1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Xiao M, Wang J, Chen Y. E2F2 Promotes Wound Healing of Diabetic Foot Ulcer by Regulating CDCA7L Transcription. Exp Clin Endocrinol Diabetes 2023; 131:162-172. [PMID: 36893788 DOI: 10.1055/a-1989-1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
OBJECTIVE The E2F2 transcription factor can accelerate cell proliferation and wound healing. However, its mechanism of action in a diabetic foot ulcer (DFU) remains unclear. Therefore, this study explores the influence of E2F2 on wound healing in DFU by examining cell division cycle-associated 7-like (CDCA7L) expression. METHODS CDCA7L and E2F2 expression in DFU tissues were analyzed with databases. CDCA7L and E2F2 expression were altered in human umbilical vein endothelial cells (HUVECs) and spontaneously transformed human keratinocyte cell culture (HaCaT) cells. Cell viability, migration, colony formation, and angiogenesis were evaluated. Binding of E2F2 to the CDCA7L promoter was examined. Subsequently, a diabetes mellitus (DM) mouse model was established and treated with full-thickness excision followed by CDCA7L overexpression. Wound healing in these mice was observed and recorded, and vascular endothelial growth factor receptor 2 (VEGFR2) and hematopoietic progenitor cell antigen CD34 (CD34) expression were determined. E2F2 and CDCA7L expression levels in cells and mice were evaluated. The expression of growth factors was tested. RESULTS CDCA7L expression was downregulated in DFU tissues and wound tissues from DM mice. Mechanistically, E2F2 bound to the CDCA7L promoter to upregulate CDCA7L expression. E2F2 overexpression enhanced viability, migration, and growth factor expression in HaCaT cells and HUVECs, and augmented HUVEC angiogenesis and HaCaT cell proliferation, which was nullified by silencing CDCA7L. In DM mice, CDCA7L overexpression facilitated wound healing and elevated the expression level of growth factors. CONCLUSIONS E2F2 facilitated cell proliferation and migration and fostered wound healing in DFU cells through binding to the CDCA7L promoter.
Collapse
Affiliation(s)
- Meimei Xiao
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Jiusong Wang
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
3
|
Fang C, Zhang Z, Xu H, Liu Y, Wang X, Yuan L, Xu Y, Zhu Z, Zhang A, Shao A, Lou M. Natural Products for the Treatment of Post-stroke Depression. Front Pharmacol 2022; 13:918531. [PMID: 35712727 PMCID: PMC9196125 DOI: 10.3389/fphar.2022.918531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Post-stroke depression (PSD) is the most frequent and important neuropsychiatric consequence of stroke. It is strongly associated with exacerbated deterioration of functional recovery, physical and cognitive recoveries, and quality of life. However, its mechanism is remarkably complicated, including the neurotransmitters hypothesis (which consists of a monoaminergic hypothesis and glutamate-mediated excitotoxicity hypothesis), inflammation hypothesis, dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophic hypothesis and neuroplasticity. So far, the underlying pathogenesis of PSD has not been clearly defined yet. At present, selective serotonin reuptake inhibitors (SSRIs) have been used as the first-line drugs to treat patients with PSD. Additionally, more than SSRIs, a majority of the current antidepressants complied with multiple side effects, which limits their clinical application. Currently, a wide variety of studies revealed the therapeutic potential of natural products in the management of several diseases, especially PSD, with minor side effects. Accordingly, in our present review, we aim to summarize the therapeutic targets of these compounds and their potential role in-clinic therapy for patients with PSD.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| |
Collapse
|
4
|
Repovecki S, Nedic Erjavec G, Uzun S, Tudor L, Nikolac Perkovic M, Konjevod M, Kozumplik O, Svob Strac D, Kovacic Petrovic Z, Mimica N, Pivac N. Reduced Platelet MAO-B Activity Is Associated with Psychotic, Positive, and Depressive Symptoms in PTSD. Biomolecules 2022; 12:biom12050736. [PMID: 35625663 PMCID: PMC9138660 DOI: 10.3390/biom12050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related disorder. Platelet monoamine oxidase (MAO-B) is a peripheral biomarker associated with various symptoms in different psychopathologies, but its role in PTSD or different symptoms in PTSD is not clear. This study elucidated the association between platelet MAO-B activity and clinical symptoms occurring in PTSD. Platelet MAO-B activity was determined in 1053 male Caucasian subjects: 559 war veterans with PTSD (DSM-5 criteria), 62 combat exposed veterans who did not develop PTSD, and 432 non-combat exposed healthy controls. Clinical symptoms in PTSD were determined using CAPS and PANSS. Platelet MAO-B activity, controlled for the effect of smoking, was significantly increased in PTSD with severe versus mild and moderate traumatic symptoms, and was significantly decreased in PTSD subjects with severe versus mild positive, psychotic, and depressive symptoms. This finding was further confirmed with reduced platelet MAO-B activity in PTSD veterans with severe versus mild individual items of the PANSS-depressed, PANSS-psychotic, and PANSS-positive subscales. Altered platelet MAO-B activity, controlled for the possible confounders, was associated with the development and severity of different symptoms occurring in PTSD. These findings confirmed the role of platelet MAO-B activity as a peripheral marker of various psychopathological symptoms.
Collapse
Affiliation(s)
- Senka Repovecki
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Suzana Uzun
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Oliver Kozumplik
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
| | - Zrnka Kovacic Petrovic
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
| | - Ninoslav Mimica
- University Psychiatric Hospital Vrapce, 10000 Zagreb, Croatia; (S.R.); (S.U.); (O.K.); (Z.K.P.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (G.N.E.); (L.T.); (M.N.P.); (M.K.); (D.S.S.)
- Correspondence:
| |
Collapse
|
5
|
Yang H, Zhu J, Guo H, Tang A, Chen S, Zhang D, Yuan L, Liu G. Molecular cloning, characterization, and functional analysis of the uncharacterized C11orf96 gene. BMC Vet Res 2022; 18:170. [PMID: 35538492 PMCID: PMC9086667 DOI: 10.1186/s12917-022-03224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mammalian genome encodes millions of proteins. Although many proteins have been discovered and identified, a large part of proteins encoded by genes are yet to be discovered or fully characterized. In the present study, we successfully identified a host protein C11orf96 that was significantly upregulated after viral infection. Results First, we successfully cloned the coding sequence (CDS) region of the cat, human, and mouse C11orf96 gene. The CDS region of the C11orf96 gene is 372 bp long, encodes 124 amino acids, and is relatively conserved in different mammals. From bioinformatics analysis, we found that C11orf96 is rich in Ser and has multiple predicted phosphorylation sites. Moreover, protein interaction prediction analysis revealed that the protein is associated with several transmembrane family proteins and zinc finger proteins. Subsequently, we found that C11orf96 is strictly distributed in the cytoplasm. According to the tissue distribution characteristics, C11orf96 is distributed in all tissues and organs, with the highest expression levels in the kidney. These results indicate that C11orf96 may play a specific biological role in the kidney. Conclusions Summarizing, these data lay the foundation for studying the biological functions of C11orf96 and for exploring its role in viral replication. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03224-5.
Collapse
Affiliation(s)
- Hongzao Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.,Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Hongyuan Guo
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shaoyu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Da Zhang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
6
|
Meyer JH, Braga J. Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Front Neurosci 2022; 15:773404. [PMID: 35280341 PMCID: PMC8914088 DOI: 10.3389/fnins.2021.773404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is a high-density protein in the brain mainly found on outer mitochondrial membranes, primarily in astroglia, but additionally in serotonergic neurons and in the substantia nigra in the midbrain. It is an enzyme that participates in the oxidative metabolism of important monoamines including dopamine, norepinephrine, benzylamine, and phenylethylamine. Elevated MAO-B density may be associated with astrogliosis and inhibiting MAO-B may reduce astrogliosis. MAO-B density is elevated in postmortem sampling of pathology for many neuropsychiatric diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and alcohol use disorder. Initial development of positron emission tomography (PET) imaging agents focused on analogs of [11C]L-deprenyl, with the most commonly applied being the deuterium substituted [11C]L-deprenyl-D2. This latter radiotracer was modeled with an irreversible trapping compartment reflecting its irreversible binding to MAO-B. Subsequently, [11C]SL25.1188, a reversible binding MAO-B radioligand with outstanding properties including high specific binding and excellent reversibility was developed. [11C]SL25.1188 PET was applied to discover a substantive elevation of MAO-B binding in the prefrontal cortex in major depressive disorder (MDD) with an effect size of more than 1.5. Longer duration of MDD was associated with greater MAO-B binding throughout most gray matter regions in the brain, suggesting progressive astrogliosis. Important applications of [11C]L-deprenyl-D2 PET are detecting a 40% loss in radiotracer accumulation in cigarette smokers, and substantial occupancy of novel therapeutics like EVT301 and sembragiline. Given the number of diseases with elevations of MAO-B density and astrogliosis, and the advance of [11C]SL25.1188, clinical applications of MAO-B imaging are still at an early stage.
Collapse
Affiliation(s)
- Jeffrey H. Meyer
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jeffrey H. Meyer,
| | - Joeffre Braga
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
The LEDGF/p75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells 2021; 10:cells10102723. [PMID: 34685704 PMCID: PMC8534522 DOI: 10.3390/cells10102723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.
Collapse
|
8
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
9
|
Uzbekov MG. Monoamine Oxidase as a Potential Biomarker of the Efficacy of Treatment of Mental Disorders. BIOCHEMISTRY (MOSCOW) 2021; 86:773-783. [PMID: 34225599 DOI: 10.1134/s0006297921060146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review summarizes the results of our own studies and published data on the biological markers of psychiatric disorders, with special emphasis on the activity of platelet monoamine oxidase. Pharmacotherapy studies in patients with the mixed anxiety-depressive disorder and first episode of schizophrenia have shown that the activity of platelet monoamine oxidase could serve as a potential biomarker of the efficacy of therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Marat G Uzbekov
- Moscow Research Institute of Psychiatry, Branch of Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, 107076, Russia.
| |
Collapse
|
10
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
11
|
Volchegorskii IA, Sinitskii AI, Miroshnichenko IY, Rassokhina LM. The Effect of 3-Hydroxypyridine and Succinic Acid Derivatives on the Activity of Monoamine Oxidases in the Brain Cortex of Rats with Alloxan-Induced Diabetes. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, Rajkowska G, Wang J, Bagby M, Mizrahi R, Varughese B, Houle S, Meyer JH. Monoamine Oxidase B Total Distribution Volume in the Prefrontal Cortex of Major Depressive Disorder: An [11C]SL25.1188 Positron Emission Tomography Study. JAMA Psychiatry 2019; 76:634-641. [PMID: 30840042 PMCID: PMC6551845 DOI: 10.1001/jamapsychiatry.2019.0044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Monoamine oxidase B (MAO-B) is an important, high-density enzyme in the brain that generates oxidative stress by hydrogen peroxide production, alters mitochondrial function, and metabolizes nonserotonergic monoamines. Recent advances in positron emission tomography radioligand development for MAO-B in humans enable highly quantitative measurement of MAO-B distribution volume (MAO-B VT), an index of MAO-B density. To date, this is the first investigation of MAO-B in the brain of major depressive disorder that evaluates regions beyond the raphe and amygdala. OBJECTIVE To investigate whether MAO-B VT is elevated in the prefrontal cortex in major depressive episodes (MDEs) of major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS This case-control study was performed at a tertiary care psychiatric hospital from April 1, 2014, to August 30, 2018. Twenty patients with MDEs without current psychiatric comorbidities and 20 age-matched controls underwent carbon 11-labeled [11C]SL25.1188 positron emission tomography scanning to measure MAO-B VT. All participants were drug and medication free, nonsmoking, and otherwise healthy. MAIN OUTCOMES AND MEASURES The MAO-B VT in the prefrontal cortex (PFC). The second main outcome was to evaluate the association between MAO-B VT in the PFC and duration of major depressive disorder illness. RESULTS Twenty patients with MDEs (mean [SD] age, 34.2 [13.2] years; 11 women) and 20 healthy controls (mean [SD] age, 33.7 [13.1] years; 10 women) were recruited. Patients with MDEs had significantly greater MAO-B VT in the PFC (mean, 26%; analysis of variance, F1,38 = 19.6, P < .001). In individuals with MDEs, duration of illness covaried positively with MAO-B VT in the PFC (analysis of covariance, F1,18 = 15.2, P = .001), as well as most other cortex regions and the thalamus. CONCLUSIONS AND RELEVANCE Fifty percent (10 of 20) of patients with MDEs had MAO-B VT values in the PFC exceeding those of healthy controls. Greater MAO-B VT is an index of MAO-B overexpression, which may contribute to pathologies of mitochondrial dysfunction, elevated synthesis of neurotoxic products, and increased metabolism of nonserotonergic monoamines. Hence, this study identifies a common pathological marker associated with downstream consequences poorly targeted by the common selective serotonin reuptake inhibitor treatments. It is also recommended that the highly selective MAO-B inhibitor medications that are compatible for use with other antidepressants and have low risk for hypertensive crisis should be developed or repurposed as adjunctive treatment for MDEs.
Collapse
Affiliation(s)
- Sho Moriguchi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Laura Miler
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Vasdev
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J. Kish
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson
| | - Michael Bagby
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ben Varughese
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Lin TP, Li J, Li Q, Li X, Liu C, Zeng N, Huang JM, Chu GCY, Lin CH, Zhau HE, Chung LWK, Wu BJ, Shih JC. R1 Regulates Prostate Tumor Growth and Progression By Transcriptional Suppression of the E3 Ligase HUWE1 to Stabilize c-Myc. Mol Cancer Res 2018; 16:1940-1951. [PMID: 30042175 DOI: 10.1158/1541-7786.mcr-16-0346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/22/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer is a prevalent public health problem, especially because noncutaneous advanced malignant forms significantly affect the lifespan and quality of life of men worldwide. New therapeutic targets and approaches are urgently needed. The current study reports elevated expression of R1 (CDCA7L/RAM2/JPO2), a c-Myc-interacting protein and transcription factor, in human prostate cancer tissue specimens. In a clinical cohort, high R1 expression is associated with disease recurrence and decreased patient survival. Overexpression and knockdown of R1 in human prostate cancer cells indicate that R1 induces cell proliferation and colony formation. Moreover, silencing R1 dramatically reduces the growth of prostate tumor xenografts in mice. Mechanistically, R1 increases c-Myc protein stability by inhibiting ubiquitination and proteolysis through transcriptional suppression of HUWE1, a c-Myc-targeting E3 ligase, via direct interaction with a binding element in the promoter. Moreover, transcriptional repression is supported by a negative coexpression correlation between R1 and HUWE1 in a prostate cancer clinical dataset. Collectively, these findings, for the first time, characterize the contribution of R1 to prostate cancer pathogenesis. IMPLICATIONS: These findings provide evidence that R1 is a novel regulator of prostate tumor growth by stabilizing c-Myc protein, meriting further investigation of its therapeutic and prognostic potential.
Collapse
Affiliation(s)
- Tzu-Ping Lin
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
- USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, California
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangyan Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chunyan Liu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ni Zeng
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jen-Ming Huang
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gina Chia-Yi Chu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Chi-Hung Lin
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Leland W K Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| | - Jean C Shih
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.
- USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, California
- Depatment of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
14
|
Peng ZW, Xue F, Zhou CH, Zhang RG, Wang Y, Liu L, Sang HF, Wang HN, Tan QR. Repetitive transcranial magnetic stimulation inhibits Sirt1/MAO-A signaling in the prefrontal cortex in a rat model of depression and cortex-derived astrocytes. Mol Cell Biochem 2018; 442:59-72. [PMID: 28948423 DOI: 10.1007/s11010-017-3193-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/09/2017] [Indexed: 02/06/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a useful monotherapy for depression or adjunctive therapy for resistant depression. However, the anti-depressive effects of different parameters and the underlying mechanisms remain unclear. Here, we aimed to assess the effect of rTMS with different parameters (1/5/10 Hz, 0.84/1.26 T) on the depressive-like behaviors, 5-hydroxytryptamine (5-HT), 5-HIAA (5-hydroxyindoleacetic acid) and DA and NE levels, and monoamine oxidase A (MAO-A) activity in chronic unpredictable stress-treated rats, along with the expression of sirtuin 1 (Sirt1) and MAO-A in the prefrontal cortex (PFC) and cortex-derived astrocytes from new-born rats. Moreover, the depressive-like behaviors were monitored following the transcranial injection of the Sirt1 inhibitor EX527 (1 mM) daily for 1 week. We found that rTMS treatment (5/10 Hz, 0.84/1.26 T) ameliorated depressive-like behaviors, increased 5-HT, DA and NE levels, decreased the 5-HIAA level and Sirt1 and MAO-A expression, and reduced MAO-A activity in the PFC. The depressive-like behaviors were also ameliorated after the transcranial injection of EX527. Importantly, rTMS (5/10 Hz, 0.84/1.26 T) inhibited Sirt1 and MAO-A expressions in astrocytes and Sirt1 knockdown with short hairpin RNA decreased MAO-A expression in astrocytes. These results suggest that the inhibition of Sirt1/MAO-A expression in astrocytes in the PFC may contribute to the different anti-depressive effects of rTMS with different parameters, and may also provide a novel insight into the mechanisms underlying major depressive disorder.
Collapse
Affiliation(s)
- Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui-Guo Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Liu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, 710032, China
| | - Han-Fei Sang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A and B monoamine oxidases distinctly modulate signal transduction pathway and gene expression to regulate brain function and survival of neurons. J Neural Transm (Vienna) 2017; 125:1635-1650. [DOI: 10.1007/s00702-017-1832-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 02/01/2023]
|
16
|
Raitsin S, Tong J, Kish S, Xu X, Magomedova L, Cummins C, Andreazza AC, Scola G, Baker G, Meyer JH. Subchronic glucocorticoids, glutathione depletion and a postpartum model elevate monoamine oxidase a activity in the prefrontal cortex of rats. Brain Res 2017; 1666:1-10. [PMID: 28435083 DOI: 10.1016/j.brainres.2017.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
Recent human brain imaging studies implicate dysregulation of monoamine oxidase-A (MAO-A), in particular in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC), in the development of major depressive disorder (MDD). This study investigates the influence of four alterations underlying important pathologies of MDD, namely, chronic elevation of glucocorticoid levels, glutathione depletion, changes in female gonadal sex hormones and serotonin concentration fluctuation, on MAO-A and MAO-B activities in rats. Young adult rats exposed chronically to the synthetic glucocorticoid dexamethasone at 0, 0.05, 0.5, and 2.0mg/kg/day (osmotic minipumps) for eight days showed significant dose-dependent increases in activities of MAO-A in PFC (+17%, p<0.001) and ACC (+9%, p<0.01) and MAO-B in PFC (+14%, p<0.001) and increased serotonin turnover in the PFC (+31%, p<0.01), not accounted for by dexamethasone-induced changes in serotonin levels, since neither serotonin depletion nor supplementation affected MAO-A activity. Sub-acute depletion of the major antioxidant glutathione by diethyl maleate (5mmol/kg, i.p.) for three days, which resulted in a 36% loss of glutathione in PFC (p=0.0005), modestly, but significantly, elevated activities of MAO-A in PFC and MAO-B in PFC, ACC and hippocampus (+6-9%, p<0.05). Changes in estrogen and progesterone representing pseudopregnancy were associated with significantly elevated MAO-A activity in the ACC day 4-7 postpartum (10-18%, p<0.05 to p<0.0001) but not the PFC or hippocampus. Hence, our study provides data in support of strategies targeting glucocorticoid and glutathione systems, as well as changes in female sex hormones for normalization of MAO-A activities and thus treatment of mood disorders.
Collapse
Affiliation(s)
- Sofia Raitsin
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Stephen Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Xin Xu
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Lilia Magomedova
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Carolyn Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ana C Andreazza
- Departments of Psychiatry and Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gustavo Scola
- Departments of Psychiatry and Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Glen Baker
- Neuroscience and Mental Health Institute and Department of Psychiatry (NRU), University of Alberta, 8440 112 Street NW, Edmonton, Alberta T6G 2G3, Canada
| | - Jeffrey H Meyer
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Chan TSY, Hawkins C, Krieger JR, McGlade CJ, Huang A. JPO2/CDCA7L and LEDGF/p75 Are Novel Mediators of PI3K/AKT Signaling and Aggressive Phenotypes in Medulloblastoma. Cancer Res 2016; 76:2802-12. [PMID: 27013196 DOI: 10.1158/0008-5472.can-15-2194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
Abstract
Substantial evidence links Myc-PI3K/AKT signaling to the most aggressive subtype of medulloblastoma and this axis in medulloblastoma therapy. In this study, we advance understanding of how Myc-PI3K/AKT signaling contributes to this malignancy, specifically, in identifying the Myc-interacting protein JPO2 and its partner binding protein LEDGF/p75 as critical modulators of PI3K/AKT signaling and metastasis in medulloblastoma. JPO2 overexpression induced metastatic medulloblastoma in vivo through two synergistic feed-forward regulatory circuits involving LEDGF/p75 and AKT that promote metastatic phenotypes in this setting. Overall, our findings highlight two novel prometastatic loci in medulloblastoma and point to the JPO2:LEDGF/p75 protein complex as a potentially new targetable component of PI3K/AKT signaling in medulloblastoma. Cancer Res; 76(9); 2802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Tiffany Sin Yu Chan
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R Krieger
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Duan C, Chen Y, Shen A, Xu J, Zhao Y, Cai R, Liu Y, Zhou L, Lei Y, Hamre K, Lu L. Genetic expression analysis of E2F-associated phosphoprotein in stress responses in the mouse. Gene 2016; 581:130-8. [PMID: 26802973 DOI: 10.1016/j.gene.2016.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/29/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Dysfunction of the monoaminergic system is critical in stress and anxiety disorders, but the role of each family member in the development of stress-related psychopathologies is not sufficiently understood. Eapp has been reported to be a transcriptional repressor of monoamine oxidase B (Maob) and down-regulates Maob via the Maob core promoter. In the present study, we more specifically examine the role of Eapp in stress responses by testing the hypothesis that Eapp may be involved in the occurrence and development of stress responses. Western blotting, qPCR and immunohistochemistry were used to investigate the expression variation of Eapp in hypothalamus tissue after exposure to stress. The expression of Eapp is controlled by a cis-acting quantitative trait locus (cis-eQTL). Two genes Sphk2 and Nosip, had trans-eQTLs that mapped to the location of Eapp and altered expression of these two genes was shown following siRNA knockdown of Eapp. Additionally, Mmp9, Npy, Npy5r and Maob were shown to have different expression levels in the Eapp knock-down experiments. Our data provide strong evidence that the cis-modulated gene, Eapp, is associated with stress responses, and that validated downstream targets and members of Eapp gene network may also be involved in the development of stress.
Collapse
Affiliation(s)
- Chengwei Duan
- Department of Science and Education, Second People's Hospital of Nantong, Nantong University, Nantong, Jiangsu Province 226001, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu 226001, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Aiguo Shen
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jian Xu
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, Jiangsu 226001, China
| | - Yinghong Zhao
- Department of Neurology, Nantong University Affiliated Mental Health Center, Nantong, Jiangsu 226001, China
| | - Rixin Cai
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu 226001, China
| | - Yonghua Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Li Zhou
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Lei
- Department of Genetics, Genomics and Informatics, USA
| | - Kristin Hamre
- Anatomy and Neurobiology, University of Tennessee Health Science Center, USA
| | - Lu Lu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu 226001, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Genetics, Genomics and Informatics, USA.
| |
Collapse
|
19
|
Tesina P, Čermáková K, Hořejší M, Procházková K, Fábry M, Sharma S, Christ F, Demeulemeester J, Debyser Z, Rijck JD, Veverka V, Řezáčová P. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat Commun 2015; 6:7968. [PMID: 26245978 DOI: 10.1038/ncomms8968] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.
Collapse
Affiliation(s)
- Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Čermáková
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Magdalena Hořejší
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Procházková
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Subhalakshmi Sharma
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Frauke Christ
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jonas Demeulemeester
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
20
|
Abstract
The life-threatening Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome is a genetically heterogeneous autosomal recessive disorder. Twenty percent of patients cannot be explained by mutations in the known ICF genes DNA methyltransferase 3B or zinc-finger and BTB domain containing 24. Here we report mutations in the cell division cycle associated 7 and the helicase, lymphoid-specific genes in 10 unexplained ICF cases. Our data highlight the genetic heterogeneity of ICF syndrome; however, they provide evidence that all genes act in common or converging pathways leading to the ICF phenotype.
Collapse
|
21
|
Duncan J, Wang N, Zhang X, Johnson S, Harris S, Zheng B, Zhang Q, Rajkowska G, Miguel-Hidalgo JJ, Sittman D, Ou XM, Stockmeier CA, Wang JM. Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain. Neurotox Res 2015; 28:18-31. [PMID: 25739536 DOI: 10.1007/s12640-015-9524-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and maximize neuroprotection in these disorders.
Collapse
Affiliation(s)
- Jeremy Duncan
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Naoi M, Riederer P, Maruyama W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm (Vienna) 2015; 123:91-106. [PMID: 25604428 DOI: 10.1007/s00702-014-1362-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/27/2014] [Indexed: 12/18/2022]
Abstract
Monoamine oxidase types A and B (MAO-A, MAO-B) regulate the levels of monoamine neurotransmitters in the brain, and their dysfunction may be involved in the pathogenesis and influence the clinical phenotypes of neuropsychiatric disorders. Reversible MAO-A inhibitors, such as moclobemide and befloxatone, are currently employed in the treatment of emotional disorders by inhibiting the enzymatic degradation of dopamine, serotonin and norepinephrine in the central nervous system (CNS). It has been suggested that the irreversible MAO-B inhibitors selegiline and rasagiline exert a neuroprotective effect in Parkinson's and Alzheimer's diseases. This effect, however, is not related to their inhibition of MAO activity; in animal and cellular models, selegiline and rasagiline protect neuronal cells through their anti-apoptotic activity and induction of pro-survival genes. There is increasing evidence that MAO-A activity, but not that of MAO-B, is implicated in the pathophysiology of neurodegenerative disorders, but also in gene induction by MAO-B inhibitors; on the other hand, selegiline and rasagiline increase MAO-A mRNA, protein, and enzyme activity levels. Taken together, these results suggest that each MAO subtype exerts effects that modulate the expression and activity of the other isoenzyme. The roles of MAO-A and -B in the CNS should therefore be re-evaluated with respect to the "type-specificity" of their inhibitors, which may not be unconditional during chronic treatment. Mao-a expression, in particular, may be implicated in pathogenesis and phenotypes in neuropsychiatric disorders. MAO-A expression is modified by mao polymorphisms affecting its transcriptional efficiency, as well as by mutations and polymorphism of parkin, Sirt1, FOXO, microRNA, presenilin-1, and other regulatory proteins. In addition, childhood maltreatment has been shown to have an impact upon adolescent social behavior in children with mao-a polymorphisms of low transcriptional activity. Low MAO-A activity may increase the levels of serotonin and norepinephrine, resulting in disturbed neurotransmitter system development and behavior. This review discusses genetic and environmental factors involved in the regulation of MAO-A expression, in the contexts of neuropsychiatric function and of the regulation of neuronal survival and death.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 470-0195, Japan.
| | - Peter Riederer
- Clinical Neurochemistry, National Parkinson's Foundation Centre of Excellence Laboratories, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Wakako Maruyama
- Department of Cognitive Brain Science, National Research Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
23
|
Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease. Mol Neurobiol 2014; 52:1850-1861. [PMID: 25398695 PMCID: PMC4586002 DOI: 10.1007/s12035-014-8974-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/29/2014] [Indexed: 01/20/2023]
Abstract
Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.
Collapse
|
24
|
Wu JB, Shao C, Li X, Shi C, Li Q, Hu P, Chen YT, Dou X, Sahu D, Li W, Harada H, Zhang Y, Wang R, Zhau HE, Chung LWK. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis. Biomaterials 2014; 35:8175-85. [PMID: 24957295 DOI: 10.1016/j.biomaterials.2014.05.073] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/24/2014] [Indexed: 11/26/2022]
Abstract
Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy.
Collapse
Affiliation(s)
- Jason Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chen Shao
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiangyan Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changhong Shi
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qinlong Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peizhen Hu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi-Ting Chen
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaoliang Dou
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Divya Sahu
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Li
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Hiroshi Harada
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yi Zhang
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruoxiang Wang
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
25
|
Wu JB, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen YT, Yin F, Liao CP, Stiles BL, Zhau HE, Shih JC, Chung LWK. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 2014; 124:2891-908. [PMID: 24865426 DOI: 10.1172/jci70982] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.
Collapse
|
26
|
Hendrix J, van Heertum B, Vanstreels E, Daelemans D, De Rijck J. Dynamics of the ternary complex formed by c-Myc interactor JPO2, transcriptional co-activator LEDGF/p75, and chromatin. J Biol Chem 2014; 289:12494-506. [PMID: 24634210 DOI: 10.1074/jbc.m113.525964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is a transcriptional co-activator involved in targeting human immunodeficiency virus (HIV) integration and the development of MLL fusion-mediated acute leukemia. A previous study revealed that LEDGF/p75 dynamically scans the chromatin, and upon interaction with HIV-1 integrase, their complex is locked on chromatin. At present, it is not known whether LEDGF/p75-mediated chromatin locking is typical for interacting proteins. Here, we employed continuous photobleaching and fluorescence correlation and cross-correlation spectroscopy to investigate in vivo chromatin binding of JPO2, a LEDGF/p75- and c-Myc-interacting protein involved in transcriptional regulation. In the absence of LEDGF/p75, JPO2 performs chromatin scanning inherent to transcription factors. However, whereas the dynamics of JPO2 chromatin binding are decelerated upon interaction with LEDGF/p75, very strong locking of their complex onto chromatin is absent. Similar results were obtained with the domesticated transposase PogZ, another cellular interaction partner of LEDGF/p75. We furthermore show that diffusive JPO2 can oligomerize; that JPO2 and LEDGF/p75 interact directly and specifically in vivo through the specific interaction domain of JPO2 and the C-terminal domain of LEDGF/p75, comprising the integrase-binding domain; and that modulation of JPO2 dynamics requires a functional PWWP domain in LEDGF/p75. Our results suggest that the dynamics of the LEDGF/p75-chromatin interaction depend on the specific partner and that strong chromatin locking is not a property of all LEDGF/p75-binding proteins.
Collapse
Affiliation(s)
- Jelle Hendrix
- From the Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
27
|
Lewis JR, McNab TJ, Liew LJ, Tan J, Hudson P, Wang JZ, Prince RL. DNA methylation within the I.4 promoter region correlates with CYPl19A1 gene expression in human ex vivo mature omental and subcutaneous adipocytes. BMC MEDICAL GENETICS 2013; 14:87. [PMID: 24128150 PMCID: PMC3765767 DOI: 10.1186/1471-2350-14-87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 08/29/2013] [Indexed: 11/12/2022]
Abstract
Background DNA methylation at specific CpG sites within gene promoter regions is known to regulate transcriptional activity in vitro. In human adipose tissue, basal transcription of the aromatase (CYP19A1) gene is driven primarily by the I.4 promoter however the role of DNA methylation in regulating expression in ex vivo mature adipocytes is unknown. This observational study reports the correlation of DNA methylation within the I.4 promoter region of human mature subcutaneous and omental adipocytes with aromatase expression and body composition measures. Methods Omental and subcutaneous adipose tissue were collected from 25 obese subjects undergoing bariatric surgery and the mature adipocyte fraction purified. DNA methylation status of 5 CpG sites within a 550 base pair region encompassing the transcription start site (TSS) of promoter I.4 was determined using pyrosequencing. Relative aromatase and I.4 promoter specific mRNA expression was determined by qRT-PCR and whole body DXA performed in 25 participants. Results Site-specific DNA methylation varied from 21 ± 10% to 81 ± 11%. In omental adipocytes percentage methylation at the I.4.1 and I.4.2 CpG sites, but not other nearby sites, was negatively correlated with relative aromatase mRNA expression (R = - 0.52, P = 0.017 and R = - 0.52, P = 0.015). In contrast subcutaneous adipocytes percentage DNA methylation at the I.4.3 and I.4.5 sites were positively correlated with relative aromatase mRNA expression (R = 0.47, P = 0.022 and R = 0.55, P = 0.004). In a small subset of patients DNA methylation at the I.4.5 site was also positively correlated with whole body lean mass, bone mineral content and density. Conclusions In conclusion in mature adipocytes, the primary source of estradiol after menopause, increasing DNA methylation was correlated with aromatase mRNA expression and thus estradiol biosynthesis. These findings support a tissue-specific epigenetic regulation of the basal promoter activity in mature adipocytes; the mechanisms influencing this regulation and its physiological role remain to be elucidated.
Collapse
|
28
|
Meinel S, Ruhs S, Schumann K, Strätz N, Trenkmann K, Schreier B, Grosse I, Keilwagen J, Gekle M, Grossmann C. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression. Nucleic Acids Res 2013; 41:8045-60. [PMID: 23821666 PMCID: PMC3783164 DOI: 10.1093/nar/gkt581] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1-MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes.
Collapse
Affiliation(s)
- Sandra Meinel
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, 06112 Halle/Saale, Germany, Institut für Informatik, Universität Halle-Wittenberg, 06120 Halle/Saale, Germany and Abteilung Molekulare Genetik, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karmakar S, Jin Y, Nagaich AK. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity. J Biol Chem 2013; 288:24020-34. [PMID: 23814048 PMCID: PMC3745347 DOI: 10.1074/jbc.m113.473819] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of glucocorticoids in the inhibition of estrogen (17-β-estradiol (E2))-regulated estrogen receptor (ER)-positive breast cancer cell proliferation is well established. We and others have seen that synthetic glucocorticoid dexamethasone (Dex) antagonizes E2-stimulated endogenous ERα target gene expression. However, how glucocorticoids negatively regulate the ERα signaling pathway is still poorly understood. ChIP studies using ERα- and glucocorticoid receptor (GR)-positive MCF-7 cells revealed that GR occupies several ERα-binding regions (EBRs) in cells treated with E2 and Dex simultaneously. Interestingly, there was little or no GR loading to these regions when cells were treated with E2 or Dex alone. The E2+Dex-dependent GR recruitment is associated with the displacement of ERα and steroid receptor coactivator-3 from the target EBRs leading to the repression of ERα-mediated transcriptional activation. The recruitment of GR to EBRs requires assistance from ERα and FOXA1 and is facilitated by AP1 binding within the EBRs. The GR binding to EBRs is mediated via direct protein-protein interaction between the GR DNA-binding domain and ERα. Limited mutational analyses indicate that arginine 488 located within the C-terminal zinc finger domain of the GR DNA-binding domain plays a critical role in stabilizing this interaction. Together, the results of this study unravel a novel mechanism involved in glucocorticoid inhibition of ERα transcriptional activity and E2-mediated cell proliferation and thus establish a foundation for future exploitation of the GR signaling pathway in the treatment of ER-positive breast cancer.
Collapse
Affiliation(s)
- Sudipan Karmakar
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett 2013; 587:1504-9. [PMID: 23542036 DOI: 10.1016/j.febslet.2013.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR), one of the main reasons for diminishing efficacy of prolonged chemotherapy, is frequently caused by the elevated expression of the ABCB1/MDR1 gene encoding PGP (P-glycoprotein). EAPP (E2F Associated PhosphoProtein) is a frequently overexpressed protein in human tumor cells. It inhibits apoptosis in a p21-dependent manner. We show here that EAPP stimulates the MDR1 promoter resulting in higher PGP levels. Independently of EAPP, E2F1 also increases the activity of the MDR1 promoter. Co-expression of pRb inhibits E2F1-, but not EAPP-dependent promoter activation. The upregulation of PGP might contribute to the survival of tumor cells during chemotherapy and worsen the prognosis for the patient.
Collapse
|
31
|
Freeman K, Staehle MM, Vadigepalli R, Gonye GE, Ogunnaike BA, Hoek JB, Schwaber JS. Coordinated dynamic gene expression changes in the central nucleus of the amygdala during alcohol withdrawal. Alcohol Clin Exp Res 2012; 37 Suppl 1:E88-100. [PMID: 22827539 DOI: 10.1111/j.1530-0277.2012.01910.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/06/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic alcohol use causes widespread changes in the cellular biology of the amygdala's central nucleus (CeA), a GABAergic center that integrates autonomic physiology with the emotional aspects of motivation and learning. While alcohol-induced neurochemical changes play a role in dependence and drinking behavior, little is known about the CeA's dynamic changes during withdrawal, a period of emotional and physiologic disturbance. METHODS We used a qRT-PCR platform to measure 139 transcripts in 92 rat CeA samples from control (N = 33), chronically alcohol exposed (N = 26), and withdrawn rats (t = 4, 8, 18, 32, and 48 hours; N = 5, 10, 7, 6, 5). This focused transcript set allowed us to identify significant dynamic expression patterns during the first 48 hours of withdrawal and propose potential regulatory mechanisms. RESULTS Chronic alcohol exposure causes a limited number of small magnitude expression changes. In contrast, withdrawal results in a greater number of large changes within 4 hours of removal of the alcohol diet. Sixty-five of the 139 measured transcripts (47%) showed differential regulation during withdrawal. Over the 48-hour period, dynamic changes in the expression of γ-aminobutyric acid type A (GABA(A) ), ionotropic glutamate and neuropeptide system-related G-protein-coupled receptor subunits, and the Ras/Raf signaling pathway were seen as well as downstream transcription factors (TFs) and epigenetic regulators. Four temporally correlated gene clusters were identified with shared functional roles including NMDA receptors, MAPKKK and chemokine signaling cascades, and mediators of long-term potentiation, among others. Cluster promoter regions shared overrepresented binding sites for multiple TFs including Cebp, Usf-1, Smad3, Ap-2, and c-Ets, suggesting a potential regulatory role. CONCLUSIONS During alcohol withdrawal, the CeA experiences rapid changes in mRNA expression of these functionally related transcripts that were not predicted by measurement during chronic exposure. This study provides new insight into dynamic expression changes during alcohol withdrawal and suggests novel regulatory relationships that potentially impact the aspects of emotional modulation.
Collapse
Affiliation(s)
- Kate Freeman
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Mary M Staehle
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Gregory E Gonye
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Babatunde A Ogunnaike
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology (KF, MMS, RV, GEG, JBH, JSS), Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Chemical Engineering (MMS), Rowan University, Glassboro, New Jersey; Department of Chemical Engineering (MMS, BAO), University of Delaware, Newark, Delaware
| |
Collapse
|
32
|
Amlin-Van Schaick JC, Kim S, DiFabio C, Lee MH, Broman KW, Reilly KM. Arlm1 is a male-specific modifier of astrocytoma resistance on mouse Chr 12. Neuro Oncol 2012; 14:160-74. [PMID: 22234937 DOI: 10.1093/neuonc/nor206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
While many cancers show a sex bias, the genetic basis and molecular mechanisms underlying sex bias are not always clear. Astrocytoma and glioblastoma show male predominance in humans. We have shown previously that glial tumors forming in the Nf1-/+; Trp53-/+cis (NPcis) mouse model also show a sex bias in some genetic contexts. Using cross-species comparisons we have identified candidate male-specific modifiers of astrocytoma/glioblastoma. Linkage analysis of B6X(B6X129)-NPcis mice identifies a modifier of astrocytoma resistance specific to males, named Arlm1, on distal mouse Chr 12. Arlm1 is syntenic to human Chr 7p15, 7p21, 7q36, and 14q32 regions that are altered in human glioblastoma. A subset of these genes shows male-specific correlations to glioblastoma patient survival time and represents strong candidates for the Arlm1 modifier gene. Identification of male-specific modifier genes will lead to a better understanding of the molecular basis of male predominance in astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Jessica C Amlin-Van Schaick
- Mouse Cancer Genetics Program, National Cancer Institute, West 7th St at Fort Detrick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wu JB, Shih JC. Valproic acid induces monoamine oxidase A via Akt/forkhead box O1 activation. Mol Pharmacol 2011; 80:714-23. [PMID: 21775495 PMCID: PMC3187529 DOI: 10.1124/mol.111.072744] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/20/2011] [Indexed: 12/17/2022] Open
Abstract
Valproic acid (VPA) has been widely used in clinics for the treatment of multiple neuropsychiatric disorders, such as epilepsy and bipolar disorder. One of the mechanisms by which VPA exerts its effect is through regulating the brain levels of serotonin. However, the molecular basis of this VPA action is not fully understood. Here, we report for the first time that VPA activates monoamine oxidase (MAO) A catalytic activity, mRNA level, and promoter activity. MAO A is a key enzyme that degrades a number of monoamine neurotransmitters, including serotonin. Our results show that VPA increased the phosphorylation of both Akt and Forkhead box O1 (FoxO1), whereas pretreatment of cells with 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) (a phosphoinositide 3-kinase inhibitor) reduced the VPA activation of MAO A. Overexpression of FoxO1 dramatically repressed both the basal and VPA-induced MAO A catalytic and promoter activities to 30 to 60%. Small interfering RNA knockdown of FoxO1 attenuated the stimulating effect of VPA on MAO A. Moreover, introduction of a constitutively active form of FoxO1 abolished the activation of MAO A by VPA and Akt. These results suggest that FoxO1 is a repressor for MAO A transcription, and its phosphorylation is involved in VPA activation of MAO A. Sequence analysis, electrophoretic mobility shift and chromatin immunoprecipitation assays further showed the presence of a functional FoxO1-binding site in MAO A core promoter. Taken together, these results demonstrate that MAO A is a novel target for VPA via Akt/FoxO1 signaling pathway. This information provides new insights into the pharmacological mechanisms and therapeutic implications of VPA action.
Collapse
Affiliation(s)
- Jason Boyang Wu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
34
|
Johnson S, Stockmeier CA, Meyer JH, Austin MC, Albert PR, Wang J, May WL, Rajkowska G, Overholser JC, Jurjus G, Dieter L, Johnson C, Sittman DB, Ou XM. The reduction of R1, a novel repressor protein for monoamine oxidase A, in major depressive disorder. Neuropsychopharmacology 2011; 36:2139-48. [PMID: 21654740 PMCID: PMC3158311 DOI: 10.1038/npp.2011.105] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The novel transcriptional repressor protein, R1 (JPO2/CDCA7L/RAM2), inhibits monoamine oxidase A (MAO A) gene expression and influences cell proliferation and survival. MAO A is implicated in several neuropsychiatric illnesses and highly elevated in major depressive disorder (MDD); however, whether R1 is involved in these disorders is unknown. This study evaluates the role of R1 in depressed subjects either untreated or treated with antidepressant drugs. R1 protein levels were determined in the postmortem prefrontal cortex of 18 untreated MDD subjects and 12 medicated MDD subjects compared with 18 matched psychiatrically normal control subjects. Western blot analysis showed that R1 was significantly decreased by 37.5% (p<0.005) in untreated MDD subjects. The R1 level in medicated MDD subjects was also significantly lower (by 30%; p<0.05) compared with control subjects, but was not significantly different compared with untreated MDD subjects. Interestingly, the reduction in R1 was significantly correlated with an increase (approximately 40%; p<0.05) in MAO A protein levels within the MDD groups compared with controls. Consistent with the change in MAO A protein expression, the MAO A catalytic activity was significantly greater in both MDD groups compared with controls. These results suggest that reduced R1 may lead to elevated MAO A levels in untreated and treated MDD subjects; moreover, the reduction of R1 has been implicated in apoptotic cell death and apoptosis has also been observed in the brains of MDD subjects. Therefore, modulation of R1 levels may provide a new therapeutic target in the development of more effective strategies to treat MDD.
Collapse
Affiliation(s)
- Shakevia Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey H Meyer
- Department of Psychiatry and Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mark C Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul R Albert
- Department of Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Warren L May
- Biostatistics Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - James C Overholser
- Department of Psychology, Case Western Reserve University, Cleveland, OH, USA
| | - George Jurjus
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Lesa Dieter
- Department of Psychology, Case Western Reserve University, Cleveland, OH, USA
| | - Chandra Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donald B Sittman
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao-Ming Ou
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Department of Psychiatry and Human Behavior (G-109), University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA, Tel: +1 601 984 5893, Fax: +1 601 984 5899, E-mail:
| |
Collapse
|
35
|
Andorfer P, Schwarzmayr L, Rotheneder H. EAPP modulates the activity of p21 and Chk2. Cell Cycle 2011; 10:2077-82. [PMID: 21572256 DOI: 10.4161/cc.10.13.16247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genomic instability is thought to be critical for the development of cancer. Among its causes microsatellite instability (MIN) and chromosomal instability (CIN) have attracted the most attention. Cell cycle checkpoints and DNA repair mechanisms are the first line of defense against DNA damage. Among the most dangerous DNA lesions are double-strand breaks. The response to DNA double strand breaks is regulated mainly by the serine/threonine kinases ATM and Chk2 and their downstream target the tumor suppressor p53, which in turn stimulates the expression of growth-inhibitory genes like p21 or pro-apoptotic genes like Bax. The balance between these gene products determines the fate of a cell. EAPP is a nuclear phosphoprotein that is frequently upregulated in human tumors. We have recently shown that EAPP levels are critical for cellular homeostasis. DNA damage elevates EAPP levels and its overexpression results in G1 arrest and impairs apoptosis in a p21-dependent manner. EAPP binds to the p21 promoter, stimulates its activity and seems to be essential for transcription initiation. In the present work we show that EAPP also regulates the phosphorylation status and thus the activity of Chk2. EAPP binding seems to trigger the dephosphorylation of P-Chk2 resulting in its inactivation. A newly described function of Chk2 in mitosis that secures genomic integrity might also be affected by EAPP overexpression. This might explain the abundance of EAPP in aneuploid tumor cells.
Collapse
Affiliation(s)
- Peter Andorfer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
36
|
Andorfer P, Rotheneder H. EAPP: gatekeeper at the crossroad of apoptosis and p21-mediated cell-cycle arrest. Oncogene 2011; 30:2679-90. [PMID: 21258403 PMCID: PMC3114185 DOI: 10.1038/onc.2010.639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We previously identified and characterized E2F-associated phospho-protein (EAPP), a nuclear phosphoprotein that interacts with the activating members of the E2F transcription factor family. EAPP levels are frequently elevated in transformed human cells. To examine the biological relevance of EAPP, we studied its properties in stressed and unstressed cells. Overexpression of EAPP in U2OS cells increased the fraction of G1 cells and lead to heightened resistance against DNA damage- or E2F1-induced apoptosis in a p21-dependent manner. EAPP itself becomes upregulated in confluent cells and after DNA damage and stimulates the expression of p21 independently of p53. It binds to the p21 promoter and seems to be required for the assembly of the transcription initiation complex. RNAi-mediated knockdown of EAPP expression brought about increased sensitivity towards DNA damage and resulted in apoptosis even in the absence of stress. Our results indicate that the level of EAPP is critical for cellular homeostasis. Too much of it results in G1 arrest and resistance to apoptosis, which, paradoxically, might favor cellular transformation. Too little EAPP seems to retard the expression not only of the p21 gene, but also of a number of other genes and ultimately results in apoptosis.
Collapse
Affiliation(s)
- P Andorfer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|