses from desensitization. Our findings clarify why Chrna5 is required for optimal attentional performance under demanding conditions. To treat the deficit arising from Chrna5 disruption without triggering desensitization, we enhanced nicotinic receptor affinity using NS9283 stimulation at the unorthodox α-α nicotinic binding site. This approach successfully restored the rapid-onset kinetics of endogenous cholinergic neurotransmission. In summary, we reveal a previously unknown role of Chrna5 as well as an effective approach to compensate for genetic disruption and permit fast cholinergic excitation of prefrontal attention circuits.
Collapse
|
28
|
Icick R, Forget B, Cloëz-Tayarani I, Pons S, Maskos U, Besson M. Genetic susceptibility to nicotine addiction: Advances and shortcomings in our understanding of the CHRNA5/A3/B4 gene cluster contribution. Neuropharmacology 2020; 177:108234. [PMID: 32738310 DOI: 10.1016/j.neuropharm.2020.108234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Over the last decade, robust human genetic findings have been instrumental in elucidating the heritable basis of nicotine addiction (NA). They highlight coding and synonymous polymorphisms in a cluster on chromosome 15, encompassing the CHRNA5, CHRNA3 and CHRNB4 genes, coding for three subunits of the nicotinic acetylcholine receptor (nAChR). They have inspired an important number of preclinical studies, and will hopefully lead to the definition of novel drug targets for treating NA. Here, we review these candidate gene and genome-wide association studies (GWAS) and their direct implication in human brain function and NA-related phenotypes. We continue with a description of preclinical work in transgenic rodents that has led to a mechanistic understanding of several of the genetic hits. We also highlight important issues with regards to CHRNA3 and CHRNB4 where we are still lacking a dissection of their role in NA, including even in preclinical models. We further emphasize the use of human induced pluripotent stem cell-derived models for the analysis of synonymous and intronic variants on a human genomic background. Finally, we indicate potential avenues to further our understanding of the role of this human genetic variation. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis, Lariboisière, Fernand Widal, Assistance-Publique Hôpitaux de Paris, Paris, F-75010, France; INSERM UMR-S1144, Paris, F-75006, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Génétique Humaine et Fonctions Cognitives, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Isabelle Cloëz-Tayarani
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Stéphanie Pons
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France.
| |
Collapse
|
29
|
Papke RL, Lindstrom JM. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology 2020; 168:108021. [PMID: 32146229 PMCID: PMC7610230 DOI: 10.1016/j.neuropharm.2020.108021] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Postsynaptic nAChRs in the peripheral nervous system are critical for neuromuscular and autonomic neurotransmission. Pre- and peri-synaptic nAChRs in the brain modulate neurotransmission and are responsible for the addictive effects of nicotine. Subtypes of nAChRs in lymphocytes and non-synaptic locations may modulate inflammation and other cellular functions. All AChRs that function as ligand-gated ion channels are formed from five homologous subunits organized to form a central cation channel whose opening is regulated by ACh bound at extracellular subunit interfaces. nAChR subtype subunit composition can range from α7 homomers to α4β2α6β2β3 heteromers. Subtypes differ in affinities for ACh and other agonists like nicotine and in efficiencies with which their channels are opened and desensitized. Subtypes also differ in affinities for antagonists and for positive and negative allosteric modulators. Some agonists are "silent" with respect to channel opening, and AChRs may be able to signal metabotropic pathways by releasing G-proteins independent of channel opening. Electrophysiological studies that can resolve single-channel openings and molecular genetic approaches have allowed characterization of the structures of ligand binding sites, the cation channel, and the linkages between them, as well as the organization of AChR subunits and their contributions to function. Crystallography and cryo-electron-microscopy are providing increasing insights into the structures and functions of AChRs. However, much remains to be learned about both AChR structure and function, the in vivo functional roles of some AChR subtypes, and the development of better pharmacological tools directed at AChRs to treat addiction, pain, inflammation, and other medically important issues. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Jon M Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
31
|
Gu H, Han SM, Park KK. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins (Basel) 2020; 12:195. [PMID: 32204567 PMCID: PMC7150898 DOI: 10.3390/toxins12030195] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Bee venom is a natural toxin produced by honeybees and plays an important role in defending bee colonies. Bee venom has several kinds of peptides, including melittin, apamin, adolapamine, and mast cell degranulation peptides. Apamin accounts for about 2%-3% dry weight of bee venom and is a peptide neurotoxin that contains 18 amino acid residues that are tightly crosslinked by two disulfide bonds. It is well known for its pharmacological functions, which irreversibly block Ca2+-activated K+ (SK) channels. Apamin regulates gene expression in various signal transduction pathways involved in cell development. The aim of this study was to review the current understanding of apamin in the treatment of apoptosis, fibrosis, and central nervous system diseases, which are the pathological processes of various diseases. Apamin's potential therapeutic and pharmacological applications are also discussed.
Collapse
Affiliation(s)
- Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Sang Mi Han
- National Academy of Agricultural Science, Jeonjusi, Jeonbuk 54875, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
32
|
Bertrand D, Wallace TL. A Review of the Cholinergic System and Therapeutic Approaches to Treat Brain Disorders. Curr Top Behav Neurosci 2020; 45:1-28. [PMID: 32451956 DOI: 10.1007/7854_2020_141] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since its identification over a hundred years ago, the neurotransmitter acetylcholine (ACh) has proven to play an essential role in supporting many diverse functions. Some well-characterized functions include: chemical transmission at the neuromuscular junction; autonomic function in the peripheral nervous system; and, sustained attention, sleep/wake regulation, and learning and memory within the central nervous system. Within the brain, major cholinergic projection pathways from the basal forebrain and the brainstem support these centrally mediated processes, and dysregulation of the cholinergic system is implicated in cognitive decline associated with aging and dementias including Alzheimer's disease. ACh exerts its effects by binding to two different membrane-bound receptor classes: (1) G‑protein coupled muscarinic acetylcholine receptors (mAChRs), and (2) ligand-gated nicotinic acetylcholine receptors (nAChRs). These receptor systems are described in detail within this chapter along with discussion on the successes and failures of synthetic ligands designed to selectively target receptor subtypes for treating brain disorders. New molecular approaches and advances in our understanding of the target biology combined with opportunities to re-purpose existing cholinergic drugs for new indications continue to highlight the exciting opportunities for modulating this system for therapeutic purposes.
Collapse
|
33
|
Santoro A, Tomino C, Prinzi G, Lamonaca P, Cardaci V, Fini M, Russo P. Tobacco Smoking: Risk to Develop Addiction, Chronic Obstructive Pulmonary Disease, and Lung Cancer. Recent Pat Anticancer Drug Discov 2019; 14:39-52. [PMID: 30605063 DOI: 10.2174/1574892814666190102122848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The morbidity and mortality associated with tobacco smoking is well established. Nicotine is the addictive component of tobacco. Nicotine, through the non-neuronal α7nicotinic receptor, induces cell proliferation, neo-angiogenesis, epithelial to mesenchymal transition, and inhibits drug-induced apoptosis. OBJECTIVE To understand the genetic, molecular and cellular biology of addiction, chronic obstructive pulmonary disease and lung cancer. METHODS The search for papers to be included in the review was performed during the months of July- September 2018 in the following databases: PubMed (http://www.ncbi.nlm.nih.gov), Scopus (http://www.scopus.com), EMBASE (http://www.elsevier.com/online-tools/embase), and ISI Web of Knowledge (http://apps.webofknowledge.com/). The following searching terms: "nicotine", "nicotinic receptor", and "addiction" or "COPD" or "lung cancer" were used. Patents were retrieved in clinicaltrials.gov (https://clinicaltrials.gov/). All papers written in English were evaluated. The reference list of retrieved articles was also reviewed to identify other eligible studies that were not indexed by the above-mentioned databases. New experimental data on the ability of nicotine to promote transformation of human bronchial epithelial cells, exposed for one hour to Benzo[a]pyrene-7,8-diol-9-10-epoxide, are reported. RESULTS Nicotinic receptors variants and nicotinic receptors upregulation are involved in addiction, chronic obstructive pulmonary disease and/or lung cancer. Nicotine through α7nicotinic receptor upregulation induces complete bronchial epithelial cells transformation. CONCLUSION Genetic studies highlight the involvement of nicotinic receptors variants in addiction, chronic obstructive pulmonary disease and/or lung cancer. A future important step will be to translate these genetic findings to clinical practice. Interventions able to help smoking cessation in nicotine dependence subjects, under patent, are reported.
Collapse
Affiliation(s)
- Alessia Santoro
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Vittorio Cardaci
- Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana, 235, I-00163 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| |
Collapse
|
34
|
Stokes C, Garai S, Kulkarni AR, Cantwell LN, Noviello CM, Hibbs RE, Horenstein NA, Abboud KA, Thakur GA, Papke RL. Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant β Subunits Acquire Sensitivity to α7-Selective Positive Allosteric Modulators. J Pharmacol Exp Ther 2019; 370:252-268. [PMID: 31175218 PMCID: PMC6658922 DOI: 10.1124/jpet.119.259499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors (nAChR) have an intrinsically low probability of opening that can be overcome by α7-selective positive allosteric modulators (PAMs), which bind at a site involving the second transmembrane domain (TM2). Mutation of a methionine that is unique to α7 at the 15' position of TM2 to leucine, the residue in most other nAChR subunits, largely eliminates the activity of such PAMs. We tested the effect of the reverse mutation (L15'M) in heteromeric nAChR receptors containing α4 and β2, which are the nAChR subunits that are most abundant in the brain. Receptors containing these mutations were found to be strongly potentiated by the α7 PAM 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS) but insensitive to the alternative PAM 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea. The presence of the mutation in the β2 subunit was necessary and sufficient for TQS sensitivity. The primary effect of the mutation in the α4 subunit was to reduce responses to acetylcholine applied alone. Sensitivity to TQS required only a single mutant β subunit, regardless of the position of the mutant β subunit within the pentameric complex. Similar results were obtained when β2L15'M was coexpressed with α2 or α3 and when the L15'M mutation was placed in β4 and coexpressed with α2, α3, or α4. Functional receptors were not observed when β1L15'M subunits were coexpressed with other muscle nAChR subunits. The unique structure-activity relationship of PAMs and the α4β2L15'M receptor compared with α7 and the availability of high-resolution α4β2 structures may provide new insights into the fundamental mechanisms of nAChR allosteric potentiation. SIGNIFICANCE STATEMENT: Heteromeric neuronal nAChRs have a relatively high initial probability of channel activation compared to receptors that are homomers of α7 subunits but are insensitive to PAMs, which greatly increase the open probability of α7 receptors. These features of heteromeric nAChR can be reversed by mutation of a single residue present in all neuronal heteromeric nAChR subunits to the sequence found in α7. Specifically, the mutation of the TM2 15' leucine to methionine in α subunits reduces heteromeric receptor channel activation, while the same mutation in neuronal β subunits allows heteromeric receptors to respond to select α7 PAMs. The results indicate a key role for this residue in the functional differences in the two main classes of neuronal nAChRs.
Collapse
Affiliation(s)
- Clare Stokes
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Abhijit R Kulkarni
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Lucas N Cantwell
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Colleen M Noviello
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Ryan E Hibbs
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Khalil A Abboud
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| |
Collapse
|
35
|
Correa VL, Flores RJ, Carcoba LM, Arreguin MC, O'Dell LE. Sex differences in cholinergic systems in the interpeduncular nucleus following nicotine exposure and withdrawal. Neuropharmacology 2019; 158:107714. [PMID: 31325431 DOI: 10.1016/j.neuropharm.2019.107714] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022]
Abstract
The medial habenula-interpeduncular nucleus (MHb-IPN) pathway modulates negative affective states produced by nicotine withdrawal. Sex differences in the contribution of acetylcholine (ACh) systems in this pathway have not been explored. Thus, this study assessed ACh levels and gene expression of α- and β-containing nicotinic acetylcholine receptor (nAChR) subunits in the IPN of female and male rats following nicotine treatment and withdrawal. Rats were prepared with a pump that delivered nicotine for 14 days, and naïve controls received a sham surgery. In Study 1, rats were prepared with a probe in the IPN, and ACh levels were measured following saline and then mecamylamine administration. In Study 2, separate groups of naïve control or nicotine-treated rats received saline or mecamylamine and physical signs and anxiety-like behavior were assessed using elevated plus maze (EPM) procedures. The IPN was then dissected and mRNA levels were assessed using RT-qPCR methods. Nicotine treatment increased ACh levels to a larger extent in females than males. Nicotine withdrawal produced a similar increase in physical signs; however, females displayed greater anxiety-like behavior than males. In females, gene expression of α5 increased following nicotine treatment and withdrawal. In males, α7 increased following nicotine treatment and α2 and α3 increased during nicotine withdrawal. Both females and males displayed an increase in β3 and β4 during nicotine withdrawal. In females, anxiety-like behavior was correlated with α4, α5, and β2 gene expression in the IPN. These results suggest that sex differences in withdrawal are modulated via cholinergic systems in the IPN.
Collapse
Affiliation(s)
- Victor L Correa
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Rodolfo J Flores
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Luis M Carcoba
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Montserrat C Arreguin
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA.
| |
Collapse
|
36
|
Tao M, Liu Q, Miyazaki Y, Canning BJ. Nicotinic receptor dependent regulation of cough and other airway defensive reflexes. Pulm Pharmacol Ther 2019; 58:101810. [PMID: 31181318 DOI: 10.1016/j.pupt.2019.101810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022]
Abstract
Nicotinic receptor activation in the airways evokes airway defensive reflexes including cough. These reflexes are the direct result of bronchopulmonary afferent nerve activation, which may occur directly, through activation of nicotinic receptors expressed on the terminals of airway sensory nerves, or indirectly, secondary to the end organ effects associated with autonomic nerve stimulation. The irritating effects of nicotine delivered topically to the airways are counterbalanced by an inhibitory effect of nicotinic receptor activation in the central nervous system. We present evidence that these nicotinic receptors are components of essential transducing and encoding mechanisms regulating airway defense.
Collapse
Affiliation(s)
- Mayuko Tao
- Tokyo Medical & Dental University, Japan
| | - Qi Liu
- Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA
| | | | | |
Collapse
|
37
|
Pedersen JE, Bergqvist CA, Larhammar D. Evolution of vertebrate nicotinic acetylcholine receptors. BMC Evol Biol 2019; 19:38. [PMID: 30700248 PMCID: PMC6354393 DOI: 10.1186/s12862-018-1341-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023] Open
Abstract
Background Many physiological processes are influenced by nicotinic acetylcholine receptors (nAChR), ranging from neuromuscular and parasympathetic signaling to modulation of the reward system and long-term memory. Due to the complexity of the nAChR family and variable evolutionary rates among its members, their evolution in vertebrates has been difficult to resolve. In order to understand how and when the nAChR genes arose, we have used a broad approach of analyses combining sequence-based phylogeny, chromosomal synteny and intron positions. Results Our analyses suggest that there were ten subunit genes present in the vertebrate predecessor. The two basal vertebrate tetraploidizations (1R and 2R) then expanded this set to 19 genes. Three of these have been lost in mammals, resulting in 16 members today. None of the ten ancestral genes have kept all four copies after 2R. Following 2R, two of the ancestral genes became triplicates, five of them became pairs, and three seem to have remained single genes. One triplet consists of CHRNA7, CHRNA8 and the previously undescribed CHRNA11, of which the two latter have been lost in mammals but are still present in lizards and ray-finned fishes. The other triplet consists of CHRNB2, CHRNB4 and CHRNB5, the latter of which has also been lost in mammals. In ray-finned fish the neuromuscular subunit gene CHRNB1 underwent a local gene duplication generating CHRNB1.2. The third tetraploidization in the predecessor of teleosts (3R) expanded the repertoire to a total of 31 genes, of which 27 remain in zebrafish. These evolutionary relationships are supported by the exon-intron organization of the genes. Conclusion The tetraploidizations explain all gene duplication events in vertebrates except two. This indicates that the genome doublings have had a substantial impact on the complexity of this gene family leading to a very large number of members that have existed for hundreds of millions of years. Electronic supplementary material The online version of this article (10.1186/s12862-018-1341-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia E Pedersen
- Department of Neuroscience, Unit of Pharmacology, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24, Uppsala, Sweden
| | - Christina A Bergqvist
- Department of Neuroscience, Unit of Pharmacology, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
38
|
Schote AB, A. L. Sayk C, Pabst K, Meier JK, Frings C, Meyer J. Sex, ADHD symptoms, and CHRNA5
genotype influence reaction time but not response inhibition. J Neurosci Res 2018; 97:215-224. [DOI: 10.1002/jnr.24342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Andrea B. Schote
- Department of Neurobehavioral Genetics; Institute of Psychobiology, University of Trier; Trier Germany
| | - Clara A. L. Sayk
- Department of Neurobehavioral Genetics; Institute of Psychobiology, University of Trier; Trier Germany
| | - Kathrin Pabst
- Department of Neurobehavioral Genetics; Institute of Psychobiology, University of Trier; Trier Germany
| | - Jacqueline K. Meier
- Department of Neurobehavioral Genetics; Institute of Psychobiology, University of Trier; Trier Germany
| | - Christian Frings
- Department of Cognitive Psychology; University of Trier; Trier Germany
| | - Jobst Meyer
- Department of Neurobehavioral Genetics; Institute of Psychobiology, University of Trier; Trier Germany
| |
Collapse
|
39
|
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr Neuropharmacol 2018; 16:338-349. [PMID: 28901280 PMCID: PMC6018187 DOI: 10.2174/1570159x15666170912110450] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a super-family of Cys-loop ligand-gated ion chan-nels that respond to endogenous acetylcholine (ACh) or other cholinergic ligands. These receptors are also the targets of drugs such as nicotine (the main addictive agent delivered by cigarette smoke) and are involved in a variety of physiological and pathophysiological processes. Numerous studies have shown that the expression and/or function of nAChRs is com-promised in many neurological and psychiatric diseases. Furthermore, recent studies have shown that neuronal nAChRs are found in a large number of non-neuronal cell types in-cluding endothelial cells, glia, immune cells, lung epithelia and cancer cells where they regulate cell differentiation, prolifera-tion and inflammatory responses. The aim of this review is to describe the most recent findings concerning the structure and function of native nAChRs inside and outside the nervous system.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Pucci
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| |
Collapse
|
40
|
Liu W, Li MD. Insights Into Nicotinic Receptor Signaling in Nicotine Addiction: Implications for Prevention and Treatment. Curr Neuropharmacol 2018; 16:350-370. [PMID: 28762314 PMCID: PMC6018190 DOI: 10.2174/1570159x15666170801103009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop ligandgated ion-channel (LGIC) superfamily, which also includes the GABA, glycine, and serotonin receptors. Many nAChR subunits have been identified and shown to be involved in signal transduction on binding to them of either the neurotransmitter acetylcholine or exogenous ligands such as nicotine. The nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and they are expressed at neuromuscular junctions throughout the nervous system. METHODS AND RESULTS Because different nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes, and different nAChRs are implicated in various physiological functions and pathophysiological conditions, nAChRs represent potential molecular targets for drug addiction and medical therapeutic research. This review intends to provide insights into recent advances in nAChR signaling, considering the subtypes and subunits of nAChRs and their roles in nicotinic cholinergic systems, including structure, diversity, functional allosteric modulation, targeted knockout mutations, and rare variations of specific subunits, and the potency and functional effects of mutations by focusing on their effects on nicotine addiction (NA) and smoking cessation (SC). Furthermore, we review the possible mechanisms of action of nAChRs in NA and SC based on our current knowledge. CONCLUSION Understanding these cellular and molecular mechanisms will lead to better translational and therapeutic operations and outcomes for the prevention and treatment of NA and other drug addictions, as well as chronic diseases, such as Alzheimer's and Parkinson's. Finally, we put forward some suggestions and recommendations for therapy and treatment of NA and other chronic diseases.
Collapse
Affiliation(s)
- Wuyi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biological Sciences and Food Engineering, Fuyang Normal University, Fuyang, Anuhi 236041, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
41
|
Dawson A, Wolstenholme JT, Roni MA, Campbell VC, Jackson A, Slater C, Bagdas D, Perez EE, Bettinger JC, De Biasi M, Miles MF, Damaj MI. Knockout of alpha 5 nicotinic acetylcholine receptors subunit alters ethanol-mediated behavioral effects and reward in mice. Neuropharmacology 2018; 138:341-348. [PMID: 29944862 DOI: 10.1016/j.neuropharm.2018.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023]
Abstract
Evidence suggests that there is an association between polymorphisms in the α5 nicotinic acetylcholine receptor (nAChR) subunit and risk of developing alcohol dependence in humans. The α5 nAChR subunit has also recently been shown to modulate some of the acute response to ethanol in mice. The aim of the current study was to further characterize the role of α5-containing (α5*) nAChRs in acute ethanol responsive behaviors, ethanol consumption and ethanol preference in mice. We conducted a battery of tests in male α5 knockout (KO) mice for a range of ethanol-induced behaviors including hypothermia, hypnosis, and anxiolysis. We also investigated the effects of α5* nAChR on ethanol reward using the Conditioned Place Preference (CPP) assay. Further, we tested the effects of gene deletion on drinking behaviors using the voluntary ethanol consumption in a two-bottle choice assay and Drinking in the Dark (DID, with or without stress) paradigm. We found that deletion of the α5 nAChR subunit enhanced ethanol-induced hypothermia, hypnosis, and an anxiolytic-like response in comparison to wild-type controls. The α5 KO mice showed reduced CPP for ethanol, suggesting that the rewarding properties of ethanol are decreased in mutant mice. Interestingly, Chrna5 gene deletion had no effect on basal ethanol drinking behavior, or ethanol metabolism, but did decrease ethanol intake in the DID paradigm following restraint stress. Taken together, we provide new evidence that α5 nAChRs are involved in some but not all of the behavioral effects of ethanol. Our results highlight the importance of nAChRs as a possible target for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Anton Dawson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Monzurul A Roni
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Vera C Campbell
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Cassandra Slater
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Erika E Perez
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA.
| |
Collapse
|
42
|
Attenuated dopaminergic neurodegeneration and motor dysfunction in hemiparkinsonian mice lacking the α5 nicotinic acetylcholine receptor subunit. Neuropharmacology 2018; 138:371-380. [PMID: 29940207 DOI: 10.1016/j.neuropharm.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/04/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
Preclinical studies suggest the involvement of various subtypes of nicotinic acetylcholine receptors in the pathophysiology of Parkinson's disease, a neurodegenerative disorder characterized by the death of dopaminergic neurons in the substantia nigra pars compacta (SNC). We studied for the first time the effects of α5 nicotinic receptor subunit gene deletion on motor behavior and neurodegeneration in mouse models of Parkinson's disease and levodopa-induced dyskinesia. Unilateral dopaminergic lesions were induced in wild-type and α5-KO mice by 6-hydroxydopamine injections into the striatum or the medial forebrain bundle. Subsequently, rotational behavior induced by dopaminergic drugs was measured. A subset of animals received chronic treatments with levodopa and nicotine to assess levodopa-induced dyskinesia and antidyskinetic effects by nicotine. SNC lesion extent was assessed with tyrosine hydroxylase immunohistochemistry and stereological cell counting. Effects of α5 gene deletion on the dopaminergic system were investigated by measuring ex vivo striatal dopamine transporter function and protein expression, dopamine and metabolite tissue concentrations and dopamine receptor mRNA expression. Hemiparkinsonian α5-KO mice exhibited attenuated rotational behavior after amphetamine injection and attenuated levodopa-induced dyskinesia. In the intrastriatal lesion model, dopaminergic cell loss in the medial cluster of the SNC was less severe in α5-KO mice. Decreased striatal dopamine uptake in α5-KO animals suggested reduced dopamine transporter function as a mechanism of attenuated neurotoxicity. Nicotine reduced dyskinesia severity in wild-type but not α5-KO mice. The attenuated dopaminergic neurodegeneration and motor dysfunction observed in hemiparkinsonian α5-KO mice suggests potential for α5 subunit-containing nicotinic receptors as a novel target in the treatment of Parkinson's disease.
Collapse
|
43
|
Moretti M, Fasoli F, Gotti C, Marks MJ. Reduced α4 subunit expression in α4 +- and α4 +- /β2 +- nicotinic acetylcholine receptors alters α4β2 subtype up-regulation following chronic nicotine treatment. Br J Pharmacol 2018; 175:1944-1956. [PMID: 28585241 PMCID: PMC5980142 DOI: 10.1111/bph.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Genomic analysis has shown many variants in both CHRNA4 and CHRNB2, genes which encode the α4 and β2 subunits of nicotinic ACh receptors (nAChR) respectively. Some variants influence receptor expression, raising the possibility that CHRNA4 variants may affect response to tobacco use in humans. Chronic exposure to nicotine increases expression of nAChRs, particularly α4β2-nAChRs, in humans and laboratory animals. Here, we have evaluated whether the initial level of receptor expression affects the increase in expression. EXPERIMENTAL APPROACH Mice differing in expression of α4 and/or β2 nAChR subunits were chronically treated with saline, 0.25, 1.0 or 4.0 mg·kg-1 ·h-1 nicotine. Brain preparations were analysed autoradiographically by [125 I]-epibatidine binding, immunoprecipitation and Western blotting. KEY RESULTS Immunochemical studies confirmed that most of the [3 H]-epibatidine binding corresponds to α4β2*-nAChR and that increases in binding correspond to increases in α4 and β2 proteins. Consistent with previous reports, the dose-dependent increase in nAChR in wild-type mice following chronic nicotine treatment, measured with any of the methods, reached a maximum. Although receptor expression was reduced by approximately 50% in β2+- mice, the pattern of response to chronic treatment resembled that of wild-type mice. In contrast, both α4+- and α4+- /β2+- exhibited relatively greater up-regulation. Consistent with previous reports, α4β2α5-nAChR did not increase in response to nicotine. CONCLUSIONS AND IMPLICATIONS These results indicate that mice with reduced expression of the α4 nAChR subunit have a more robust response to chronic nicotine than mice with normal expression of this subunit. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Milena Moretti
- CNR, Institute of Neuroscience Milan, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Cecilia Gotti
- CNR, Institute of Neuroscience Milan, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michael J Marks
- Instute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
44
|
Maher MP, Matta JA, Gu S, Seierstad M, Bredt DS. Getting a Handle on Neuropharmacology by Targeting Receptor-Associated Proteins. Neuron 2017; 96:989-1001. [PMID: 29216460 DOI: 10.1016/j.neuron.2017.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Targeted therapy for neuropsychiatric disorders requires selective modulation of dysfunctional neuronal pathways. Receptors relevant to CNS disorders typically have associated proteins discretely expressed in specific neuronal pathways; these accessory proteins provide a new dimension for drug discovery. Recent studies show that targeting a TARP auxiliary subunit of AMPA receptors selectively modulates neuronal excitability in specific forebrain pathways relevant to epilepsy. Other medicinally important ion channels, gated by glutamate, γ-aminobutyric acid (GABA), and acetylcholine, also have associated proteins, which may be druggable. This emerging pharmacology of receptor-associated proteins provides a new approach for improving drug efficacy while mitigating side effects.
Collapse
Affiliation(s)
- Michael P Maher
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Jose A Matta
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Shenyan Gu
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mark Seierstad
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
45
|
DeDominicis KE, Sahibzada N, Olson TT, Xiao Y, Wolfe BB, Kellar KJ, Yasuda RP. The ( α4) 3( β2) 2 Stoichiometry of the Nicotinic Acetylcholine Receptor Predominates in the Rat Motor Cortex. Mol Pharmacol 2017; 92:327-337. [PMID: 28698187 PMCID: PMC5553191 DOI: 10.1124/mol.116.106880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/06/2017] [Indexed: 01/28/2023] Open
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is important in central nervous system physiology and in mediating several of the pharmacological effects of nicotine on cognition, attention, and affective states. It is also the likely receptor that mediates nicotine addiction. This receptor assembles in two distinct stoichiometries: (α4)2(β2)3 and (α4)3(β2)2, which are referred to as high-sensitivity (HS) and low-sensitivity (LS) nAChRs, respectively, based on a difference in the potency of acetylcholine to activate them. The physiologic and pharmacological differences between these two receptor subtypes have been described in heterologous expression systems. However, the presence of each stoichiometry in native tissue currently remains unknown. In this study, different ratios of rat α4 and β2 subunit cDNA were transfected into human embryonic kidney 293 cells to create a novel model system of HS and LS α4β2 nAChRs expressed in a mammalian cell line. The HS and LS nAChRs were characterized through pharmacological and biochemical methods. Isolation of surface proteins revealed higher amounts of α4 or β2 subunits in the LS or HS nAChR populations, respectively. In addition, sazetidine-A displayed different efficacies in activating these two receptor stoichiometries. Using this model system, a neurophysiological "two-concentration" acetylcholine or carbachol paradigm was developed and validated to determine α4/β2 subunit stoichiometry. This paradigm was then used in layers I-IV of slices of the rat motor cortex to determine the percent contribution of HS and LS α4β2 receptors in this brain region. We report that the majority of α4β2 nAChRs in this brain region possess a stoichiometry of the (α4)3(β2)2 LS subtype.
Collapse
Affiliation(s)
- Kristen E DeDominicis
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Barry B Wolfe
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Kenneth J Kellar
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Robert P Yasuda
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
46
|
Noridomi K, Watanabe G, Hansen MN, Han GW, Chen L. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications. eLife 2017; 6. [PMID: 28440223 PMCID: PMC5404922 DOI: 10.7554/elife.23043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/29/2017] [Indexed: 12/05/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is a major target of autoantibodies in myasthenia gravis (MG), an autoimmune disease that causes neuromuscular transmission dysfunction. Despite decades of research, the molecular mechanisms underlying MG have not been fully elucidated. Here, we present the crystal structure of the nAChR α1 subunit bound by the Fab fragment of mAb35, a reference monoclonal antibody that causes experimental MG and competes with ~65% of antibodies from MG patients. Our structures reveal for the first time the detailed molecular interactions between MG antibodies and a core region on nAChR α1. These structures suggest a major nAChR-binding mechanism shared by a large number of MG antibodies and the possibility to treat MG by blocking this binding mechanism. Structure-based modeling also provides insights into antibody-mediated nAChR cross-linking known to cause receptor degradation. Our studies establish a structural basis for further mechanistic studies and therapeutic development of MG. DOI:http://dx.doi.org/10.7554/eLife.23043.001 Myasthenia gravis is a disease that causes chronic weakness in muscles. It affects more than 20 in every 100,000 people and diagnosis is becoming more common due to increased awareness of the disease. However, most current treatments only temporarily relieve symptoms so there is a need to develop more effective therapies. The disease occurs when the immune system produces molecules called antibodies that bind to and destroy a receptor protein called nAChR. This receptor is normally found at the junctions between nerve cells and muscle cells, and its destruction disrupts communication between the nervous system and the muscle. However, it is not known exactly how these antibodies bind to nAChR, partly due to the lack of a detailed three-dimensional structure of the antibodies and nAChR together. The human nAChR protein is made up of several subunits, including one called alpha1 that is the primary target of Myasthenia gravis antibodies. Noridomi et al. used a technique known as X-ray crystallography to generate a highly detailed three-dimensional model of the structure of the alpha1 subunit with an antibody from rats that acts as in a similar way to human Myasthenia gravis antibodies. The structure reveals the points of contact between the antibodies and a core region of the nAChR alpha1 subunit and suggests that many different Myasthenia gravis antibodies may bind to nAChR in the same way. These findings may aid the development of drugs that bind to and disable Myasthenia gravis antibodies to relieve the symptoms of the disease. DOI:http://dx.doi.org/10.7554/eLife.23043.002
Collapse
Affiliation(s)
- Kaori Noridomi
- Department of Chemistry, University of Southern California, Los Angeles, United States
| | - Go Watanabe
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Melissa N Hansen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Gye Won Han
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, United States
| | - Lin Chen
- Department of Chemistry, University of Southern California, Los Angeles, United States.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, United States
| |
Collapse
|
47
|
Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2017; 175:1805-1821. [PMID: 28199738 DOI: 10.1111/bph.13745] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2)2 α5, (α4β2)2 β3 and (α6β2)2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Jingyi Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Deflorio C, Blanchard S, Carisì MC, Bohl D, Maskos U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons. FASEB J 2016; 31:828-839. [PMID: 27856558 DOI: 10.1096/fj.201600932r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/31/2016] [Indexed: 11/11/2022]
Abstract
Tobacco smoking is a public health problem, with ∼5 million deaths per year, representing a heavy burden for many countries. No effective therapeutic strategies are currently available for nicotine addiction, and it is therefore crucial to understand the etiological and pathophysiological factors contributing to this addiction. The neuronal α5 nicotinic acetylcholine receptor (nAChR) subunit is critically involved in nicotine dependence. In particular, the human polymorphism α5D398N corresponds to the strongest correlation with nicotine dependence risk found to date in occidental populations, according to meta-analysis of genome-wide association studies. To understand the specific contribution of this subunit in the context of nicotine addiction, an efficient screening system for native human nAChRs is needed. We have differentiated human induced pluripotent stem (iPS) cells into midbrain dopaminergic (DA) neurons and obtained a comprehensive characterization of these neurons by quantitative RT-PCR. The functional properties of nAChRs expressed in these human DA neurons, with or without the polymorphism in the α5 subunit, were studied with the patch-clamp electrophysiological technique. Our results in human DA neurons carrying the polymorphism in the α5 subunit showed an increase in EC50, indicating that, in the presence of the polymorphism, more nicotine or acetylcholine chloride is necessary to obtain the same effect. This human cell culturing system can now be used in drug discovery approaches to screen for compounds that interact specifically with human native and polymorphic nAChRs.-Deflorio, C., Blanchard, S., Carisì, M. C., Bohl, D., Maskos, U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.
Collapse
Affiliation(s)
- Cristina Deflorio
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France
| | - Stéphane Blanchard
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France
| | - Maria Carla Carisì
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France
| | - Delphine Bohl
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France.,Institut du Cerveau et de la Moelle Epinière, INSERM Unité 1127, CNRS, UMR 7225, Université Pierre et Marie Curie, Paris, France
| | - Uwe Maskos
- Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, Institut Pasteur, Paris, France; .,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 3731, Institut Pasteur, Paris, France; and
| |
Collapse
|
49
|
Jain A, Kuryatov A, Wang J, Kamenecka TM, Lindstrom J. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors. J Biol Chem 2016; 291:23452-23463. [PMID: 27645992 DOI: 10.1074/jbc.m116.749150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/06/2022] Open
Abstract
All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2)2α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2)2α5 and (α4β2)2β3 nAChRs. The α4/α5 interface in (β2α4)2α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders.
Collapse
Affiliation(s)
- Akansha Jain
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexander Kuryatov
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jingyi Wang
- the Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and
| | - Theodore M Kamenecka
- the Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458
| | - Jon Lindstrom
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
50
|
Layer-specific cholinergic control of human and mouse cortical synaptic plasticity. Nat Commun 2016; 7:12826. [PMID: 27604129 PMCID: PMC5025530 DOI: 10.1038/ncomms12826] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/04/2016] [Indexed: 02/02/2023] Open
Abstract
Individual cortical layers have distinct roles in information processing. All layers receive cholinergic inputs from the basal forebrain (BF), which is crucial for cognition. Acetylcholinergic receptors are differentially distributed across cortical layers, and recent evidence suggests that different populations of BF cholinergic neurons may target specific prefrontal cortical (PFC) layers, raising the question of whether cholinergic control of the PFC is layer dependent. Here we address this issue and reveal dendritic mechanisms by which endogenous cholinergic modulation of synaptic plasticity is opposite in superficial and deep layers of both mouse and human neocortex. Our results show that in different cortical layers, spike timing-dependent plasticity is oppositely regulated by the activation of nicotinic acetylcholine receptors (nAChRs) either located on dendrites of principal neurons or on GABAergic interneurons. Thus, layer-specific nAChR expression allows functional layer-specific control of cortical processing and plasticity by the BF cholinergic system, which is evolutionarily conserved from mice to humans.
Collapse
|