1
|
Ghelli Luserna di Rorà A, Jandoubi M, Martinelli G, Simonetti G. Targeting Proliferation Signals and the Cell Cycle Machinery in Acute Leukemias: Novel Molecules on the Horizon. Molecules 2023; 28:molecules28031224. [PMID: 36770891 PMCID: PMC9920029 DOI: 10.3390/molecules28031224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Uncontrolled proliferative signals and cell cycle dysregulation due to genomic or functional alterations are important drivers of the expansion of undifferentiated blast cells in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cells. Therefore, they are largely studied as potential therapeutic targets in the field. We here present the most recent advancements in the evaluation of novel compounds targeting cell cycle proteins or oncogenic mechanisms, including those showing an antiproliferative effect in acute leukemia, independently of the identification of a specific target. Several new kinase inhibitors have been synthesized that showed effectiveness in a nanomolar to micromolar concentration range as inhibitors of FLT3 and its mutant forms, a highly attractive therapeutic target due to its driver role in a significant fraction of AML cases. Moreover, we introduce novel molecules functioning as microtubule-depolymerizing or P53-restoring agents, G-quadruplex-stabilizing molecules and CDK2, CHK1, PI3Kδ, STAT5, BRD4 and BRPF1 inhibitors. We here discuss their mechanisms of action, including the downstream intracellular changes induced by in vitro treatment, hematopoietic toxicity, in vivo bio-availability and efficacy in murine xenograft models. The promising activity profile demonstrated by some of these candidates deserves further development towards clinical investigation.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Fondazione Pisana per Scienza ONLUS, 56017 San Giuliano Terme, Italy
| | - Mouna Jandoubi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Correspondence:
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| |
Collapse
|
2
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Pham TN, Spaulding C, Shields MA, Metropulos AE, Shah DN, Khalafalla MG, Principe DR, Bentrem DJ, Munshi HG. Inhibiting MNK kinases promotes macrophage immunosuppressive phenotype to limit CD8+ T cell anti-tumor immunity. JCI Insight 2022; 7:152731. [PMID: 35380995 PMCID: PMC9090262 DOI: 10.1172/jci.insight.152731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
To elicit effective anti-tumor responses, CD8+ T cells need to infiltrate tumors and sustain their effector function within the immunosuppressive tumor microenvironment. Here we evaluate the role of MNK kinase activity in regulating CD8+ T cell infiltration and anti-tumor activity in pancreatic and thyroid tumors. We first show that human pancreatic and thyroid tumors with increased MNK kinase activity are associated with decreased infiltration by CD8+ T cells. We then show that while MNK inhibitors increase CD8+ T cells in these tumors, they induce a T cell exhaustion phenotype in the tumor microenvironment. Mechanistically, we show that the exhaustion phenotype is not caused by upregulation of PD-L1 but by tumor-associated macrophages (TAMs) becoming more immunosuppressive following MNK inhibitor treatment. Reversal of CD8+ T cell exhaustion by an anti-PD-1 antibody or TAM depletion synergizes with MNK inhibitors to control tumor growth and prolong animal survival. Importantly, we show in ex vivo human pancreatic tumor slice cultures that MNK inhibitors increase the expression of markers associated with immunosuppressive TAMs. Together, these findings demonstrate a previously unknown role of MNK kinases in modulating a pro-tumoral phenotype in macrophages and identify combination regimens involving MNK inhibitors to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Thao Nd Pham
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Mario A Shields
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Anastasia E Metropulos
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Dhavan N Shah
- Department of Surgery, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Mahmoud G Khalafalla
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, United States of America
| | - David J Bentrem
- Department of Surgery, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| |
Collapse
|
4
|
Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget 2021; 12:955-966. [PMID: 34012509 PMCID: PMC8121614 DOI: 10.18632/oncotarget.27952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.
Collapse
|
5
|
Jiang SL, Mo JL, Peng J, Lei L, Yin JY, Zhou HH, Liu ZQ, Hong WX. Targeting translation regulators improves cancer therapy. Genomics 2020; 113:1247-1256. [PMID: 33189778 DOI: 10.1016/j.ygeno.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.
Collapse
Affiliation(s)
- Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Jun-Luan Mo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China.
| |
Collapse
|
6
|
Design, Synthesis and Bioactivity Evaluation of 4,6-Disubstituted Pyrido[3,2- d]pyrimidine Derivatives as Mnk and HDAC Inhibitors. Molecules 2020; 25:molecules25184318. [PMID: 32967084 PMCID: PMC7571151 DOI: 10.3390/molecules25184318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Both HDACs and Mnks play important role in translating multiple oncogenic signaling pathways during oncogenesis. As HDAC and Mnk are highly expressed in a variety of tumors; thus simultaneous inhibit HDAC and Mnk can increase the inhibition of tumor cell proliferation and provide a new way of inhibiting tumor growth. Based on the previous work and the merge pharmacophore method; we designed and synthesized a series of 4,6-disubstituted pyrido[3,2-d]pyrimidine derivatives as HDAC and Mnk dual inhibitors. Among them; compound A12 displayed good HDAC and Mnk inhibitory activity. In vitro antiproliferative assay; compound A12 exhibited the best antiproliferative activity against human prostate cancer PC-3 cells. Docking study revealed that the pyrido[3,2-d]pyrimidine framework and hydroxamic acid motif of compound A12 were essential for maintaining the activity of HDAC and Mnk. These result indicated that A12 was a potent Mnk /HDAC inhibitor and will be further researched.
Collapse
|
7
|
Yang X, Zhong W, Cao R. Phosphorylation of the mRNA cap-binding protein eIF4E and cancer. Cell Signal 2020; 73:109689. [PMID: 32535199 PMCID: PMC8049097 DOI: 10.1016/j.cellsig.2020.109689] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Dysregulated protein synthesis is frequently involved in oncogenesis and cancer progression. Translation initiation is thought to be the rate-limiting step in protein synthesis, and the mRNA 5' cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) is a pivotal factor that initiates translation. The activities of eIF4E are regulated at multiple levels, one of which is through its phosphorylation at Serine 209 by the mitogen-activated protein kinase-interacting kinases (MNKs, including MNK1 and MNK2). Benefiting from novel mouse genetic tools and pharmacological MNK inhibitors, our understanding of a role for eIF4E phosphorylation in tumor biology and cancer therapy has greatly evolved in recent years. Importantly, recent studies have found that the level of eIF4E phosphorylation is frequently upregulated in a wide variety of human cancer types, and phosphorylation of eIF4E drives a number of important processes in cancer biology, including cell transformation, proliferation, apoptosis, metastasis and angiogenesis. The MNK-eIF4E axis is being assessed as a therapeutic target either alone or in combination with other therapies in different cancer models. As novel MNK inhibitors are being developed, experimental studies bring new hope to cure human cancers that are not responsive to traditional therapies. Herein we review recent progress on our understanding of a mechanistic role for phosphorylation of eIF4E in cancer biology and therapy.
Collapse
Affiliation(s)
- Xiaotong Yang
- School of Medicine, Tsinghua University, Beijing 100084, China; National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Pham TN, Spaulding C, Munshi HG. Controlling TIME: How MNK Kinases Function to Shape Tumor Immunity. Cancers (Basel) 2020; 12:cancers12082096. [PMID: 32731503 PMCID: PMC7465005 DOI: 10.3390/cancers12082096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.
Collapse
Affiliation(s)
- Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| |
Collapse
|
9
|
Kosciuczuk EM, Kar AK, Blyth GT, Fischietti M, Abedin S, Mina AA, Siliezar R, Rzymski T, Brzozka K, Eklund EA, Beauchamp EM, Eckerdt F, Saleiro D, Platanias LC. Inhibitory effects of SEL201 in acute myeloid leukemia. Oncotarget 2019; 10:7112-7121. [PMID: 31903169 PMCID: PMC6935253 DOI: 10.18632/oncotarget.27388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
MAPK interacting kinase (MNK), a downstream effector of mitogen-activated protein kinase (MAPK) pathways, activates eukaryotic translation initiation factor 4E (eIF4E) and plays a key role in the mRNA translation of mitogenic and antiapoptotic genes in acute myeloid leukemia (AML) cells. We examined the antileukemic properties of a novel MNK inhibitor, SEL201. Our studies provide evidence that SEL201 suppresses eIF4E phosphorylation on Ser209 in AML cell lines and in primary patient-derived AML cells. Such effects lead to growth inhibitory effects and leukemic cell apoptosis, as well as suppression of leukemic progenitor colony formation. Combination of SEL201 with 5'-azacytidine or rapamycin results in synergistic inhibition of AML cell growth. Collectively, these results suggest that SEL201 has significant antileukemic activity and further underscore the relevance of the MNK pathway in leukemogenesis.
Collapse
Affiliation(s)
- Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Aroop K Kar
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sameem Abedin
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Division of Hematology and Oncology Department of Medicine Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alain A Mina
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rebekah Siliezar
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | | | | | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
10
|
Mishra RK, Clutter MR, Blyth GT, Kosciuczuk EM, Blackburn AZ, Beauchamp EM, Schiltz GE, Platanias LC. Discovery of novel Mnk inhibitors using mutation-based induced-fit virtual high-throughput screening. Chem Biol Drug Des 2019; 94:1813-1823. [PMID: 31260185 DOI: 10.1111/cbdd.13585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022]
Abstract
Mnk kinases (Mnk1 and 2) are downstream effectors of Map kinase pathways and regulate phosphorylation of eukaryotic initiation factor 4E. Engagement of the Mnk pathway is critical in acute myeloid leukemia (AML) leukemogenesis and Mnk inhibitors have potent antileukemic properties in vitro and in vivo, suggesting that targeting Mnk kinases may provide a novel approach for treating AML. Here, we report the development and application of a mutation-based induced-fit in silico screen to identify novel Mnk inhibitors. The Mnk1 structure was modeled by temporarily mutating an amino acid that obstructs the ATP-binding site in the Mnk1 crystal structure while carrying out docking simulations of known inhibitors. The hit compounds display activity in Mnk biochemical and cellular assays, including acute myeloid leukemia progenitors. This approach will enable further rational structure-based drug design of new Mnk inhibitors and potentially novel ways of therapeutically targeting this kinase.
Collapse
Affiliation(s)
- Rama K Mishra
- The Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, USA.,Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Matthew R Clutter
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Amy Z Blackburn
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Gary E Schiltz
- The Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, USA.,Department of Pharmacology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
Identification and targeting of novel CDK9 complexes in acute myeloid leukemia. Blood 2018; 133:1171-1185. [PMID: 30587525 DOI: 10.1182/blood-2018-08-870089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023] Open
Abstract
Aberrant activation of mTOR signaling in acute myeloid leukemia (AML) results in a survival advantage that promotes the malignant phenotype. To improve our understanding of factors that contribute to mammalian target of rapamycin (mTOR) signaling activation and identify novel therapeutic targets, we searched for unique interactors of mTOR complexes through proteomics analyses. We identify cyclin dependent kinase 9 (CDK9) as a novel binding partner of the mTOR complex scaffold protein, mLST8. Our studies demonstrate that CDK9 is present in distinct mTOR-like (CTOR) complexes in the cytoplasm and nucleus. In the nucleus, CDK9 binds to RAPTOR and mLST8, forming CTORC1, to promote transcription of genes important for leukemogenesis. In the cytoplasm, CDK9 binds to RICTOR, SIN1, and mLST8, forming CTORC2, and controls messenger RNA (mRNA) translation through phosphorylation of LARP1 and rpS6. Pharmacological targeting of CTORC complexes results in suppression of growth of primitive human AML progenitors in vitro and elicits strong antileukemic responses in AML xenografts in vivo.
Collapse
|
12
|
VENTURI V, MASEK T, POSPISEK M. A Blood Pact: the Significance and Implications of eIF4E on Lymphocytic Leukemia. Physiol Res 2018. [DOI: 10.33549/physiolres.933696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elevated levels of eukaryotic initiation factor 4E (eIF4E) are implicated in neoplasia, with cumulative evidence pointing to its role in the etiopathogenesis of hematological diseases. As a node of convergence for several oncogenic signaling pathways, eIF4E has attracted a great deal of interest from biologists and clinicians whose efforts have been targeting this translation factor and its biological circuits in the battle against leukemia. The role of eIF4E in myeloid leukemia has been ascertained and drugs targeting its functions have found their place in clinical trials. Little is known, however, about the pertinence of eIF4E to the biology of lymphocytic leukemia and a paucity of literature is available in this regard that prospectively evaluates the topic to guide practice in hematological cancer. A comprehensive analysis on the significance of eIF4E translation factor in the clinical picture of leukemia arises, therefore, as a compelling need. This review presents aspects of eIF4E involvement in the realm of the lymphoblastic leukemia status; translational control of immunological function via eIF4E and the state-of-the-art in drugs will also be outlined.
Collapse
Affiliation(s)
| | | | - M. POSPISEK
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Yang H, Chennamaneni LR, Ho MWT, Ang SH, Tan ESW, Jeyaraj DA, Yeap YS, Liu B, Ong EH, Joy JK, Wee JLK, Kwek P, Retna P, Dinie N, Nguyen TTH, Tai SJ, Manoharan V, Pendharkar V, Low CB, Chew YS, Vuddagiri S, Sangthongpitag K, Choong ML, Lee MA, Kannan S, Verma CS, Poulsen A, Lim S, Chuah C, Ong TS, Hill J, Matter A, Nacro K. Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia. J Med Chem 2018; 61:4348-4369. [PMID: 29683667 DOI: 10.1021/acs.jmedchem.7b01714] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. In vivo, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure-activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal in vitro and enhances dasatinib antitumor activity in vivo.
Collapse
Affiliation(s)
- Haiyan Yang
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Lohitha Rao Chennamaneni
- Organic Chemistry, Institute of Chemical and Engineering Sciences (ICES), A*STAR , 8 Biomedical Grove, Neuros, #07-01 , 138665 Singapore
| | - Melvyn Wai Tuck Ho
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Shi Hua Ang
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Eldwin Sum Wai Tan
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | | | - Yoon Sheng Yeap
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Boping Liu
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Esther Hq Ong
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Joma Kanikadu Joy
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - John Liang Kuan Wee
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Perlyn Kwek
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Priya Retna
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Nurul Dinie
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Thuy Thi Hanh Nguyen
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Shi Jing Tai
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Vithya Manoharan
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Vishal Pendharkar
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Choon Bing Low
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Yun Shan Chew
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Susmitha Vuddagiri
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Kanda Sangthongpitag
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Meng Ling Choong
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - May Ann Lee
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII) , A*STAR , 30 Biopolis Street, #07-01 Matrix , 138671 Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 637551 Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , 117543 Singapore
| | - Anders Poulsen
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Sharon Lim
- Duke-NUS Medical School , 8 College Road , 169857 Singapore
| | - Charles Chuah
- Duke-NUS Medical School , 8 College Road , 169857 Singapore
| | - Tiong Sin Ong
- Duke-NUS Medical School , 8 College Road , 169857 Singapore.,Department of Medicine , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Jeffrey Hill
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Alex Matter
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Kassoum Nacro
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| |
Collapse
|
14
|
MAP kinase-interacting serine/threonine kinase 2 promotes proliferation, metastasis, and predicts poor prognosis in non-small cell lung cancer. Sci Rep 2017; 7:10612. [PMID: 28878291 PMCID: PMC5587555 DOI: 10.1038/s41598-017-10397-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
We hypothesized that MAP kinase-interacting serine/threonine kinase 2 (MNK2) may contribute to non-small cell lung cancer (NSCLC) development, and serve as a new therapeutic target. Immunohistochemical staining evaluated the correlation between MNK2 expression and clinicopathological features in 367 NSCLC cancer tissues. We determined the effects of MNK2 silencing in NSCLC cell lines in vitro and in vivo. RT-PCR and western blotting was used to examine the impact of MNK2 on ERK and AKT pathways. MNK2 was overexpressed in NSCLC cell lines and tumor tissues. Patients with MNK2 overexpression had lower OS rates (P < 0.001). High expression of MNK2 was correlated with lymph node metastasis (P = 0.008). MNK2 functioned as an independent prognostic factor for poor survival in patients with NSCLC (P = 0.003). MNK2 down-regulation inhibited proliferation, migration and invasion in vitro (P < 0.001), and reduced tumor growth and invasion in nude mice (P < 0.05). MNK2 enhanced phosphorylation of eIF4E, a downstream target of ERK and AKT pathways, which promoted NSCLC proliferation and invasion. We conclude that MNK2 overexpression in NSCLC is associated with proliferation, migration, invasion, and lower survival rates in patients via the phosphorylated eIF4E-mediated signaling pathway.
Collapse
|
15
|
Tabe Y, Tafuri A, Sekihara K, Yang H, Konopleva M. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia. Expert Opin Ther Targets 2017; 21:705-714. [PMID: 28537457 DOI: 10.1080/14728222.2017.1333600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a therapeutic challenge. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway is one of the key aberrant intracellular axes involved in AML. Areas covered: mTOR plays a critical role in sensing and responding to environmental determinants such as nutrient availability, stress, and growth factor concentrations; and in modulating key cellular functions such as proliferation, metabolism, and survival. Although abnormalities of mTOR signaling are strongly associated with neoplastic leukemic proliferation, the role of pharmacologic inhibitors of mTOR in the treatment of AML has not been established. Expert opinion: Inhibition of mTOR signaling has in general modest growth-inhibitory effects in preclinical AML models and clinical trials. Yet, combination of allosteric mTOR inhibitors with standard chemotherapy or targeted agents has a greater anti-leukemia efficacy. In turn, dual mTORC1/2 inhibitors, and dual PI3K/mTOR inhibitors show greater activity in pre-clinical AML models. Further, understanding the role of mTOR signaling in stemness of leukemias is important because AML stem cells may become chemoresistant by displaying aberrant signaling molecules, modifying epigenetic mechanisms, and altering the components of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Yoko Tabe
- a Department of Next Generation Hematology Laboratory Medicine , Juntendo University School of Medicine , Tokyo , Japan.,b Section of Molecular Hematology and Therapy, Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Agostino Tafuri
- c Dipartimento di Medicina Clinica e Molecolare , "Sapienza" University of Rome , Rome , Italy
| | - Kazumasa Sekihara
- d Leading Center for the Development and Research of Cancer Medicine , Juntendo University School of Medicine , Tokyo , Japan
| | - Haeun Yang
- d Leading Center for the Development and Research of Cancer Medicine , Juntendo University School of Medicine , Tokyo , Japan
| | - Marina Konopleva
- b Section of Molecular Hematology and Therapy, Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
16
|
Han W, Ding Y, Xu Y, Pfister K, Zhu S, Warne B, Doyle M, Aikawa M, Amiri P, Appleton B, Stuart DD, Fanidi A, Shafer CM. Discovery of a Selective and Potent Inhibitor of Mitogen-Activated Protein Kinase-Interacting Kinases 1 and 2 (MNK1/2) Utilizing Structure-Based Drug Design. J Med Chem 2016; 59:3034-45. [DOI: 10.1021/acs.jmedchem.5b01657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wooseok Han
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yu Ding
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yongjin Xu
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Keith Pfister
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Shejin Zhu
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Bob Warne
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mike Doyle
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mina Aikawa
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Payman Amiri
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Brent Appleton
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Darrin D. Stuart
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Abdallah Fanidi
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Cynthia M. Shafer
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| |
Collapse
|
17
|
Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia. J Control Release 2016; 224:8-21. [DOI: 10.1016/j.jconrel.2015.12.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
|
18
|
Regulatory effects of a Mnk2-eIF4E feedback loop during mTORC1 targeting of human medulloblastoma cells. Oncotarget 2015; 5:8442-51. [PMID: 25193863 PMCID: PMC4226695 DOI: 10.18632/oncotarget.2319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mTOR pathway controls mRNA translation of mitogenic proteins and is a central regulator of metabolism in malignant cells. Development of malignant cell resistance is a limiting factor to the effects of mTOR inhibitors, but the mechanisms accounting for such resistance are not well understood. We provide evidence that mTORC1 inhibition by rapamycin results in engagement of a negative feedback regulatory loop in malignant medulloblastoma cells, involving phosphorylation of the eukaryotic translation-initiation factor eIF4E. This eIF4E phosphorylation is Mnk2- mediated, but Mnk1-independent, and acts as a survival mechanism for medulloblastoma cells. Pharmacological targeting of Mnk1/2 or siRNA-mediated knockdown of Mnk2 sensitizes medulloblastoma cells to mTOR inhibition and promotes suppression of malignant cell proliferation and anchorage-independent growth. Altogether, these findings provide evidence for the existence of a Mnk2-controlled feedback loop in medulloblastoma cells that accounts for resistance to mTOR inhibitors, and raise the potential for combination treatments of mTOR and Mnk inhibitors for the treatment of medulloblastoma.
Collapse
|
19
|
Sakamoto KM, Grant S, Saleiro D, Crispino JD, Hijiya N, Giles F, Platanias L, Eklund EA. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol Genet Metab 2015; 114:397-402. [PMID: 25533111 PMCID: PMC4355162 DOI: 10.1016/j.ymgme.2014.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 01/23/2023]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy that is the most common type of acute leukemia diagnosed in adults and the second most common type in children. The overall survival is poor and treatment is associated with significant complications and even death. In addition, a significant number of patients will not respond to therapy or relapse. In this review, several new signaling proteins aberrantly regulated in AML are described, including CREB, Triad1, Bcl-2 family members, Stat3, and mTOR/MEK. Identifying more effective and less toxic agents will provide novel approaches to treat AML.
Collapse
Affiliation(s)
- Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - Nobuko Hijiya
- Division of Hematology/Oncology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis Giles
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - Leonidas Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Teo T, Yu M, Yang Y, Gillam T, Lam F, Sykes MJ, Wang S. Pharmacologic co-inhibition of Mnks and mTORC1 synergistically suppresses proliferation and perturbs cell cycle progression in blast crisis-chronic myeloid leukemia cells. Cancer Lett 2015; 357:612-23. [DOI: 10.1016/j.canlet.2014.12.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 01/03/2023]
|
21
|
Eckerdt F, Goldman S, Platanias LC. New insights into malignant cell survival mechanisms in medulloblastoma. ACTA ACUST UNITED AC 2015; 1. [PMID: 26097864 DOI: 10.14800/ccm.374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
mRNA translation and protein synthesis is an important determinant for cell metabolism and cell homeostasis. Perturbations in cellular homeostasis often result in activation of negative feedback loops as compensatory mechanisms. Although, these mechanisms are important for mammalian cells to adjust to environmental changes, they also pose a major challenge for targeted cancer therapy as they provide escape mechanisms for cancer cells. The mammalian target of rapamycin (mTOR) is a crucial regulator of mRNA translation, protein synthesis and metabolism and represents an attractive target for anticancer therapy. We have recently reported that selective inhibition of mTORC1 by rapamycin or its analogs in medulloblastoma cells results in phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) on serine-209, an event known to be associated with induction of protein translation and cell transformation. We have also previously established that this event is mediated by mitogen-activated protein (MAP) kinase-interacting kinase 2 (Mnk2) independently of MAPKs, the conventional activators of Mnks. Here we discuss the implications for our current understanding of negative feedback regulation by mTOR and Mnk in cancer.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611
| | - Stewart Goldman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611 ; Division of Hematology and Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611 ; Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 ; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, 60612
| |
Collapse
|
22
|
Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e240. [DOI: 10.1038/mtna.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
|
23
|
Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci 2014; 36:124-35. [PMID: 25497227 DOI: 10.1016/j.tips.2014.11.004] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a Ser/Thr kinase that regulates a wide range of functions, including cell growth, proliferation, survival, autophagy, metabolism, and cytoskeletal organization. mTOR activity is dysregulated in several human disorders, including cancer. The crucial role of mTOR in cancer cell biology has stimulated interest in mTOR inhibitors, placing mTOR on the radar of the pharmaceutical industry. Several mTOR inhibitors have already undergone clinical trials for treating tumors, without great success, although mTOR inhibitors are approved for the treatment of some types of cancer, including advanced renal cell carcinoma. However, the role of mTOR inhibitors in cancer treatment continues to evolve as new compounds are continuously being disclosed. Here we review the three classes of mTOR inhibitors currently available for treating cancer patients. Moreover, we highlight efforts to identify markers of resistance and sensitivity to mTOR inhibition that could prove useful in the emerging field of personalized medicine.
Collapse
Affiliation(s)
- Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Bologna, Italy; Rizzoli Orthopedic Institute, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Bologna, Italy; Rizzoli Orthopedic Institute, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
24
|
Joshi S, Platanias LC. Mnk kinase pathway: Cellular functions and biological outcomes. World J Biol Chem 2014; 5:321-333. [PMID: 25225600 PMCID: PMC4160526 DOI: 10.4331/wjbc.v5.i3.321] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed.
Collapse
|
25
|
|
26
|
Sanders JA, Gruppuso PA. Hepatic, Pancreatic and Biliary Cancers. TRANSLATION AND ITS REGULATION IN CANCER BIOLOGY AND MEDICINE 2014:611-629. [DOI: 10.1007/978-94-017-9078-9_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Martinez-Marignac V, Shawi M, Pinedo-Carpio E, Wang X, Panasci L, Miller W, Pettersson F, Aloyz R. Pharmacological targeting of eIF4E in primary CLL lymphocytes. Blood Cancer J 2013; 3:e146. [PMID: 24036945 PMCID: PMC3789207 DOI: 10.1038/bcj.2013.43] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- V Martinez-Marignac
- Department of Oncology & Division of Experimental Medicine, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Adesso L, Calabretta S, Barbagallo F, Capurso G, Pilozzi E, Geremia R, Delle Fave G, Sette C. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 2013; 32:2848-2857. [PMID: 22797067 DOI: 10.1038/onc.2012.306] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 05/07/2012] [Accepted: 06/05/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive neoplastic disease. Gemcitabine, the currently used chemotherapeutic drug for PDAC, elicits only minor benefits, because of the development of escape pathways leading to chemoresistance. Herein, we aimed at investigating the involvement of the mitogen activating protein kinase interacting kinase (MNK)/eIF4E pathway in the acquired drug resistance of PDAC cells. Screening of a cohort of PDAC patients by immunohistochemistry showed that eIF4E phosphorylation correlated with disease grade, early onset of disease and worse prognosis. In PDAC cell lines, chemotherapeutic drugs induced MNK-dependent phosphorylation of eIF4E. Importantly, pharmacological inhibition of MNK activity synergistically enhanced the cytostatic effect of gemcitabine, by promoting apoptosis. RNA interference (RNAi) experiments indicated that MNK2 is mainly responsible for eIF4E phosphorylation and gemcitabine resistance in PDAC cells. Furthermore, we found that gemcitabine induced the expression of the oncogenic splicing factor SRSF1 and splicing of MNK2b, a splice variant that overrides upstream regulatory pathways and confers increased resistance to the drug. Silencing of SRSF1 by RNAi abolished this splicing event and recapitulated the effects of MNK pharmacological or genetic inhibition on eIF4E phosphorylation and apoptosis in gemcitabine-treated cells. Our results highlight a novel pro-survival pathway triggered by gemcitabine in PDAC cells, which leads to MNK2-dependent phosphorylation of eIF4E, suggesting that the MNK/eIF4E pathway represents an escape route utilized by PDAC cells to withstand chemotherapeutic treatments.
Collapse
Affiliation(s)
- L Adesso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Inhibition of Mnk kinase activity by cercosporamide and suppressive effects on acute myeloid leukemia precursors. Blood 2013; 121:3675-81. [PMID: 23509154 DOI: 10.1182/blood-2013-01-477216] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mnk kinases regulate the phosphorylation and activation of the eukaryotic initiation factor 4E (eIF4E), a protein that plays key roles in the initiation of messenger RNA translation and whose activity is critical for various cellular functions. eIF4E is deregulated in acute myeloid leukemia (AML), and its aberrant activity contributes to leukemogenesis. We determined whether cercosporamide, an antifungal agent that was recently shown to act as a unique Mnk inhibitor, exhibits antileukemic properties. Treatment of AML cells with cercosporamide resulted in a dose-dependent suppression of eIF4E phosphorylation. Such suppression of Mnk kinase activity and eIF4E phosphorylation by cercosporamide resulted in dose-dependent suppressive effects on primitive leukemic progenitors (CFU-L) from AML patients and enhanced the antileukemic properties of cytarabine (Ara-C) or mammalian target of rapamycin (mTOR) complex 1 inhibition. Similarly, the combination of cercosporamide with cytarabine resulted in enhanced antileukemic responses in a xenograft mouse model in vivo. Altogether, this work demonstrates that the unique Mnk inhibitor cercosporamide suppresses phosphorylation of eIF4E and exhibits antileukemic effects, in support of future clinical-translational efforts involving combinations of Mnk inhibitors with cytarabine and/or mTOR inhibitors for the treatment of AML.
Collapse
|
30
|
Carroll M, Borden KLB. The oncogene eIF4E: using biochemical insights to target cancer. J Interferon Cytokine Res 2013; 33:227-38. [PMID: 23472659 DOI: 10.1089/jir.2012.0142] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E is overexpressed in many human malignancies where it is typically a harbinger of poor prognosis. eIF4E is positioned as a nexus in post-transcriptional gene expression. To carry out these functions, eIF4E needs to bind the m(7)G cap moiety on mRNAs. It plays critical roles in mRNA translation, mRNA export, and most likely in mRNA stability as well. Through these activities, eIF4E coordinately modulates the expression of many transcripts involved in proliferation and survival. eIF4E function is controlled by interactions with protein cofactors in concert with many signaling pathways, including Ras, Mnk, Erk, MAPK, PI3K, mTOR, and Akt. This review describes the eIF4E activity and provides several examples of cellular control mechanisms. Further, we describe some therapeutic strategies in preclinical and clinical development.
Collapse
Affiliation(s)
- Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
31
|
Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene 2012; 32:3923-32. [PMID: 23246968 DOI: 10.1038/onc.2012.567] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 12/25/2022]
Abstract
The target of rapamycin (TOR) pathway is highly conserved among eukaryotes and has evolved to couple nutrient sensing to cellular growth. TOR is found in two distinct signaling complexes in cells, TOR complex 1 (TORC1) and TOR complex 2 (TORC2). These complexes are differentially regulated and act as effectors for the generation of signals that drive diverse cellular processes such as growth, proliferation, protein synthesis, rearrangement of the cytoskeleton, autophagy, metabolism and survival. Mammalian TOR (mTOR) is very important for development in embryos, while in adult organisms it is linked to aging and lifespan effects. In humans, the mTOR pathway is implicated in the tumorigenesis of multiple cancer types and its deregulation is associated with familial cancer syndromes. Because of its high biological relevance, different therapeutic strategies have been developed to target this signaling cascade, resulting in the emergence of unique pharmacological inhibitors that are either already approved for use in clinical oncology or currently under preclinical or clinical development. Multimodal treatment strategies that simultaneously target multiple nodes of the pathway and/or negative feedback regulatory loops may ultimately provide the best therapeutic advantage in targeting this pathway for the treatment of malignancies.
Collapse
Affiliation(s)
- E M Beauchamp
- Robert H Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|