1
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
2
|
Raza W, Meena A, Luqman S. THF induces apoptosis by downregulating initiation, promotion, and progression phase biomarkers in skin and lung carcinoma. J Biochem Mol Toxicol 2024; 38:e23838. [PMID: 39243196 DOI: 10.1002/jbt.23838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
3,5,7-Trihydroxy-2-phenylchromen-4-one (THF) possesses a diverse range of pharmacological activities. Evidence suggests that THF exerts anticancer activity by distinct mechanisms of action. This study explores the anticancer potential of THF in human lung (A549) and skin (A431) cancer cells by employing different antiproliferative assays. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red uptake, sulphorhodamine B, and cell motility assays were used to confirm the anticancer potential of THF. Cell target-based and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were used to explore the effect of THF on the initiation, promotion and progression phase biomarkers of carcinogenesis. THF suppresses the activity of lipoxygenase-5 up to ~40% in both A549 and A431 cells and up to ~50% hyaluronidase activity in A549 cells. qRT-PCR assay reveals that THF inhibits the activity of phosphatidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin in both cell lines, which is responsible for the initiation of cancer. It also arrests the G2/M phase of the cell cycle in A431 cells and increases the sub-diploid population in both A549 and A431 cell lines which leads to cell death. Annexin V-FITC assay confirmed that THF induces apoptosis and necrosis in A431 and A549 cell lines. Further investigation revealed that THF not only enhances reactive oxygen species production but also modulates mitochondrial membrane potential in both cell lines. It significantly inhibits S-180 tumour formation at 5 and 10 mg/kg bw, i.p. dose. An acute skin toxicity study on mice showed that erythema and edema scores are within the acceptable range, besides acceptable drug-likeness properties and non-toxic effects on human erythrocytes. Conclusively, THF showed potent anticancer activity on skin and lung carcinoma cell lines, suppressed the level of the biomarkers and inhibited tumour growth in mice.
Collapse
Affiliation(s)
- Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Acito M, Varfaj I, Brighenti V, Cengiz EC, Rondini T, Fatigoni C, Russo C, Pietrella D, Pellati F, Bartolini D, Sardella R, Moretti M, Villarini M. A novel black poplar propolis extract with promising health-promoting properties: focus on its chemical composition, antioxidant, anti-inflammatory, and anti-genotoxic activities. Food Funct 2024; 15:4983-4999. [PMID: 38606532 DOI: 10.1039/d3fo05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Emine Ceren Cengiz
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Carla Russo
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Donatella Pietrella
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|
4
|
Manohar SM, Joshi KS. Molecular Pharmacology of Multitarget Cyclin-Dependent Kinase Inhibitors in Human Colorectal Carcinoma Cells. Expert Opin Ther Targets 2023; 27:251-261. [PMID: 37015886 DOI: 10.1080/14728222.2023.2199924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer death. Certain signaling pathways are implicated in colorectal carcinogenesis. Cyclin-dependent kinases (CDKs) are commonly hyperactivated in CRC and hence multitarget CDK inhibitors serve as promising therapeutic drugs against CRC. OBJECTIVE Off-target effects of multitarget CDK inhibitors with differential CDK inhibitory spectrum viz. P276-00 (also known as riviciclib), roscovitine and UCN-01 on CRC cell lines of varied genetic background were delineated. METHOD Protein expression was analyzed for key signaling proteins by western blotting. β-catenin localization was assessed using immunofluorescence. HIF-1 transcriptional activity and target gene expression were studied by reporter gene assay and RT-PCR respectively. Anti-migratory and anti-angiogenic potential was evaluated by wound healing assay and endothelial tube formation assay. RESULTS CDK inhibitors modulated various signaling pathways in CRC and for certain proteins showed a highly cell line-dependent response. Riviciclib and roscovitine inhibited HIF-1 transcriptional activity and HIF-1α accumulation in hypoxic HCT116 cells. Both of these drugs also abrogated migration of HCT116 and in vitro angiogenesis in HUVECs. CONCLUSION Anticancer activity of multitarget CDK inhibitors can be certainly attributed to their off-target effects and should be analyzed while assessing their therapeutic utility against CRC.
Collapse
Affiliation(s)
- Sonal M Manohar
- Department of Biological Sciences, Sunandan Divatia of School of Science, NMIMS (Deemed-to-be) University, Vile Parle (West), Mumbai, India
| | - Kalpana S Joshi
- Discovery Engine, Cipla R and D, Cipla Ltd. Vikhroli (West), Mumbai, India
| |
Collapse
|
5
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
6
|
Song HK, Park SH, Kim HJ, Jang S, Kim T. Alpinia officinarum water extract inhibits the atopic dermatitis-like responses in NC/Nga mice by regulation of inflammatory chemokine production. Biomed Pharmacother 2021; 144:112322. [PMID: 34656059 DOI: 10.1016/j.biopha.2021.112322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Alpinia officinarum (AO) has been traditionally used in Asia as an herbal medicine to treat inflammatory and internal diseases. However, the therapeutic effect of AO on atopic dermatitis (AD) is unclear. Therefore, we examined whether Alpinia officinarum water extract (AOWex) affects AD in vivo and in vitro. Oral administration of AOWex to NC/Nga mice with Dermatophagoies farina extract (DfE)-induced AD-like symptoms significantly reduced the severity of clinical dermatitis, epidermal thickness, and mast cell infiltration into the skin and ear tissue. Decreased total serum IgE, macrophage-derived chemokine (MDC), and regulated on activation, normal T-cell expressed and secreted (RANTES) levels were observed in DfE-induced NC/Nga mice in the AOWex-treated group. These effects were confirmed in vitro using HaCaT cells. Treatment with AOWex inhibited the expression of proinflammatory chemokines such as MDC, RANTES, IP-10 and I-TAC in interferon-γ and tumor necrosis factor-α-stimulated HaCaT cells. The anti-inflammatory effects of AOWex were due to its inhibitory action on MAPK phosphorylation (ERK and JNK), NF-κB, and STAT1. Furthermore, galangin, protocatechuic acid, and epicatechin from AOWex were identified as candidate anti-AD compounds. These results suggest that AOWex exerts therapeutic effects against AD by alleviating AD-like skin lesions, suppressing inflammatory mediators, and inhibiting major signaling molecules.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Sun Haeng Park
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seol Jang
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
7
|
Hajipour H, Nouri M, Ghorbani M, Bahramifar A, Emameh RZ, Taheri RA. Targeted nanostructured lipid carrier containing galangin as a promising adjuvant for improving cytotoxic effects of chemotherapeutic agents. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2353-2362. [PMID: 34522984 DOI: 10.1007/s00210-021-02152-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
Resistance to chemotherapeutic drugs is the main limitation of cancer therapy. The combination use of chemotherapeutic agents and galangin (a naturally active flavonoid) amplifies the effectiveness of cancer treatment. This study aimed to prepare arginyl-glycyl-aspartic acid (RGD) containing nanostructured lipid carrier (NLC-RGD) to improve the bioavailability of galangin and explore its ability in improving the cytotoxic effects of doxorubicin (DOX). Galangin-loaded NLC-RGD was prepared by hot homogenization method and characterized by diverse techniques. Then, cytotoxicity, uptake, and apoptosis induction potential of prepared nanoparticles beside the DOX were evaluated on A549 lung cancer cells. Finally, the expression level of some ABC transporter genes was evaluated in galangin-loaded NLC-RGD-treated cells. Nanoparticles with appropriate characteristics of the delivery system (size: 120 nm, polydispersity index: 0.23, spherical morphology, and loading capacity: 59.3 mg/g) were prepared. Uptake experiments revealed that NLC-RGD promotes the accumulation of galangin into cancerous cells by integrin-mediated endocytosis. Results also showed higher cytotoxicity and apoptotic effects of DOX + galangin-loaded NLC-RGD in comparison to DOX + galangin. Gene expression analysis demonstrated that galangin-loaded NLC-RGD downregulates ABCB1, ABCC1, and ABCC2 more efficiently than galangin. These findings indicated that delivery of galangin by NLC-RGD makes it an effective adjuvant to increase the efficacy of chemotherapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Hamed Hajipour
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Baby J, Devan AR, Kumar AR, Gorantla JN, Nair B, Aishwarya TS, Nath LR. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J Food Biochem 2021; 45:e13761. [PMID: 34028054 DOI: 10.1111/jfbc.13761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Chemopreventive approaches with food-derived phytochemicals are progressively rising as a significant aspect of tumor management and control. Herein, we have showcased the major phytoconstituents belonging to the group of flavanoid, as anti-cancer agents used for the treatment and prevention of hepatocellular carcinoma (HCC). Sorafenib is the sole drug used for the treatment of advanced HCC, but its clinical application is limited because of its severe adverse effects and drug resistance. Diet-based chemoprevention seems to be the way forward for this disease of malignant nature. As HCC is derived from a chronic inflammatory milieu, the regular incorporation of bioactive phytochemicals in the diet will confer protection and prevent progression to hepatocarcinogenesis. Many preclinical studies proved that the health benefits of flavonoids confer cytotoxic potential against various types of cancers including hepatocellular carcinoma. As flavonoids with excellent safety profile are abundantly present in common vegetables and fruits, they can be better utilized for chemoprevention and chemosensitization in such chronic condition. This review highlights the plausible role of the eight most promising flavonoids (Curcumin, Kaempferol, Resveratrol, Quercetin, Silibinin, Baicalein, Galangin and Luteolin) as key orchestrators of chemoprevention in hepatocellular carcinoma with preclinical and clinical evidence. An attempt to address the challenges in its clinical translation is also included. This review also provides an insight into the close association of HCC and metabolic disorders which may further decipher the chemopreventive effect of dietary bioactive from a proof of concept to extensive clinical translation. PRACTICAL APPLICATIONS: According to GLOBOCAN 2020 database, it is estimated that 905,677 new cases of liver cancer and approximately 830,180 deaths related to that. The cancer incidence and mortality are almost similar as it is diagnosed at an advanced stage in patients where systemic drug therapy is the sole approach. Due to the emergence of multidrug resistance and drug-related toxicities, most of the patient can not adhere to the therapy regimen. Flavonoids are known to be a potential anticancer agent with an excellent safety profile. These are found to be effective preclinically against hepatocellular carcinoma through modulation of numerous pathways in hepatocarcinogenesis. But, the bioavailability issue, lack of well designed-validated clinical evidence, the possibility of food-drug interaction etc limit its clinical utility. The research inputs mainly to overcome pharmacokinetic issues along with suitable validation of efficacy and toxicity will be a critical point for establishing flavonoids as an effective, safe, affordable therapeutics.
Collapse
Affiliation(s)
- Jasmine Baby
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | | | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Thanatharayil Sathian Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
9
|
Al Refaey HR, Newairy ASA, Wahby MM, Albanese C, Elkewedi M, Choudhry MU, Sultan AS. Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2. Biol Res 2021; 54:16. [PMID: 34049576 PMCID: PMC8161992 DOI: 10.1186/s40659-021-00339-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated. The current study focused mainly on investigating the molecular mechanism and synergistic effect of anticancer properties of MH on Doxorubicin (DOX)-mediated apoptotic cell death, using two different p53 statuses (HepG2 and Hep3B) and one non-tumorigenic immortalized liver cell line. Results MH treatment showed a proliferative inhibitory effect on tested cells in a dose-dependent manner with IC50 concentration of (6.92 ± 0.005%) and (18.62 ± 0.07%) for HepG2 and Hep3B cells, respectively, and induced dramatic morphological changes of Hep-G2 cells, which considered as characteristics feature of apoptosis induction after 48 h of treatment. Our results showed that MH or combined treatments induced higher cytotoxicity in p53-wild type, HepG2, than in p53-null, Hep3B, cells. Cytotoxicity was not observed in normal liver cells. Furthermore, the synergistic effect of MH and Dox on apoptosis was evidenced by increased annexin-V-positive cells and Sub-G1 cells in both tested cell lines with a significant increase in the percentage of Hep-G2 cells at late apoptosis as confirmed by the flow cytometric analysis. Consistently, the proteolytic activities of caspase-3 and the degradation of poly (ADP-ribose) polymerase were also higher in the combined treatment which in turn accompanied by significant inhibitory effects of pERK1/2, mTOR, S6K, oncogenic β-catenin, and cyclin D1 after 48 h. In contrast, the MH or combined treatment-induced apoptosis was accompanied by significantly upregulated expression of proapoptotic Bax protein and downregulated expression of anti-apoptotic Bcl-2 protein after 48 h. Conclusions Our data showed a synergistic inhibitory effect of MH on DOX-mediated apoptotic cell death in HCC cells. To our knowledge, the present study provides the first report on the anticancer activity of MH and its combined treatment with DOX on HCC cell lines, introducing MH as a promising natural and nontoxic anticancer compound.
Collapse
Affiliation(s)
- Heba R Al Refaey
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Al-Sayeda A Newairy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mayssaa M Wahby
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Chris Albanese
- Oncology and Radiology Departments, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mohamed Elkewedi
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Muhammad Umer Choudhry
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Ahmed S Sultan
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt. .,Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
11
|
Abstract
Flavonoids are tricyclic polyphenolic compounds naturally occurring in plants. Being nature’s antioxidants flavonoids have been shown to reduce the damages induced by oxidative stress in cells. Besides being an antioxidant, flavonols are demonstrated to have anti-infective properties, i.e., antiviral, antifungal, anti-angiogenic, anti-tumorigenic, and immunomodulatory bioproperties. Plants use them as one of their defense mechanisms against radiation-induced DNA damage and also for fungal infections. The use of flavonols for fabrication of new drugs has been underway with objectives to develop safer and effective therapeutic agents. This review covers 15 flavonols for their structure, biological properties, role in plant metabolisms, and current research focused on computational drug design using flavonols for searching drug leads.
Collapse
|
12
|
Fang D, Xiong Z, Xu J, Yin J, Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed Pharmacother 2019; 109:2054-2061. [DOI: 10.1016/j.biopha.2018.09.154] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
|
13
|
Park HB, Tuan NQ, Oh J, Son Y, Hamann MT, Stone R, Kelly M, Oh S, Na M. Sesterterpenoid and Steroid Metabolites from a Deep-Water Alaska Sponge Inhibit Wnt/β-Catenin Signaling in Colon Cancer Cells. Mar Drugs 2018; 16:E297. [PMID: 30150508 PMCID: PMC6164309 DOI: 10.3390/md16090297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 01/22/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is known to play critical roles in a wide range of cellular processes: cell proliferation, differentiation, migration and embryonic development. Importantly, dysregulation of this pathway is tightly associated with pathogenesis in most human cancers. Therefore, the Wnt/β-catenin pathway has emerged as a promising target in anticancer drug screening programs. In the present study, we have isolated three previously unreported metabolites from an undescribed sponge, a species of Monanchora (Order Poecilosclerida, Family Crambidae), closely related to the northeastern Pacific species Monanchora pulchra, collected from deep waters off the Aleutian Islands of Alaska. Through an assortment of NMR, MS, ECD, computational chemical shifts calculation, and DP4, chemical structures of these metabolites have been characterized as spirocyclic ring-containing sesterterpenoid (1) and cholestane-type steroidal analogues (2 and 3). These compounds exhibited the inhibition of β-catenin response transcription (CRT) through the promotion of β-catenin degradation, which was in part implicated in the antiproliferative activity against two CRT-positive colon cancer cell lines.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.
| | - Nguyen Quoc Tuan
- Department of Pharmacognosy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
- Phúthọ College of Pharmacy, Viettri City, Phúthọ Province 293500, Vietnam.
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.
| | - Younglim Son
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS program, Kookmin University, Seoul 136-702, Korea.
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Robert Stone
- Auke Bay Laboratories, Alaska Fisheries Science Center, NOAA National Marine Fisheries Service, Juneau, AK 99801, USA.
| | - Michelle Kelly
- Coast and Oceans National Centre, National Institute of Water and Atmospheric Research, Auckland Central 1149, New Zealand.
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS program, Kookmin University, Seoul 136-702, Korea.
| | - MinKyun Na
- Department of Pharmacognosy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
14
|
Park B, Lim JW, Kim H. Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cells. Nutr Res 2018; 70:70-81. [PMID: 30098838 DOI: 10.1016/j.nutres.2018.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/05/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori (H pylori) colonizes the human stomach and increases the risk of gastric diseases including gastric cancer. H pylori increases reactive oxygen species (ROS), which activate Janus-activator kinase 1 (Jak1)/signal transducers and activators of transcription 3 (Stat3) in gastric epithelial cells. ROS mediate hyperproliferation, a hallmark of carcinogenesis, by activating Wnt/β-catenin signaling in various cells. Lycopene is a potent antioxidant exhibiting anticancer effects. We hypothesized that lycopene may inhibit H pylori-induced hyperproliferation by suppressing ROS-mediated activation of Jak1/Stat3 and Wnt/β-catenin signaling, and β-catenin target gene expression in gastric epithelial cells. We determined cell viability, ROS levels, and the protein levels of phospho- and total Jak1/Stat3, Wnt/β-catenin signaling molecules, Wnt-1, lipoprotein-related protein 5, and β-catenin target oncogenes (c-Myc and cyclin E) in H pylori-infected gastric epithelial AGS cells. The Jak1/Stat3 inhibitor AG490 served as the control treatment. The significance of the differences among groups was calculated using the 1-way analysis of variance followed by Newman-Keuls post hoc tests. The results show that lycopene reduced ROS levels and inhibited Jak1/Stat3 activation, alteration of Wnt/β-catenin multiprotein complex molecules, expression of c-Myc and cyclin E, and cell proliferation in H pylori-infected AGS cells. AG490 similarly inhibited H pylori-induced cell proliferation, alteration of Wnt/β-catenin multiprotein complex molecules, and oncogene expression. H pylori increased the levels of Wnt-1 and its receptor lipoprotein-related protein 5; this increase was inhibited by either lycopene or AG490 in AGS cells. In conclusion, lycopene inhibits ROS-mediated activation of Jak1/Stat3 and Wnt/β-catenin signaling and, thus, oncogene expression in relation to hyperproliferation in H pylori-infected gastric epithelial cells. Lycopene might be a potential and promising nutrient for preventing H pylori-associated gastric diseases including gastric cancer.
Collapse
Affiliation(s)
- Bohye Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
15
|
Propolis and Its Potential to Treat Gastrointestinal Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2035820. [PMID: 29736177 PMCID: PMC5875067 DOI: 10.1155/2018/2035820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
There are a number of disorders that affect the gastrointestinal tract. Such disorders have become a global emerging disease with a high incidence and prevalence rates worldwide. Inflammatory and ulcerative processes of the stomach or intestines, such as gastritis, ulcers, colitis, and mucositis, afflict a significant proportion of people throughout the world. The role of herbal-derived medicines has been extensively explored in order to develop new effective and safe strategies to improve the available gastrointestinal therapies that are currently used in the clinical practice. Studies on the efficacy of propolis (a unique resinous aromatic substance produced by honeybees from different types of species of plants) are promising and propolis has been effective in the treatment of several pathological conditions. This review, therefore, summarizes and critiques the contents of some relevant published scientific papers (including those related to clinical trials) in order to demonstrate the therapeutic value of propolis and its active compounds in the treatment and prevention of gastrointestinal diseases.
Collapse
|
16
|
Chung KW, Jeong HO, Lee EK, Kim SJ, Chun P, Chung HY, Moon HR. Evaluation of Antimelanogenic Activity and Mechanism of Galangin in Silico and in Vivo. Biol Pharm Bull 2018; 41:73-79. [DOI: 10.1248/bpb.b17-00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Galangin induces cell death by modulating the expression of glyoxalase-1 and Nrf-2 in HeLa cells. Chem Biol Interact 2017; 279:1-9. [PMID: 29113808 DOI: 10.1016/j.cbi.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022]
Abstract
The present study was designed to understand the anticancer property and molecular mechanisms associated with chemo preventive effects of galangin. The anticancer effect was evaluated in vitro using human cervical cancer cell line (HeLa). Galangin was found to be effective in inducing cell death and inhibiting proliferation & migration significantly. The inhibitory effect of galangin could be correlated with the increase in ROS production & induction of apoptosis. Besides this the activity of glyoxalase-1, an enzyme important for the detoxification of cytotoxic metabolite methy glyoxal and Nrf-2 (a trascription factor), involved in redox signalling were found to be decreased. We concluded that galangin exerts its chemo preventive effect via redox signalling by inhibiting glyoxalase-1 & increasing oxidative & carbonyl stress.
Collapse
|
18
|
Lei D, Zhang F, Yao D, Xiong N, Jiang X, Zhao H. Galangin increases ERK1/2 phosphorylation to decrease ADAM9 expression and prevents invasion in A172 glioma cells. Mol Med Rep 2017; 17:667-673. [PMID: 29115634 DOI: 10.3892/mmr.2017.7920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Galangin (3,5,7‑trihydroxyflavone), is a natural flavonoid present in plants. Galangin is reported to exhibit anti‑cancer properties against various cancer types. The aim of the present study was to display the effects of galangin on glioma and its mechanism of action in A172 human glioma cancer cells. The results clearly indicated that treatment of galangin inhibited A172 cell migration and invasion under non‑toxic doses. A human proteinase array assay was conducted to elucidate the potential effects of galangin, and the obtained results demonstrated that treatment of galangin inhibited ADAM9 protein expression and mRNA expression, that are known to contribute to cancer progression. Sustained extracellular signal‑regulated kinase (Erk)1/2 activation was also monitored, which contributed to ADAM9 protein expression and mRNA inhibition as investigated using western blotting analysis and reverse transcription‑quantitative polymerase chain reaction experiment. Erk1/2 inhibition by inhibitor or small interfering (si)Erk transfection markedly terminated galangin‑inhibited A172 migration and invasion via an Erk1/2 activation mechanism. Collective results suggested that galangin may act as an effective chemotherapeutic agent for glioma cancer depending on its ability to bring about ADAM9 and Erk1/2 activation.
Collapse
Affiliation(s)
- Deqiang Lei
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dongxiao Yao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nanxiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
19
|
Tomar A, Vasisth S, Khan SI, Malik S, Nag TC, Arya DS, Bhatia J. Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:154-161. [PMID: 28899498 DOI: 10.1016/j.phymed.2017.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/10/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND PURPOSE Cisplatin is a widely used chemotherapeutic agent but now-a-days its usage is limited in clinical chemotherapy because of its severe nephrotoxic effect on renal tissues. Galangin, a flavonoid obtained from ginger family has been demonstrated to have antioxidant, anti-apoptotic and anti-inflammatory properties. This study is aimed to investigate the possible ameliorative effect of galangin in a rodent model of cisplatin-induced nephrotoxicity. MATERIAL AND METHODS Adult male albino wistar rats were divided into six groups (n=6) viz normal, cisplatin-control, galangin (25, 50 and 100mg/kg p.o.) and per se (100mg/kg galangin, p.o.). Galangin was administrated orally to the rats for a period of 10 days. On the 7th day of the treatment, nephrotoxicity was induced in all the groups by a single dose of cisplatin (8mg/kg, i.p.) (except normal and per se group). On the 11th day, the rats were anaesthetized and blood was withdrawn via direct heart puncture for biochemical estimation. Rats were sacrificed and kidneys were isolated and preserved for evaluation of histopathological, ultra structural immunohistochemical studies and western blot analysis. RESULTS Cisplatin significantly impaired renal function and increased oxidative stress and inflammation. It also increased expression of pro-apoptotic proteins Bax and caspase-3 and decreased the expression of the anti-apoptotic protein Bcl-2. Histological and ultrastructural findings were also supportive of renal tubular damage. Pretreatment with galangin (100mg/kg p.o.) preserved renal function, morphology, suppressed oxidative stress, inflammation and the activation of apoptotic pathways. TUNEL assay showed decreased DNA fragmentation on galangin pre-treatment. Furthermore, galangin (100mg/kg) pre-treatment also reduced the expression of NFκB along with proteins MAPK pathway i.e. p38, JNK and ERK1/2. CONCLUSION In conclusion, Galangin (100mg/kg, p.o.) significantly ameliorated cisplatin induced nephrotoxicity by suppressing MAPK induced inflammation and apoptosis.
Collapse
Affiliation(s)
- Ameesha Tomar
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Swati Vasisth
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamveer Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
20
|
Smenospongidine suppresses the proliferation of multiple myeloma cells by promoting CCAAT/enhancer-binding protein homologous protein-mediated β-catenin degradation. Arch Pharm Res 2017; 40:592-600. [DOI: 10.1007/s12272-017-0906-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/26/2017] [Indexed: 11/27/2022]
|
21
|
Singh B, Sahu PM, Sharma RA. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II. Cytotechnology 2016; 69:103-115. [PMID: 27905025 DOI: 10.1007/s10616-016-0041-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
The flavonoids are the largest group of phenolic compounds isolated from a wide range of higher plants. These compounds work as antimicrobials, anti-insect agents and protect plants from other types of biotic and abiotic stresses. Various researchers have suggested that flavonoids possessed antioxidant, antineoplastic and cytotoxic activities. The main objective of this study was to test dichloromethane fraction of resinous exudate of Heliotropium subulatum for their antioxidant, antineoplastic and cytotoxic activities, as well as to search new antioxidant and antineoplastic agents for pharmaceutical formulations. Five flavonoids were isolated from resinous exudate of this plant species and screened for their in vitro and in vivo antioxidant models (DPPH radical scavenging, reducing power, superoxide anion scavenging, metal chelating scavenging systems, catalase and lipid peroxidation), antineoplastic (Sarcoma 180), and cytotoxic (Chinese hamster V79 cells) activities. Tricetin demonstrated maximum antioxidant activity against both in vitro and in vivo experimental systems while galangin exhibited maximum inhibition (78.35%) at a dose of 10 µg/kg/day against Sarcoma 180. Similarly, it was found that galangin also showed highest activity (21.1 ± 0.15%) at a concentration of 70 µg/ml to Chinese hamster V79 cells. The observed results suggest that tricetin has a potential to scavenge free radicals in both in vitro and in vivo models while the galangin could be considered as antitumor and cytotoxic agent.
Collapse
Affiliation(s)
- Bharat Singh
- Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India.
| | - Pooran M Sahu
- Medicinal Plants Research Laboratory, Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - Ram A Sharma
- Medicinal Plants Research Laboratory, Department of Botany, University of Rajasthan, Jaipur, 302004, India
| |
Collapse
|
22
|
Sulaiman GM. Molecular structure and anti-proliferative effect of galangin in HCT-116 cells: In vitro study. Food Sci Biotechnol 2016; 25:247-252. [PMID: 30263264 PMCID: PMC6049387 DOI: 10.1007/s10068-016-0036-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/06/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Galangin is a naturally occurring plant flavonoid with potential anticancer activity. In present work, the Becke three-parameter hybrid exchange functional method and the Lee-Yang-Parr correction functional methods were used to investigate the structural properties of galangin. The structure-activity relationship analysis has been performed to determine its antioxidant pharmacophore by using density functional theory method and quantum chemical calculations. The free radical scavenging activities of galangin were analyzed with the use of 2, 2-diphenyl-1-picrylhydrazyl and compared with Vitamin C as a control. Galangin decreased the cell proliferation rate in HCT-116 cells and showed concentration- and time-dependent response. Galangin significantly increase the inhibitory effect on HCT-116 clonogenicity and promotes cell cycle arrest at the G2/M or G1 phase, as confirmed by flow cytometry analysis.
Collapse
|
23
|
Subramanian AP, John AA, Vellayappan MV, Balaji A, Jaganathan SK, Mandal M, Supriyanto E. Honey and its Phytochemicals: Plausible Agents in Combating Colon Cancer through its Diversified Actions. J Food Biochem 2016. [DOI: 10.1111/jfbc.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Aruna Priyadharshni Subramanian
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Agnes Aruna John
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Muthu Vignesh Vellayappan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Arunpandian Balaji
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Saravana Kumar Jaganathan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Mahitosh Mandal
- School of Medical Science and Technology; Indian Institute of Technology; West Bengal India
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| |
Collapse
|
24
|
Martinotti S, Ranzato E. Propolis: a new frontier for wound healing? BURNS & TRAUMA 2015; 3:9. [PMID: 27574655 PMCID: PMC4964312 DOI: 10.1186/s41038-015-0010-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
Propolis is a resin produced by honeybees by mixing wax, pollen, salivary secretions, and collected natural resins. The precise composition of propolis varies with the source, and over 300 chemical components belonging to the flavonoids, terpenes, and phenolic acids have been identified in propolis. Moreover, its chemical composition is subjected to the geographical location, botanical origin, and bee species. Propolis and its compounds have been the focus of many works due to their antimicrobial and anti-inflammatory activity; however, it is now recognized that propolis also possesses regenerative properties. There is an increasing interest in the healing potential of natural products, considering the availability and low cost of these products. Propolis contains a huge number of compounds that explicate some biological effects that speeds up the healing process and is widely used in folk remedies. This review aims to condense the results on the mechanism of activity of propolis and its compounds.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, "Amedeo Avogadro", viale Teresa Michel, 11-15121 Alessandria, Italy
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, "Amedeo Avogadro", viale Teresa Michel, 11-15121 Alessandria, Italy
| |
Collapse
|
25
|
Chen F, Tan YF, Li HL, Qin ZM, Cai HD, Lai WY, Zhang XP, Li YH, Guan WW, Li YB, Zhang JQ. Differential systemic exposure to galangin after oral and intravenous administration to rats. Chem Cent J 2015; 9:14. [PMID: 25873994 PMCID: PMC4395966 DOI: 10.1186/s13065-015-0092-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Galangin (3,5,7-trihydroxyflavone) is present in high concentrations in herbal medicine such as Alpinia officinarum Hance. Galangin shows multifaceted in vitro and in vivo biological activities. The number and position of hydroxyl groups in this molecule play an important role in these biological activities. However, these hydroxyl groups undergo glucuronidation and sulfation in in vitro assay system. However, the systemic exposure to galangin after dosing in animals and/or humans remains largely unknown. Thus it is not clear whether the galangin exists in the body at concentrations high enough for the biological effects. Furthermore, the metabolite identification and the corresponding plasma pharmacokinetics need to be characterized. Results Two LC-MS/MS methods were developed and validated and successfully applied to analyze the parent drug molecules and aglycones liberated from plasma samples via β-glucuronidase hydrolysis. Our major findings were as follows: (1) The routes of administration showed significant influences on the systemic exposure of galangin and its metabolites. (2) Galangin was preferentially glucuronidated after p.o. dosing but sulfated after i.v. medication. (3) Kaempferol conjugates were detected demonstrating that oxidation reaction occurred; however, both glucuronidation and sulfation were more efficient. (4) Oral bioavailability of free parent galangin was very low. Conclusions Systemic exposure to galangin and its metabolites was different in rat plasma between oral and intravenous administration. Further research is needed to characterize the structures of galangin conjugates and to evaluate the biological activities of these metabolites. Galangin was preferentially glucuronidated after p.o. dosing but sulfated after i.v. medication. ![]()
Collapse
Affiliation(s)
- Feng Chen
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Yin-Feng Tan
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Hai-Long Li
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Zhen-Miao Qin
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Hong-Die Cai
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China.,Nanjing University of Chinese Medicine, Nanjing, 210046 China
| | - Wei-Yong Lai
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Xiao-Po Zhang
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Yong-Hui Li
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Wei-Wei Guan
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - You-Bin Li
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Jun-Qing Zhang
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| |
Collapse
|
26
|
Hwang IH, Oh J, Zhou W, Park S, Kim JH, Chittiboyina AG, Ferreira D, Song GY, Oh S, Na M, Hamann MT. Cytotoxic activity of rearranged drimane meroterpenoids against colon cancer cells via down-regulation of β-catenin expression. JOURNAL OF NATURAL PRODUCTS 2015; 78:453-61. [PMID: 25590830 PMCID: PMC4380199 DOI: 10.1021/np500843m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Colorectal cancer has emerged as a major cause of death in Western countries. Down-regulation of β-catenin expression has been considered a promising approach for cytotoxic drug formulation. Eight 4,9-friedodrimane-type sesquiterpenoids (1-8) were acquired using the oxidative potential of Verongula rigida on bioactive metabolites from two Smenospongia sponges. Compounds 3 and 4 contain a 2,2-dimethylbenzo[d]oxazol-6(2H)-one moiety as their substituted heterocyclic residues, which is unprecedented in such types of meroterpenoids. Gauge-invariant atomic orbital NMR chemical shift calculations were employed to investigate stereochemical details with support of the application of advanced statistics such as CP3 and DP4. Compounds 2 and 8 and the mixture of 3 and 4 suppressed β-catenin response transcription (CRT) via degrading β-catenin and exhibited cytotoxic activity on colon cancer cells, implying that their anti-CRT potential is, at least in part, one of their underlying antineoplastic mechanisms.
Collapse
Affiliation(s)
- In Hyun Hwang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joonseok Oh
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
| | - Wei Zhou
- College
of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Seoyoung Park
- Department
of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Joo-Hyun Kim
- Department
of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Amar G. Chittiboyina
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
| | - Daneel Ferreira
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
| | - Gyu Yong Song
- College
of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Sangtaek Oh
- Department
of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
- Tel: +82 2 910 5732. Fax: +82-2-910-5739. E-mail: (S. Oh)
| | - MinKyun Na
- College
of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea
- Tel: +82 42 821 5925. Fax: +82 42 823 6566. E-mail: (M.
Na)
| | - Mark T. Hamann
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
- Tel: +1 662
915 5730. Fax: +1 662 915 6975. E-mail: (M. T. Hamann)
| |
Collapse
|
27
|
Fuentes RG, Arai MA, Ishibashi M. Natural compounds with Wnt signal modulating activity. Nat Prod Rep 2015; 32:1622-8. [DOI: 10.1039/c5np00074b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article highlights natural compounds that are reported to modulate the Wnt signalling activity. The plausible mechanisms of action of the natural Wnt modulators are also presented.
Collapse
Affiliation(s)
- Rolly G. Fuentes
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
- Division of Natural Sciences and Mathematics
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chiba 260-8675
- Japan
| |
Collapse
|
28
|
Jung YC, Kim ME, Yoon JH, Park PR, Youn HY, Lee HW, Lee JS. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation. Immunopharmacol Immunotoxicol 2014; 36:426-32. [DOI: 10.3109/08923973.2014.968257] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Wang Y, Wu J, Lin B, Li X, Zhang H, Ding H, Chen X, Lan L, Luo H. Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway. Toxicology 2014; 326:9-17. [PMID: 25268046 DOI: 10.1016/j.tox.2014.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 12/19/2022]
Abstract
Galangin can suppress hepatocellular carcinoma (HCC) cell proliferation. In this study, we demonstrated that galangin induced autophagy by activating the transforming growth factor (TGF)-β receptor/Smad pathway and increased TGF-β receptor I (RI), TGF-βRII, Smad1, Smad2, Smad3 and Smad4 levels but decreased Smad6 and Smad7 levels. Autophagy induced by galangin appears to depend on the TGF-β receptor/Smad signalling pathway because the down-regulation of Smad4 by siRNA or inhibition of TGF-β receptor activation by LY2109761 blocked galangin-induced autophagy. The down-regulation of Beclin1, autophagy-related gene (ATG) 16L, ATG12 and ATG3 restored HepG2 cell proliferation and prevented galangin-induced apoptosis. Our findings indicate a novel mechanism for galangin-induced autophagy via activation of the TGF-β receptor/Smad pathway. The induction of autophagy thus reflects the anti-proliferation effect of galangin on HCC cells.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China; Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Jun Wu
- Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Biyun Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China
| | - Xv Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China.
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China
| | - Xiaoyi Chen
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China
| | - Liubo Lan
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, China
| | - Hui Luo
- Department of Chemistry, Guangdong Medical College, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
30
|
Inhibitory effect of galangin on atopic dermatitis-like skin lesions. Food Chem Toxicol 2014; 68:135-41. [DOI: 10.1016/j.fct.2014.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 11/22/2022]
|
31
|
Devadoss D, Ramar M, Chinnasamy A. Galangin, a dietary flavonol inhibits tumor initiation during experimental pulmonary tumorigenesis by modulating xenobiotic enzymes and antioxidant status. Arch Pharm Res 2014; 41:265-275. [DOI: 10.1007/s12272-014-0330-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
|
32
|
Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem Toxicol 2013; 62:810-6. [DOI: 10.1016/j.fct.2013.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/09/2013] [Accepted: 10/12/2013] [Indexed: 01/17/2023]
|
33
|
Chirumbolo S. Anticancer properties of the flavone wogonin. Toxicology 2013; 314:60-4. [DOI: 10.1016/j.tox.2013.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/27/2022]
|
34
|
Narwal M, Koivunen J, Haikarainen T, Obaji E, Legala OE, Venkannagari H, Joensuu P, Pihlajaniemi T, Lehtiö L. Discovery of tankyrase inhibiting flavones with increased potency and isoenzyme selectivity. J Med Chem 2013; 56:7880-9. [PMID: 24116873 DOI: 10.1021/jm401463y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tankyrases are ADP-ribosyltransferases that play key roles in various cellular pathways, including the regulation of cell proliferation, and thus, they are promising drug targets for the treatment of cancer. Flavones have been shown to inhibit tankyrases and we report here the discovery of more potent and selective flavone derivatives. Commercially available flavones with single substitutions were used for structure-activity relationship studies, and cocrystal structures of the 18 hit compounds were analyzed to explain their potency and selectivity. The most potent inhibitors were also tested in a cell-based assay, which demonstrated that they effectively antagonize Wnt signaling. To assess selectivity, they were further tested against a panel of homologous human ADP-ribosyltransferases. The most effective compound, 22 (MN-64), showed 6 nM potency against tankyrase 1, isoenzyme selectivity, and Wnt signaling inhibition. This work forms a basis for rational development of flavones as tankyrase inhibitors and guides the development of other structurally related inhibitors.
Collapse
Affiliation(s)
- Mohit Narwal
- Department of Biochemistry and Biocenter Oulu, University of Oulu , Oulu 90570, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ha TK, Kim ME, Yoon JH, Bae SJ, Yeom J, Lee JS. Galangin induces human colon cancer cell death via the mitochondrial dysfunction and caspase-dependent pathway. Exp Biol Med (Maywood) 2013; 238:1047-54. [PMID: 23925650 DOI: 10.1177/1535370213497882] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Galangin is a member of flavonols and found in Alpinia officinarum, galangal root, and propolis. Previous studies have demonstrated that galangin has anti-cancer effects on several cancers, including melanoma, hepatoma, and leukaemia cells. However, anti-cancer activity of galangin on human colon cancer has not been established yet. In this study, we investigated the anti-cancer effects of galangin on two types of human colon cancer cells (HCT-15 and HT-29). We found that galangin induced apoptosis and DNA condensation of human colon cancer cells in a dose-dependent manner. We also determined that galangin increased the activation of caspase-3 and -9, and release of apoptosis inducing factor from the mitochondria into the cytoplasm by Western blot analysis. In addition, galangin induced human colon cancer cell death through the alteration of mitochondria membrane potential and dysfunction. These results suggest that galangin induces apoptosis of HCT-15 and HT-29 human colon cancer cells and may prove useful in the development of therapeutic agents for human colon cancer.
Collapse
Affiliation(s)
- Tae Kwun Ha
- Department of Surgery, Inje University College of Medicine, Busan Paik Hospital, Busan 633-165, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Jung CH, Jang SJ, Ahn J, Gwon SY, Jeon TI, Kim TW, Ha TY. Alpinia officinarum inhibits adipocyte differentiation and high-fat diet-induced obesity in mice through regulation of adipogenesis and lipogenesis. J Med Food 2013; 15:959-67. [PMID: 23126661 DOI: 10.1089/jmf.2012.2286] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although Alpinia officinarum has been used in traditional medicine for the treatment of several conditions, such as abdominal pain, emesis, diarrhea, impaired renal function, and dysentery, little is known about its function in obesity. In this study, we investigated the antiobesity effect of A. officinarum ethanol extract (AOE) on lipid accumulation in 3T3-L1 cells and obesity in mice fed a high-fat diet (HFD). AOE dose-dependently suppressed lipid accumulation during differentiation of 3T3-L1 preadipocytes by downregulating CCAAT enhancer binding protein α (C/EBPα), sterol regulatory element binding protein-1 (SREBP-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) genes. Galangin, a major component of A. officinarum, had antiadipogenic effects in 3T3-L1 cells. AOE supplementation in mice fed a HFD revealed that AOE significantly decreased HFD-induced increases in body, liver, and white adipose tissue weights and decreased serum insulin and leptin levels. To elucidate the inhibitory mechanism of AOE in obesity, lipid metabolism-related genes were identified. AOE efficiently suppressed protein expressions of C/EBPα, fatty acid synthase, SREBP-1, and PPAR-γ in the liver and adipose tissue. The protein expression patterns, observed by immunoblot, were confirmed by quantitative real-time polymerase chain reaction. Collectively, these results suggest that AOE prevents obesity by suppressing adipogenic and lipogenic genes. AOE has potential for use as an antiobesity therapeutic agent that can function by regulating lipid metabolism.
Collapse
Affiliation(s)
- Chang Hwa Jung
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Park JH, Kwon HY, Sohn EJ, Kim KA, Kim B, Jeong SJ, Song JH, Koo JS, Kim SH. Inhibition of Wnt/β-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells. Pharmacol Rep 2013; 65:1366-74. [PMID: 24399733 DOI: 10.1016/s1734-1140(13)71495-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 06/07/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ursolic acid, a pentacyclic triterpenoid, is known to exert antitumor activity in breast, lung, liver and colon cancers. Nonetheless, the underlying mechanism of ursolic acid in prostate cancer cells still remains unclear. To investigate the antitumor mechanism, the apoptotic mechanism of ursolic acid via Wnt/β-catenin signaling was examined in PC-3 prostate cancer cells. METHODS Cytotoxicity assay, flow cytometry, immunofluorescence assay and western blotting were performed. RESULTS Ursolic acid showed cytotoxicity against PC-3, LNCaP and DU145 prostate cancer cells with IC50 of 35 μM, 47 μM and 80 μM, respectively. Also, ursolic acid significantly increased the number of ethidium homodimer stained cells and apoptotic bodies, and dose-dependently enhanced the sub-G1 apoptotic accumulation in PC-3 cells. Consistently, western blotting revealed that ursolic acid effectively cleaved poly (ADP-ribose) polymerase (PARP), activated caspase-9 and -3, suppressed the expression of survival proteins such as Bcl-XL, Bcl-2 and Mcl-1, and upregulated the expression of Bax in PC-3 cells. Interestingly, ursolic acid suppressed the expression of Wnt5α/β and β-catenin, and enhanced the phosphorylation of glycogen synthase kinase 3 β (GSK3β). Furthermore, the GSK3β inhibitor SB216763 or Wnt3a-conditioned medium (Wnt3a-CM) reversed the cleavages of caspase-3 and PARP induced by ursolic acid in PC-3 cells. CONCLUSIONS Our findings suggest that ursolic acid induces apoptosis via inhibition of the Wnt5/β-catenin pathway and activation of caspase in PC-3 prostate cancer cells. These results support scientific evidence that medicinal plants containing ursolic acid can be applied to cancer prevention and treatment as a complement and alternative medicine (CAM) agent.
Collapse
Affiliation(s)
- Ji-Hyuk Park
- College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang W, Tang B, Huang Q, Hua Z. Galangin inhibits tumor growth and metastasis of B16F10 melanoma. J Cell Biochem 2012; 114:152-61. [DOI: 10.1002/jcb.24312] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/26/2012] [Indexed: 11/10/2022]
|
39
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Oh ST. Identification of Antimycin A as a Small Molecule Inhibitor of the Wnt/β-catenin Pathway. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.4.1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Patel D, Patel K, Gadewar M, Tahilyani V. Pharmacological and bioanalytical aspects of galangin-a concise report. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60205-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|