1
|
Kido Y, Nanchi I, Matsuzaki T, Watari R, Kiyohara H, Seki N, Okuda T. Prediction of drug-drug interaction risk of P-glycoprotein substrate in drug discovery. Drug Metab Pharmacokinet 2024; 56:101008. [PMID: 38663183 DOI: 10.1016/j.dmpk.2024.101008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 06/24/2024]
Abstract
We aimed at predicting the drug-drug interaction (DDI) risk of P-glycoprotein (P-gp) substrates by using P-gp expressing LLC-PK1 cells and its knockout mice (KO). The area under the curve (AUC) of 16 marketed drugs and plasma concentration (Cplasma) of 207 screening compounds, with corrected efflux ratio (CER) ≥ 2, were compared between P-gp KO mice and wild type mice (WT). At permeability (Papp) ≥ 10 × 10-6 cm/s in parent LLC-PK1 cells, AUC ratios (KO/WT) and Cplasma ratios (KO/WT) of these compounds were within 3-fold. AUC ratios (KO/WT) of clinical P-gp substrates, with human AUC ratios with and without P-gp inhibitor administration ≥2, were higher than 8.7. These observations led us to establish a work-flow of P-gp substrate assessment with the threshold AUC ratio (KO/WT) ≥ 9 leading to a DDI risk of AUC ratio (human) ≥ 2. A screening compound showing high CER (=57.6) was found, but its AUC ratio (KO/WT) was 3.7, had been presumed to be a weak risk and its AUC ratio (human) was 1.2 in a later clinical DDI study. Our proposed workflow should be useful for predicting the DDI risk of P-gp substrates in drug discovery.
Collapse
Affiliation(s)
- Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Isamu Nanchi
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Takanobu Matsuzaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Hayato Kiyohara
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Naomi Seki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Tomohiko Okuda
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| |
Collapse
|
2
|
Kido Y, Nanchi I, Fusamae Y, Matsuzaki T, Akazawa T, Sawada H, Iwasaki M, Nishida K, Tsuchiya E, Okuda T. Species difference in brain penetration of P-gp and BCRP substrates among monkey, dog and mouse. Drug Metab Pharmacokinet 2021; 42:100426. [PMID: 34974334 DOI: 10.1016/j.dmpk.2021.100426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
The brain penetration of 19 drugs, including P-glycoprotein (P-gp) and/or breast cancer resistance protein (BCRP) substrates, was compared among mice, cynomolgus monkeys and beagle dogs. The brain-to-plasma concentration ratios (Kp,brain) of the tested compounds in monkey and dog showed good correlation, whereas species differences were observed between non-rodents (monkey/dog) and rodents (mouse). In particular, the Kp,brain values of 7 compounds out of 12 P-gp substrates (Kp,brain ratio in P-gp knockout mice versus wild-type mice ≥3) in monkey and dog were more than three-fold higher than those in mice and a similar trend was observed in the brain-to-plasma unbound concentration ratios (Kp,uu,brain). The cerebral spinal fluid (CSF) drug concentrations (CCSF), a surrogate for unbound brain concentration (Cu,brain), were also compared between dog and monkey, and the CSF-to-plasma unbound concentration ratios (Kp,uu,CSF) of BCRP substrates in dog were notably higher than those in monkey, although non-bcrp substrates showed good correlation. Also, the Kp,uu,CSF values of BCRP substrates in dog were clearly higher than the Kp,uu,brain values, indicating that the dog CCSF of BCRP substrates was not suitable as a surrogate of Cu,brain. These observations should be useful when selecting the appropriate animal models for CNS drug discovery.
Collapse
Affiliation(s)
- Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Isamu Nanchi
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd., Osaka, Japan.
| | - Yasuyuki Fusamae
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd., Osaka, Japan.
| | - Takanobu Matsuzaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Takanori Akazawa
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Hiromi Sawada
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Makoto Iwasaki
- Shionogi Techno Advance Research & Co., Ltd, Osaka, Japan.
| | - Kimiko Nishida
- Shionogi Techno Advance Research & Co., Ltd, Osaka, Japan.
| | | | - Tomohiko Okuda
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd., Osaka, Japan.
| |
Collapse
|
3
|
Differences in P-glycoprotein activity in human and rodent blood-brain barrier assessed by mechanistic modelling. Arch Toxicol 2021; 95:3015-3029. [PMID: 34268580 PMCID: PMC8380243 DOI: 10.1007/s00204-021-03115-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
Variation in the efficacy and safety of central nervous system drugs between humans and rodents can be explained by physiological differences between species. An important factor could be P-glycoprotein (Pgp) activity in the blood–brain barrier (BBB), as BBB expression of this drug efflux transporter is reportedly lower in humans compared to mouse and rat and subject to an age-dependent increase. This might complicate animal to human extrapolation of brain drug disposition and toxicity, especially in children. In this study, the potential species-specific effect of BBB Pgp activity on brain drug exposure was investigated. An age-dependent brain PBPK model was used to predict cerebrospinal fluid and brain mass concentrations of Pgp substrate drugs. For digoxin, verapamil and quinidine, in vitro kinetic data on their transport by Pgp were derived from literature and used to scale to in vivo parameters. In addition, age-specific digoxin transport was simulated for children with a postnatal age between 25 and 81 days. BBB Pgp activity in the model was optimized using measured CSF data for the Pgp substrates ivermectin, indinavir, vincristine, docetaxel, paclitaxel, olanzapine and citalopram, as no useful in vitro data were available. Inclusion of Pgp activity in the model resulted in optimized predictions of their brain concentration. Total brain-to-plasma AUC values (Kp,brain) in the simulations without Pgp were divided by the Kp,brain values with Pgp. Kp ratios ranged from 1 to 45 for the substrates investigated. Comparison of human with rodent Kp,brain ratios indicated ≥ twofold lower values in human for digoxin, verapamil, indinavir, paclitaxel and citalopram and ≥ twofold higher values for vincristine. In conclusion, BBB Pgp activity appears species-specific. An age-dependent PBPK model-based approach could be useful to extrapolate animal data to human adult and paediatric predictions by taking into account species-specific and developmental BBB Pgp expression.
Collapse
|
4
|
Rowbottom C, Pietrasiewicz A, Tuczewycz T, Grater R, Qiu D, Kapadnis S, Trapa P. Optimization of dose and route of administration of the P-glycoprotein inhibitor, valspodar (PSC-833) and the P-glycoprotein and breast cancer resistance protein dual-inhibitor, elacridar (GF120918) as dual infusion in rats. Pharmacol Res Perspect 2021; 9:e00740. [PMID: 33660938 PMCID: PMC7931226 DOI: 10.1002/prp2.740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Transporters can play a key role in the absorption, distribution, metabolism, and excretion of drugs. Understanding these contributions early in drug discovery allows for more accurate projection of the clinical pharmacokinetics. One method to assess the impact of transporters in vivo involves co‐dosing specific inhibitors. The objective of the present study was to optimize the dose and route of administration of a P‐glycoprotein (P‐gp) inhibitor, valspodar (PSC833), and a dual P‐gp/breast cancer resistance protein (BCRP) inhibitor, elacridar (GF120918), by assessing the transporters’ impact on brain penetration and absorption. A dual‐infusion strategy was implemented to allow for flexibility with dose formulation. The chemical inhibitor was dosed intravenously via the femoral artery, and a cassette of known substrates was infused via the jugular vein. Valspodar or elacridar was administered as 4.5‐hour constant infusions over a range of doses. To assess the degree of inhibition, the resulting ratios of brain and plasma concentrations, Kp's, of the known substrates were compared to the vehicle control. These data demonstrated that doses greater than 0.9 mg/hr/kg valspodar and 8.9 mg/hr/kg elacridar were sufficient to inhibit P‐gp‐ and BCRP‐mediated efflux at the blood‐brain barrier in rats without any tolerability issues. Confirmation of BBB restriction by efflux transporters in preclinical species allows for subsequent prediction in humans based upon the proteomic expression at rodent and human BBB. Overall, the approach can also be applied to inhibition of efflux at other tissues (gut absorption, liver clearance) or can be extended to other transporters of interest using alternate inhibitors.
Collapse
|
5
|
Nicolaï J, Chapy H, Gillent E, Saunders K, Ungell AL, Nicolas JM, Chanteux H. Impact of In Vitro Passive Permeability in a P-gp-transfected LLC-PK1 Model on the Prediction of the Rat and Human Unbound Brain-to-Plasma Concentration Ratio. Pharm Res 2020; 37:175. [PMID: 32856111 DOI: 10.1007/s11095-020-02867-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE More accurate prediction of the extent of drug brain exposure in early drug discovery and understanding potential species differences could help to guide medicinal chemistry and avoid unnecessary animal studies. Hence, the aim of the current study was to validate the use of a P-gp transfected LLC-PK1 model to predict the unbound brain-to-plasma concentration ratio (Kpuu,brain) in rats and humans. METHODS MOCK-, Mdr1a- and MDR1-transfected LLC-PK1 monolayers were applied in a transwell setup to quantify the bidirectional transport for 12 specific P-gp substrates, 48 UCB drug discovery compounds, 11 compounds with reported rat in situ brain perfusion data and 6 compounds with reported human Kpuu,brain values. The in vitro transport data were introduced in a minimal PBPK model (SIVA®) to determine the transport parameters. These parameters were combined with the differences between in vitro and in vivo passive permeability as well as P-gp expression levels (as determined by LC-MS/MS), to predict the Kpuu,brain. RESULTS A 10-fold difference between in vitro and in vivo passive permeability was observed. Incorporation of the differences between in vitro and in vivo passive permeability and P-gp expression levels resulted in an improved prediction of rat (AAFE 2.17) and human Kpuu,brain (AAFE 2.10). CONCLUSIONS We have succesfully validated a methodology to use a P-gp overexpressing LLC-PK1 cell line to predict both rat and human Kpuu,brain by correcting for both passive permeability and P-gp expression levels.
Collapse
Affiliation(s)
- Johan Nicolaï
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium.
| | - Hélène Chapy
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Eric Gillent
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Kenneth Saunders
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Anna-Lena Ungell
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Jean-Marie Nicolas
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Hugues Chanteux
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| |
Collapse
|
6
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
7
|
Liang C, Zhao J, Lu J, Zhang Y, Ma X, Shang X, Li Y, Ma X, Liu M, Wang X. Development and Characterization of MDR1 ( Mdr1a/b) CRISPR/Cas9 Knockout Rat Model. Drug Metab Dispos 2019; 47:71-79. [PMID: 30478157 DOI: 10.1124/dmd.118.084277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 02/13/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) technology is widely used as a tool for gene editing in rat genome site-specific engineering. Multidrug resistance 1 [MDR1 (also known as P-glycoprotein)] is a key efflux transporter that plays an important role not only in the transport of endogenous and exogenous substances, but also in tumor MDR. In this report, a novel MDR1 (Mdr1a/b) double-knockout (KO) rat model was generated by the CRISPR/Cas9 system without any off-target effect detected. Western blot results showed that MDR1 was completely absent in the liver, small intestine, brain, and kidney of KO rats. Further pharmacokinetic studies of digoxin, a typical substrate of MDR1, confirmed the deficiency of MDR1 in vivo. To determine the possible compensatory mechanism of Mdr1a/b (-/-) rats, the mRNA levels of the CYP3A subfamily and transporter-related genes were compared in the brain, liver, kidney, and small intestine of KO and wild-type rats. In general, a new Mdr1a/b (-/-) rat model has been successfully generated and characterized. This rat model is a useful tool for studying the function of MDR1 in drug absorption, tumor MDR, and drug target validation.
Collapse
Affiliation(s)
- Chenmeizi Liang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Junfang Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Jian Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Xinrun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Xuyang Shang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Yongmei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, People's Republic of China (C.L., J.Z., J.L., Y.Z., Xi.M., X.S., Y.L., Xu.M., M.L., X.W.); and Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| |
Collapse
|
8
|
Yamasaki Y, Kobayashi K, Okuya F, Kajitani N, Kazuki K, Abe S, Takehara S, Ito S, Ogata S, Uemura T, Ohtsuki S, Minegishi G, Akita H, Chiba K, Oshimura M, Kazuki Y. Characterization of P-Glycoprotein Humanized Mice Generated by Chromosome Engineering Technology: Its Utility for Prediction of Drug Distribution to the Brain in Humans. Drug Metab Dispos 2018; 46:1756-1766. [PMID: 29777024 DOI: 10.1124/dmd.118.081216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein (P-gp), encoded by the MDR1 gene in humans and by the Mdr1a/1b genes in rodents, is expressed in numerous tissues and performs as an efflux pump to limit the distribution and absorption of many drugs. Owing to species differences of P-gp between humans and rodents, it is difficult to predict the impact of P-gp on pharmacokinetics and the tissue distribution of P-gp substrates in humans from the results of animal experiments. Therefore, we generated a novel P-gp humanized mouse model by using a mouse artificial chromosome (MAC) vector [designated human MDR1-MAC (hMDR1-MAC) mice]. The results showed that hMDR1 mRNA was expressed in various tissues of hMDR1-MAC mice. Furthermore, the expression of human P-gp was detected in the brain capillary fraction and plasma membrane fraction of intestinal epithelial cells isolated from hMDR1-MAC mice, although the expression levels of intestinal P-gp were extremely low. Thus, we evaluated the function of human P-gp at the blood-brain barrier of hMDR1-MAC mice. The brain-to-plasma ratios of P-gp substrates in hMDR1-MAC mice were much lower than those in Mdr1a/1b-knockout mice, and the brain-to-plasma ratio of paclitaxel was significantly increased by pretreatment with a P-gp inhibitor in hMDR1-MAC mice. These results indicated that the hMDR1-MAC mice are the first P-gp humanized mice expressing functional human P-gp at the blood-brain barrier. This mouse is a promising model with which to evaluate species differences of P-gp between humans and mice in vivo and to estimate the brain distribution of drugs in humans while taking into account species differences of P-gp.
Collapse
Affiliation(s)
- Yuki Yamasaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kaoru Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Fuka Okuya
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Naoyo Kajitani
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kanako Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Satoshi Abe
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shoko Takehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shingo Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Seiryo Ogata
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Tatsuki Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Genki Minegishi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kan Chiba
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Mitsuo Oshimura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Yasuhiro Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| |
Collapse
|
9
|
Tatke A, Janga KY, Avula B, Wang X, Jablonski MM, Khan IA, Majumdar S. P-glycoprotein Restricts Ocular Penetration of Loperamide across the Blood-Ocular Barriers: a Comparative Study in Mdr1a Knock-out and Wild Type Sprague Dawley Rats. AAPS PharmSciTech 2018. [PMID: 29520587 DOI: 10.1208/s12249-018-0979-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The current research was undertaken to determine the existence and magnitude of P-glycoprotein (P-gp) expression on the blood-ocular barriers by studying the ocular penetration of loperamide, a specific P-gp substrate, in P-gp (Mdr1a) knock-out (KO) and wild type (WT) Sprague Dawley rats. A clear, stable, sterile solution of loperamide (1 mg/mL), for intravenous administration, was formulated and evaluated. Ocular distribution was studied in P-gp KO and WT rats following intravenous administration of loperamide (at two doses). The drug levels in plasma, aqueous humor (AH), and vitreous humor (VH) samples were determined with the aid of UHPLC-Q-TOF-MS/MS, and the AH/plasma (D AH ) and VH/plasma (D VH ) distribution ratios were estimated. Electroretinography (ERG), ultrastructural analyses, and histology studies were carried out, in both KO and WT rats, to detect any drug-induced functional and/or structural alterations in the retina. Dose-related loperamide levels were observed in the plasma of both WT and KO rats. The loperamide concentrations in the AH and VH of KO rats were significantly higher compared to that observed in the WT rats, at the lower dose. However, a marked increase in the D AH and D VH was noted in the KO rats. ERG, ultrastructure, and histology studies did not indicate any drug-induced toxic effects in the retina under the test conditions. The results from these studies demonstrate that P-gp blocks the penetration of loperamide into the ocular tissues from the systemic circulation and that the effect is more pronounced at lower plasma loperamide concentrations.
Collapse
|
10
|
CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci Rep 2017; 7:42922. [PMID: 28218310 PMCID: PMC5317174 DOI: 10.1038/srep42922] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450 (CYP) 3A accounts for nearly 30% of the total CYP enzymes in the human liver and participates in the metabolism of over 50% of clinical drugs. Moreover, CYP3A plays an important role in chemical metabolism, toxicity, and carcinogenicity. New animal models are needed to investigate CYP3A functions, especially for drug metabolism. In this report, Cyp3a1/2 double knockout (KO) rats were generated by CRISPR-Cas9 technology, and then were characterized for viability and physiological status. The Cyp3a1/2 double KO rats were viable and fertile, and had no obvious physiological abnormities. Compared with the wild-type (WT) rat, Cyp3a1/2 expression was completely absent in the liver of the KO rat. In vitro and in vivo metabolic studies of the CYP3A1/2 substrates indicated that CYP3A1/2 was functionally inactive in double KO rats. The Cyp3a1/2 double KO rat model was successfully generated and characterized. The Cyp3a1/2 KO rats are a novel rodent animal model that will be a powerful tool for the study of the physiological and pharmacological roles of CYP3A, especially in drug and chemical metabolism in vivo.
Collapse
|
11
|
Matthaei J, Tzvetkov MV, Gal V, Sachse-Seeboth C, Sehrt D, Hjelmborg JB, Hofmann U, Schwab M, Kerb R, Brockmöller J. Low heritability in pharmacokinetics of talinolol: a pharmacogenetic twin study on the heritability of the pharmacokinetics of talinolol, a putative probe drug of MDR1 and other membrane transporters. Genome Med 2016; 8:119. [PMID: 27825374 PMCID: PMC5101708 DOI: 10.1186/s13073-016-0372-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/18/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Efflux transporters like MDR1 and MRP2 may modulate the pharmacokinetics of about 50 % of all drugs. It is currently unknown how much of the variation in the activities of important drug membrane transporters like MDR1 or MRP2 is determined by genetic or by environmental factors. In this study we assessed the heritability of the pharmacokinetics of talinolol as a putative probe drug for MDR1 and possibly other membrane transporters. METHODS Talinolol pharmacokinetics were investigated in a repeated dose study in 42 monozygotic and 13 same-sex dizygotic twin pairs. The oral clearance of talinolol was predefined as the primary parameter. Heritability was analyzed by structural equation modeling and by within- and between-subject variance and talinolol clearance was correlated with polymorphisms in MDR1, MRP2, BCRP, MDR5, OATP1B1, and OCT1. RESULTS Talinolol clearance varied approximately ninefold in the studied sample of healthy volunteers. The correlation of clearances between siblings was not significantly different for the monozygotic and dizygotic pairs. All data analyses consistently showed that variation of talinolol pharmacokinetics was mainly determined by environmental effects. Structural equation modeling attributed 53.5 % of the variation of oral clearance to common environmental effects influencing both siblings to the same extent and 46.5 % to unique environmental effects randomly affecting individual subjects. Talinolol pharmacokinetics were significantly dependent on sex, body mass index, total protein consumption, and vegetable consumption. CONCLUSIONS The twin study revealed that environmental factors explained much more of the variation in pharmacokinetics of talinolol than genetic factors. TRIAL REGISTRATION European clinical trials database number: EUDRA-CT 2008-006223-31. Registered 26 September 2008. ClinicalTrials.gov number: NCT01845194 .
Collapse
Affiliation(s)
- Johannes Matthaei
- Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Mladen V. Tzvetkov
- Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Valerie Gal
- Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Cordula Sachse-Seeboth
- Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Daniel Sehrt
- Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Jakob B. Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, J. B. Winsløwsvej 9B, 5000 Odense, Denmark
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstraße 112, 70376 Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstraße 112, 70376 Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Reinhold Kerb
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstraße 112, 70376 Stuttgart, Germany
| | - Jürgen Brockmöller
- Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Zhang X, Wang L, Wu Y, Li W, An J, Zhang F, Liu M. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1500-7. [PMID: 27189642 PMCID: PMC5003977 DOI: 10.5713/ajas.16.0130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/30/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause "double-muscling" trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.
Collapse
Affiliation(s)
- Xuemei Zhang
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Liqin Wang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Yangsheng Wu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Wenrong Li
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Jing An
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Fuchun Zhang
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Mingjun Liu
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| |
Collapse
|
13
|
Wang X, Tang Y, Lu J, Shao Y, Qin X, Li Y, Wang L, Li D, Liu M. Characterization of novel cytochrome P450 2E1 knockout rat model generated by CRISPR/Cas9. Biochem Pharmacol 2016; 105:80-90. [DOI: 10.1016/j.bcp.2016.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
|
14
|
Factor XII full and partial null in rat confers robust antithrombotic efficacy with no bleeding. Blood Coagul Fibrinolysis 2015; 26:893-902. [DOI: 10.1097/mbc.0000000000000337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Investigation of utility of cerebrospinal fluid drug concentration as a surrogate for interstitial fluid concentration using microdialysis coupled with cisternal cerebrospinal fluid sampling in wild-type and Mdr1a(-/-) rats. Drug Metab Pharmacokinet 2015; 31:57-66. [PMID: 26830080 DOI: 10.1016/j.dmpk.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/23/2022]
Abstract
In drug discovery, the cerebrospinal fluid (CSF) drug concentration (CCSF) has been used as a surrogate for the interstitial fluid (ISF) concentration (CISF). However, the CCSF-to-CISF gradient suggested for P-glycoprotein (P-gp) substrates in rodents causes uncertainty in CISF estimations and subsequent pharmacokinetic-pharmacodynamic analyses. To evaluate the utility of CCSF as a surrogate for CISF, this study directly compared the CCSF with the CISF of 12 compounds, including P-gp substrates, under steady-state conditions in wild-type and Mdr1a(-/-) rats using microdialysis coupled with cisternal CSF sampling. In wild-type rats, the ISF-to-unbound plasma (Kp,uu,ISF) and CSF-to-unbound plasma (Kp,uu,CSF) concentration ratios of the P-gp substrates, except for metoclopramide, were lower than those of the non-P-gp substrates, and the Kp,uu,CSF values were within or close to 3-fold of the Kp,uu,ISF values for all the compounds examined. The Kp,uu,CSF values of the selected P-gp substrates increased in Mdr1a(-/-) rats with a similar magnitude to the Kp,uu,ISF values, resulting in the Kp,uu,CSF-to-Kp,uu,ISF ratios being unchanged. These results suggested that P-gp-mediated active efflux at the blood-brain barrier is a major determinant not only for CISF, but also for CCSF, and that CCSF can be used as a surrogate for CISF even for P-gp substrates in rats.
Collapse
|
16
|
Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro. J Biotechnol 2015; 192 Pt A:268-80. [PMID: 25449018 DOI: 10.1016/j.jbiotec.2014.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022]
Abstract
Myostatin (MSTN) has previously been shown to negatively regulate the proliferation and differentiation of skeletal muscle cells. Satellite cells are quiescent muscle stem cells that promote muscle growth and repair. Because the mechanism of MSTN in the biology of satellite cells is not well understood, this study was conducted to generate MSTN mono-allelic knockout satellite cells using the zinc-finger nuclease mRNA (MSTN-KO ZFN mRNA) and also to investigate the effect of this disruption on the proliferation and differentiation of sheep primary satellite cells (PSCs). Nineteen biallelic and four mono-allelic knockout cell clones were obtained after sequence analysis. The homologous mono-allelic knockout cells with 5-bp deletion were used to further evaluations. The results demonstrated that mono-allelic knockout of MSTN gene leads to translation inhibition. Real-time quantitative PCR results indicated that knockout of MSTN contributed to an increase in CDK2 and follistatin and a decrease in p21 at the transcript level in proliferation conditions. Moreover, MSTN knockout significantly increased the proliferation of mutant clones (P < 0.01). Consistent with the observed increase in CDK2 and decrease in p21 in cells lacking MSTN, cell cycle analysis showed that MSTN negatively regulated the G1 to S progression. In addition, knockout of myostatin resulted in a remarkable increase in MyoD and MyoG expression under differentiating conditions but had no effect on Myf5 expression. These results expanded our understanding of the regulation mechanism of MSTN. Furthermore, the MSTN-KO ZFN mRNA system in PSCs could be used to generate transgenic sheep in the future.
Collapse
|
17
|
Kawaharada K, Kawamata M, Ochiya T. Rat embryonic stem cells create new era in development of genetically manipulated rat models. World J Stem Cells 2015; 7:1054-1063. [PMID: 26328021 PMCID: PMC4550629 DOI: 10.4252/wjsc.v7.i7.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem (ES) cells are isolated from the inner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer gene-modified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.
Collapse
|
18
|
Metzger JM, Tadin-Strapps M, Thankappan A, Strapps WR, DiPietro M, Leander K, Zhang Z, Shin MK, Levorse J, Desai K, Xu Y, Lai K, Wu W, Chen Z, Cai TQ, Jochnowitz N, Bentley R, Hoos L, Zhou Y, Sepp-Lorenzino L, Seiffert D, Andre P. Titrating haemophilia B phenotypes using siRNA strategy: evidence that antithrombotic activity is separated from bleeding liability. Thromb Haemost 2015; 113:1300-11. [PMID: 25790442 DOI: 10.1160/th14-06-0505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022]
Abstract
Haemophilia A and B are characterised by a life-long bleeding predisposition, and several lines of evidence suggest that risks of atherothrombotic events may also be reduced. Establishing a direct correlation between coagulation factor levels, thrombotic risks and bleeding propensity has long been hampered by an inability to selectively and specifically inhibit coagulation factor levels. Here, the exquisite selectivity of gene silencing combined with a gene knockout (KO) approach was used to define the relative contribution of factor IX (fIX) to thrombosis and primary haemostasis in the rat. Using a lipid nanoparticle (LNP) formulation, we successfully delivered fIX siRNAs to the liver by intravenous administration. The knockdown (KD) of target gene mRNA was achieved rapidly (within 24 hour post-siRNA dosing), sustained (maintained for at least 7 days post dosing) and not associated with changes in mRNA expression levels of other coagulation factors. We found that intermediate levels of liver fIX mRNA silencing (60-95 %) translating into a 50-99 % reduction of plasma fIX activity provided protection from thrombosis without prolonging the cuticle bleeding time. Over 99 % inhibition of fIX activity was required to observe increase in bleeding, a phenotype confirmed in fIX KO rats. These data provide substantial evidence of a participation of fIX in the mechanisms regulating thrombosis prior to those regulating primary haemostasis, therefore highlighting the potential of fIX as a therapeutic target. In addition, hepatic mRNA silencing using LNP-encapsulated siRNAs may represent a promising novel approach for the chronic treatment and prevention of coagulation-dependent thrombotic disorders in humans.
Collapse
Affiliation(s)
| | - Marija Tadin-Strapps
- Marija Tadin-Strapps, Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., 33 Avenue E Louis Pasteur, Boston, MA 02115, USA, Tel.:+1 617 992 2339, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Patrick Andre
- Patrick Andre, Cardiometabolic Disease, Merck & Co., Inc., Galloping Hill Road, Kenilworth, NJ 07033, USA, Tel.:+1 908 740 7329, E-mail:
| |
Collapse
|
19
|
Sampson KE, Brinker A, Pratt J, Venkatraman N, Xiao Y, Blasberg J, Steiner T, Bourner M, Thompson DC. Zinc finger nuclease-mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells. Drug Metab Dispos 2015; 43:199-207. [PMID: 25388687 DOI: 10.1124/dmd.114.057216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Membrane transporters P-glycoprotein [P-gp; multidrug resistance 1 (MDR1)], multidrug resistance-associated protein (MRP) 2, and breast cancer resistance protein (BCRP) affect drug absorption and disposition and can also mediate drug-drug interactions leading to safety/toxicity concerns in the clinic. Challenges arise with interpreting cell-based transporter assays when substrates or inhibitors affect more than one actively expressed transporter and when endogenous or residual transporter activity remains following overexpression or knockdown of a given transporter. The objective of this study was to selectively knock out three drug efflux transporter genes (MDR1, MRP2, and BCRP), both individually as well as in combination, in a subclone of Caco-2 cells (C2BBe1) using zinc finger nuclease technology. The wild-type parent and knockout cell lines were tested for transporter function in Transwell bidirectional assays using probe substrates at 5 or 10 μM for 2 hours at 37°C. P-gp substrates digoxin and erythromycin, BCRP substrates estrone 3-sulfate and nitrofurantoin, and MRP2 substrate 5-(and-6)-carboxy-2',7'-dichlorofluorescein each showed a loss of asymmetric transport in the MDR1, BCRP, and MRP2 knockout cell lines, respectively. Furthermore, transporter interactions were deduced for cimetidine, ranitidine, fexofenadine, and colchicine. Compared with the knockout cell lines, standard transporter inhibitors showed substrate-specific variation in reducing the efflux ratios of the test compounds. These data confirm the generation of a panel of stable Caco-2 cell lines with single or double knockout of human efflux transporter genes and a complete loss of specific transport activity. These cell lines may prove useful in clarifying complex drug-transporter interactions without some of the limitations of current chemical or genetic knockdown approaches.
Collapse
|
20
|
Huang L, Li X, Roberts J, Janosky B, Lin MHJ. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats. Xenobiotica 2014; 45:547-55. [PMID: 25539457 DOI: 10.3109/00498254.2014.997324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. This study was designed to evaluate how the absence of P-glycoprotein (Pgp, Mdr1a), breast cancer-resistance protein (Bcrp, Abcg2) or both affects drug distribution into sciatic nerves, brain and cerebrospinal fluid (CSF) in rats. 2. Pgp substrate (loperamide), BCRP substrates (dantrolene and proprietary compound X) and dual substrates (imatinib and proprietary compound Y) were well distributed into sciatic nerves with comparable nerve to plasma concentration ratios between wild-type and knockout (KO) rats. 3. Brain exposure increased substantially in Mdr1a(-/-) rats for loperamide and in Mdr1a(-/-)/Abcg2(-/-) rats for imatinib and compound Y, but minimally to modestly in Abcg2(-/-) rats for dantrolene and compound X. The deletion of Mdr1a or Abcg2 alone had little effect on brain distribution of compound Y. 4. While CSF to unbound brain concentration ratio remained ≥3 in the KO animals for dantrolene, compounds X and Y, it was reduced to 1 in the Mdr1a(-/-)/Abcg2(-/-) rats for imatinib. 5. The data indicate that Pgp and Bcrp do not play significant roles in drug distribution into peripheral nerve tissues in rats, while working in concert to regulate brain penetration. Our results further support that CSF concentration may not be a good surrogate for unbound brain concentration of efflux substrates.
Collapse
Affiliation(s)
- Liyue Huang
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc , Cambridge, MA , USA
| | | | | | | | | |
Collapse
|
21
|
Sjöstedt N, Kortejärvi H, Kidron H, Vellonen KS, Urtti A, Yliperttula M. Challenges of using in vitro data for modeling P-glycoprotein efflux in the blood-brain barrier. Pharm Res 2014; 31:1-19. [PMID: 23797466 DOI: 10.1007/s11095-013-1124-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
The efficacy of central nervous system (CNS) drugs may be limited by their poor ability to cross the bloodbrain barrier (BBB). Transporters, such as p-glycoprotein, may affect the distribution of many drugs into the CNS in conjunction with the restricted paracellular pathway of the BBB. It is therefore important to gain information on unbound drug concentrations in the brain in drug development to ensure sufficient drug exposure from plasma at the target site in the CNS. In vitro methods are routinely used in drug development to study passive permeability and p-glycoprotein efflux of new drugs. This review discusses the challenges in the use of in vitro data as input parameters in physiologically based pharmacokinetic (PBPK) models of CNS drug disposition of p-glycoprotein substrates. Experience with quinidine demonstrates the variability in in vitro parameters of passive permeability and active pglycoprotein efflux. Further work is needed to generate parameter values that are independent of the model and assay. This is a prerequisite for reliable predictions of drug concentrations in the brain in vivo.
Collapse
|
22
|
Rumi MAK, Dhakal P, Kubota K, Chakraborty D, Lei T, Larson MA, Wolfe MW, Roby KF, Vivian JL, Soares MJ. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing. Endocrinology 2014; 155:1991-9. [PMID: 24506075 PMCID: PMC3990838 DOI: 10.1210/en.2013-2150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.
Collapse
MESH Headings
- Animals
- Codon, Nonsense
- Crosses, Genetic
- Deoxyribonucleases/chemistry
- Deoxyribonucleases/genetics
- Deoxyribonucleases/metabolism
- Estrogen Receptor alpha/chemistry
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Exons
- Female
- Gene Knockout Techniques
- Infertility, Female/blood
- Infertility, Female/metabolism
- Infertility, Female/pathology
- Infertility, Male/blood
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Male
- Microinjections
- Protein Engineering
- RNA, Messenger/metabolism
- Rats
- Rats, Mutant Strains
- Rats, Sprague-Dawley
- Rats, Transgenic
- Zinc Fingers
- Zygote/metabolism
Collapse
Affiliation(s)
- M A Karim Rumi
- Institute for Reproductive Health and Regenerative Medicine; Departments of Pathology and Laboratory Medicine (M.A.K.R., P.D., K.K., D.C., T.L., J.L.V., M.J.S.), Molecular and Integrative Physiology (M.A.L., M.W.W.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang C, Wang L, Ren G, Li Z, Ren C, Zhang T, Xu K, Zhang Z. Targeted disruption of the sheep MSTN gene by engineered zinc-finger nucleases. Mol Biol Rep 2013; 41:209-15. [PMID: 24197697 DOI: 10.1007/s11033-013-2853-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
Prior to the development of zinc-finger nuclease technology, genetic manipulation by gene targeting achieved limited success in mammals, with the exception of mice and rat. Although ZFNs demonstrated highly effective gene targeted disruption in various model organisms, the activity of ZFNs in large domestic animals may be very low, and the probability of identifying ZFN-mediated positive targeted disruption events is small. In this paper, we used the context-dependent assembly method to synthesize two pairs of ZFNs targeted to the sheep MSTN gene. We verified the activity of these ZFNs using an mRFP-MBS-eGFP dual-fluorescence reporter system in HEK293T cells and, according to the expression level of eGFP, we obtained a pair of ZFNs that can recognize and cut the targeted MSTN site in the reporter vector. The activity of ZFN was increased by cold stimulation at 30 °C and by mutant the wildtype FokI in ZFN with its counterpart Sharkeys. Finally, the ZF-Sharkeys and reporter vector were cotransfected into sheep fetal fibroblasts and two MSTN mutant cell lines, identified by flow cytometry and sequencing, were obtained.
Collapse
Affiliation(s)
- Cunfang Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Matsuda Y, Konno Y, Hashimoto T, Nagai M, Taguchi T, Satsukawa M, Yamashita S. In vivo assessment of the impact of efflux transporter on oral drug absorption using portal vein-cannulated rats. Drug Metab Dispos 2013; 41:1514-21. [PMID: 23686319 DOI: 10.1124/dmd.113.051680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the impact of intestinal efflux transporters on the in vivo oral absorption process. Three model drugs-fexofenadine (FEX), sulfasalazine (SASP), and topotecan (TPT)-were selected as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and P-gp and BCRP substrates, respectively. The drugs were orally administered to portal vein-cannulated rats after pretreatment with zosuquidar (ZSQ), P-gp inhibitor, and/or Ko143, BCRP inhibitor. Intestinal availability (Fa·Fg) of the drugs was calculated from the difference between portal and systemic plasma concentrations. When rats were orally pretreated with ZSQ, Fa·Fg of FEX increased 4-fold and systemic clearance decreased to 75% of the control. In contrast, intravenous pretreatment with ZSQ did not affect Fa·Fg of FEX, although systemic clearance decreased significantly. These data clearly show that the method presented herein using portal vein-cannulated rats can evaluate the effects of intestinal transporters on Fa·Fg of drugs independently of variable systemic clearance. In addition, it was revealed that 71% of FEX taken up into enterocytes underwent selective efflux via P-gp to the apical surface, while 79% of SASP was effluxed by Bcrp. In the case of TPT, both transporters were involved in its oral absorption. Quantitative analysis indicated a 3.5-fold higher contribution from Bcrp than P-gp. In conclusion, the use of portal vein-cannulated rats enabled the assessment of the impact of efflux transporters on intestinal absorption of model drugs. This experimental system is useful for clarifying the cause of low bioavailability of various drugs.
Collapse
Affiliation(s)
- Yoshiki Matsuda
- Pharmacokinetics and Safety Research Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H. Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 2013; 70:2969-83. [PMID: 23161061 PMCID: PMC11113862 DOI: 10.1007/s00018-012-1204-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 12/01/2022]
Abstract
Zinc-finger nucleases (ZFNs) are engineered site-specific DNA cleavage enzymes that may be designed to recognize long target sites and thus cut DNA with high specificity. ZFNs mediate permanent and targeted genetic alteration via induction of a double-strand break at a specific genomic site. Compared to conventional homology-based gene targeting, ZFNs can increase the targeting rate by up to 100,000-fold; gene disruption via mutagenic DNA repair is similarly efficient. The utility of ZFNs has been shown in many organisms, including insects, amphibians, plants, nematodes, and several mammals, including humans. This broad range of tractable species renders ZFNs a useful tool for improving the understanding of complex physiological systems, to produce transgenic animals, cell lines, and plants, and to treat human disease.
Collapse
Affiliation(s)
- J. Hauschild-Quintern
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
| | - B. Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
| | - G. J. Cost
- Sangamo BioSciences, 501 Canal Blvd., Richmond, CA 94804 USA
| | - H. Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
- Rebirth, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Parker CC, Chen H, Flagel SB, Geurts AM, Richards JB, Robinson TE, Solberg Woods LC, Palmer AA. Rats are the smart choice: Rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology 2013; 76 Pt B:250-8. [PMID: 23791960 DOI: 10.1016/j.neuropharm.2013.05.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Due in part to their rich behavioral repertoire rats have been widely used in behavioral studies of drug abuse-related traits for decades. However, the mouse became the model of choice for researchers exploring the genetic underpinnings of addiction after the first mouse study was published demonstrating the capability of engineering the mouse genome through embryonic stem cell technology. The sequencing of the mouse genome and more recent re-sequencing of numerous inbred mouse strains have further cemented the status of mice as the premier mammalian organism for genetic studies. As a result, many of the behavioral paradigms initially developed and optimized for rats have been adapted to mice. However, numerous complex and interesting drug abuse-related behaviors that can be studied in rats are very difficult or impossible to adapt for use in mice, impeding the genetic dissection of those traits. Now, technological advances have removed many of the historical limitations of genetic studies in rats. For instance, the rat genome has been sequenced and many inbred rat strains are now being re-sequenced and outbred rat stocks are being used to fine-map QTLs. In addition, it is now possible to create "knockout" rats using zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and related techniques. Thus, rats can now be used to perform quantitative genetic studies of sophisticated behaviors that have been difficult or impossible to study in mice. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou X, Zhang Z, Shin MK, Horwitz SB, Levorse JM, Zhu L, Sharif-Rodriguez W, Streltsov DY, Dajee M, Hernandez M, Pan Y, Urosevic-Price O, Wang L, Forrest G, Szeto D, Zhu Y, Cui Y, Michael B, Balogh LA, Welling PA, Wade JB, Roy S, Sullivan KA. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure. Hypertension 2013; 62:288-94. [PMID: 23753405 DOI: 10.1161/hypertensionaha.111.01051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Cardiovascular Diseases, Merck Research Laboratories, 126 E Lincoln Ave, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zamek-Gliszczynski MJ, Goldstein KM, Paulman A, Baker TK, Ryan TP. Minor compensatory changes in SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats do not detract from their utility in the study of transporter-mediated pharmacokinetics. Drug Metab Dispos 2013; 41:1174-8. [PMID: 23569176 DOI: 10.1124/dmd.113.051409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mdr1a-, Bcrp-, and Mrp2-knockout rats are a more practical species for absorption, distribution, metabolism, and excretion (ADME) studies than murine models and previously demonstrated expected alterations in the pharmacokinetics of various probe substrates. At present, gene expression and pathology changes were systematically studied in the small intestine, liver, kidney, and brain tissue from male SAGE Mdr1a, Bcrp, and Mrp2 knockout rats versus wild-type Sprague-Dawley controls. Gene expression data supported the relevant knockout genotype. As expected, Mrp2 knockout rats were hyperbilirubinemic and exhibited upregulation of hepatic Mrp3. Overall, few alterations were observed within 112 ADME-relevant genes. The two potentially most consequential changes were upregulation of intestinal carboxylesterase in Mdr1a knockouts and catechol-O-methyltransferase in all tissues of Bcrp knockout rats. Previously reported upregulation of hepatic Mdr1b P-glycoprotein in proprietary Wistar Mdr1a knockout rats was not observed in the SAGE counterpart investigated herein. Relative liver and kidney weights were 22-53% higher in all three knockouts, with microscopic increases in hepatocyte size in Mdr1a and Mrp2 knockout rats and glomerular size in Bcrp and Mrp2 knockouts. Increased relative weight of clearing organs is quantitatively consistent with reported increases in the clearance of drugs that are not substrates of the knocked-out transporter. Overall, SAGE knockout rats demonstrated modest compensatory changes, which do not preclude their general application to study transporter-mediated pharmacokinetics. However, until future studies elucidate the magnitude of functional change, caution is warranted in rare instances of extensive metabolism by catechol-O-methyltransferase in Bcrp knockouts and intestinal carboxylesterase in Mdr1a knockout rats, specifically for molecules with free catechol groups and esters subject to gut-wall hydrolysis.
Collapse
|
29
|
Dulin JN, Moore ML, Grill RJ. The dual cyclooxygenase/5-lipoxygenase inhibitor licofelone attenuates p-glycoprotein-mediated drug resistance in the injured spinal cord. J Neurotrauma 2013; 30:211-26. [PMID: 22947335 DOI: 10.1089/neu.2012.2587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood-spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague-Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord.
Collapse
Affiliation(s)
- Jennifer N Dulin
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
30
|
Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol 2012; 9:237-52. [DOI: 10.1517/17425255.2013.741589] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Ménoret S, Fontanière S, Jantz D, Tesson L, Thinard R, Rémy S, Usal C, Ouisse LH, Fraichard A, Anegon I. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 2012; 27:703-11. [PMID: 23150522 DOI: 10.1096/fj.12-219907] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite the recent availability of gene-specific nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like nucleases (TALENs), there is still a need for new tools to modify the genome of different species in an efficient, rapid, and less costly manner. One aim of this study was to apply, for the first time, engineered meganucleases to mutate an endogenous gene in animal zygotes. The second aim was to target the mouse and rat recombination activating gene 1 (Rag1) to describe, for the first time, Rag1 knockout immunodeficient rats. We microinjected a plasmid encoding a meganuclease for Rag1 into the pronucleus of mouse and rat zygotes. Mutant animals were detected by PCR sequencing of the targeted sequence. A homozygous RAG1-deficient rat line was generated and immunophenotyped. Meganucleases were efficient, because 3.4 and 0.6% of mouse and rat microinjected zygotes, respectively, generated mutated animals. RAG1-deficient rats showed significantly decreased proportions and numbers of immature and mature T and B lymphocytes and normal NK cells vs. littermate wild-type controls. In summary, we describe the use of engineered meganucleases to inactivate an endogenous gene with efficiencies comparable to those of ZFNs and TALENs. Moreover, we generated an immunodeficient rat line useful for studies in which there is a need for biological parameters to be analyzed in the absence of immune responses.
Collapse
Affiliation(s)
- Séverine Ménoret
- Institut National de Santé et de Recherche Médicale (INSERM) Unité Mixte de Recherche1064, Center for Research in Transplantation and Immunology and Platform Transgenic Rats Nantes Infrastructures en Biologie Sante et Agronomie, Centre National de Recherche Scientifique, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zschemisch NH, Glage S, Wedekind D, Weinstein EJ, Cui X, Dorsch M, Hedrich HJ. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 2012; 13:60. [PMID: 23136839 PMCID: PMC3522011 DOI: 10.1186/1471-2172-13-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background Engineered zinc-finger nucleases (ZFN) represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB) and initiated non-homologous end joining (NHEJ) after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(D)J recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain. Results After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαβ+ as well as CD8+/CD3+/TCRαβ+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat. Conclusion The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena.
Collapse
Affiliation(s)
- Nils-Holger Zschemisch
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str,1, 30625, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos 2012; 40:1825-33. [PMID: 22711747 DOI: 10.1124/dmd.112.046508] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Transporter gene knockout rats are practically advantageous over murine models for pharmacokinetic and excretion studies, but their phenotypic characterization is lacking. At present, relevant aspects of pharmacokinetics, metabolism, distribution, and excretion of transporter probes [P-glycoprotein (P-gp): loperamide and paclitaxel; breast cancer resistance protein (Bcrp): sulfasalazine; and multidrug resistance-associated protein 2 (Mrp2): carboxydichlorofluorescein] were studied systematically across SAGE P-gp, Bcrp, and Mrp2 knockout rats. In Mdr1a knockout rats, loperamide and paclitaxel oral bioavailability was 2- and 4-fold increased, respectively, whereas clearance was significantly reduced (40-42%), consistent with the expected 10- to 20-fold reduction in paclitaxel excretion. N-Desmethyl-loperamide pharmacokinetics were not altered in any of the three knockouts after oral loperamide. In rats lacking P-gp, paclitaxel brain partitioning was significantly increased (4-fold). This finding is consistent with observations of loperamide central nervous system opioid pharmacology in Mdr1a knockout rats. Sulfasalazine oral bioavailability was markedly increased 21-fold in Bcrp knockouts and, as expected, was also 2- to 3-fold higher in P-gp and Mrp2 knockout rats. The sulfapyridine metabolite/parent ratio was decreased 10-fold in rats lacking Bcrp after oral, but not intravenous, sulfasalazine administration. Carboxydichlorofluorescein biliary excretion was obliterated in Mrp2 knockout rats, resulting in 25% decreased systemic clearance and 35% increased half-life. In contrast, carboxydichlorofluorescein renal clearance was not impaired in the absence of Mrp2, Bcrp, or P-gp. In conclusion, SAGE Mdr1a, Bcrp, and Mrp2 knockout rats generally demonstrated the expected phenotypes with respect to alterations in pharmacokinetics of relevant probe substrates; therefore, these knockout rats can be used as an alternative to murine models whenever a larger species is practically advantageous or more relevant to the drug discovery/development program.
Collapse
|
34
|
Zheng S, Geghman K, Shenoy S, Li C. Retake the center stage--new development of rat genetics. J Genet Genomics 2012; 39:261-8. [PMID: 22749013 DOI: 10.1016/j.jgg.2012.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
The rat is a powerful model for the study of human physiology and diseases, and is preferred by physiologists, neuroscientists and toxicologists. However, the lack of robust genetic modification tools has severely limited the generation of rat genetic models over the last two decades. In the last few years, several gene-targeting strategies have been developed in rats using N-ethyl-N-nitrosourea (ENU), transposons, zinc-finger nucleases (ZFNs), bacterial artificial chromosome (BAC) mediated transgenesis, and recently established rat embryonic stem (ES) cells. The development and improvement of these approaches to genetic manipulation have created a bright future for the use of genetic rat models in investigations of gene function and human diseases. Here, we summarize the strategies used for rat genetic manipulation in current research. We also discuss BAC transgenesis as a potential tool in rat transgenic models.
Collapse
Affiliation(s)
- Sushuang Zheng
- Department of Neurology, Friedman Brain Institute, Mt. Sinai School of Medicine, Box 1137, New York, NY 10029, USA
| | | | | | | |
Collapse
|
35
|
Hama A. The challenge of understanding peripherally mediated antinociception: commentary on a paper by Chung et al. (2012, this issue). Eur J Pain 2012; 16:949-50. [PMID: 22528949 DOI: 10.1002/j.1532-2149.2012.00160.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A Hama
- University of Miami Miller School of Medicine, FL 33136, USA.
| |
Collapse
|
36
|
Chung C, Carteret AF, McKelvy AD, Ringkamp M, Yang F, Hartke TV, Dong X, Raja SN, Guan Y. Analgesic properties of loperamide differ following systemic and local administration to rats after spinal nerve injury. Eur J Pain 2012; 16:1021-32. [PMID: 22508374 DOI: 10.1002/j.1532-2149.2012.00148.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND The analgesic properties and mechanisms of loperamide hydrochloride, a peripherally acting opioid receptor agonist, in neuropathic pain warrant further investigation. METHODS We examined the effects of systemic or local administration of loperamide on heat and mechanical hyperalgesia in rats after an L5 spinal nerve ligation (SNL). RESULTS (1) Systemic loperamide (0.3-10 mg/kg, subcutaneous in the back) dose dependently reversed heat hyperalgesia in SNL rats, but did not produce thermal analgesia. Systemic loperamide (3 mg/kg) did not induce thermal antinociception in naïve rats; (2) systemic loperamide-induced anti-heat hyperalgesia was blocked by pretreatment with intraperitoneal naloxone methiodide (5 mg/kg), but not by intraperitoneal naltrindole (5 mg/kg) or intrathecal naltrexone (20 μg/10 μL); (3) local administration of loperamide (150 μg), but not vehicle, into plantar or dorsal hind paw tissue induced thermal analgesia in SNL rats and thermal antinociception in naïve rats; (4) the analgesic effect of intraplantar loperamide (150 μg/15 μL) in SNL rats at 45 min, but not 10 min, post-injection was blocked by pretreatment with an intraplantar injection of naltrexone (75 μg/10 μL); (5) systemic (3.0 mg/kg) and local (150 μg) loperamide reduced the exaggerated duration of hind paw elevation to noxious pinprick stimuli in SNL rats. Intraplantar injection of loperamide also decreased the frequency of pinprick-evoked response in naïve rats. CONCLUSIONS These findings suggest that both systemic and local administration of loperamide induce an opioid receptor-dependent inhibition of heat and mechanical hyperalgesia in nerve-injured rats, but that local paw administration of loperamide also induces thermal and mechanical antinociception.
Collapse
Affiliation(s)
- C Chung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | |
Collapse
|