1
|
Kounatidis D, Vallianou NG, Rebelos E, Kouveletsou M, Kontrafouri P, Eleftheriadou I, Diakoumopoulou E, Karampela I, Tentolouris N, Dalamaga M. The Many Facets of PPAR-γ Agonism in Obesity and Associated Comorbidities: Benefits, Risks, Challenges, and Future Directions. Curr Obes Rep 2025; 14:19. [PMID: 39934485 DOI: 10.1007/s13679-025-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE OF REVIEW Obesity is strongly associated with cardiometabolic disorders and certain malignancies, emphasizing the key role of adipose tissue in human health. While incretin mimetics have shown effectiveness in glycemic control and weight loss, a holistic strategy for combating obesity and associated comorbidities remains elusive. This review explores peroxisome proliferator-activated receptor gamma (PPAR-γ) agonism as a potential therapeutic approach, highlighting its benefits, addressing its limitations, and outlining future directions for developing more effective treatment strategies. RECENT FINDINGS Both natural and synthetic PPAR-γ agonists hold significant therapeutic potential as insulin sensitizers, while also demonstrating anti-inflammatory properties and playing a critical role in regulating lipid metabolism. However, the clinical use of natural agonists is limited by poor bioavailability, while synthetic agents like thiazolidinediones are associated with adverse effects, including fluid retention, weight gain, and bone loss. Current research is focused on developing modified, tissue-specific PPAR-γ agonists, as well as dual PPAR-α/PPAR-γ agonists, with improved safety profiles to mitigate these side effects. Nanotechnology-based drug delivery systems also hold promise for enhancing bioavailability and therapeutic efficacy. Furthermore, the transformative potential of machine learning and artificial intelligence offers opportunities to accelerate advancements in this field. PPAR-γ agonists exhibit significant potential in addressing metabolic syndrome, cardiovascular disease, and cancer. However, their clinical use is restricted by safety concerns and suboptimal pharmacokinetics. Innovations in modified PPAR-γ agonists, nanotechnology-based delivery systems, and computational tools hold promise for creating safer and more effective therapeutic options for obesity and its associated disorders.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paraskevi Kontrafouri
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
2
|
Rayl ML, Nemetchek MD, Voss AH, Hughes TS. Agonists of the Nuclear Receptor PPARγ Can Produce Biased Signaling. Mol Pharmacol 2024; 106:309-318. [PMID: 39443155 PMCID: PMC11585255 DOI: 10.1124/molpharm.124.000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Biased signaling and ligand bias, often termed functional selectivity or selective nuclear receptor modulation, have been reported for nuclear receptor partial agonists over the past 20 years. Whether signaling differences produced by partial agonists result from less intense modulation, off-target effects, or biased signaling remains unclear. A commonly postulated mechanism for biased signaling is coactivator favoritism, where agonists induce different coactivator recruitment profiles. We find that both GW1929 (full agonist) and MRL24 (partial agonist) favor recruitment of 100 to 300 residue regions from S-motif coactivators compared with a reference full agonist (rosiglitazone), yielding 95% bias value confidence intervals of 0.05-0.17 and 0.29-0.38, respectively. Calculations based on these data indicate that GW1929 and MRL24 would induce 30% to 60% higher S-motif coactivator occupancy at the receptor compared with rosiglitazone. We compare the transcriptional effects of these same three ligands on human adipocytes using RNA sequencing and exploratory Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Only 50% (rosiglitazone) and 77% (GW1929) of all gene expression changes are shared between these full agonists after 3 hours of exposure. After 24 hours of exposure, 13/98 KEGG pathways appear more intensely modulated by rosiglitazone than GW1929 (e.g., 95% confidence interval of bias in the regulation of lipolysis in adipocytes pathway is 0.03-0.09), despite similar signaling for the remaining 85 affected pathways. Similarly, rosiglitazone has an unusually large effect on several lipid metabolism-related pathways compared with the partial agonist MRL24. These data indicate that nuclear receptor full and partial agonists can induce biased signaling, likely through differences in coactivator recruitment. SIGNIFICANCE STATEMENT: Many nuclear receptor partial agonists cause fewer adverse effects and similar efficacy compared with full agonists, potentially by inducing biased agonism. Our data support the idea that partial agonists, and a full agonist, of the nuclear receptor Peroxisome proliferator-activated receptor gamma (PPARγ) are biased agonists, causing different signaling by inducing PPARγ to favor different coactivators. These data indicate that biased agonism can occur in nuclear receptors and should be considered in efforts to develop improved nuclear receptor-targeted drugs.
Collapse
Affiliation(s)
- Mariah L Rayl
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Michelle D Nemetchek
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Andrew H Voss
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Travis S Hughes
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| |
Collapse
|
3
|
Coulter AA, Greenway FL, Zhang D, Ghosh S, Coulter CR, James SL, He Y, Cusimano LA, Rebello CJ. Naringenin and β-carotene convert human white adipocytes to a beige phenotype and elevate hormone- stimulated lipolysis. Front Endocrinol (Lausanne) 2023; 14:1148954. [PMID: 37143734 PMCID: PMC10153092 DOI: 10.3389/fendo.2023.1148954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Naringenin, a peroxisome proliferator-activated receptor (PPAR) activator found in citrus fruits, upregulates markers of thermogenesis and insulin sensitivity in human adipose tissue. Our pharmacokinetics clinical trial demonstrated that naringenin is safe and bioavailable, and our case report showed that naringenin causes weight loss and improves insulin sensitivity. PPARs form heterodimers with retinoic-X-receptors (RXRs) at promoter elements of target genes. Retinoic acid is an RXR ligand metabolized from dietary carotenoids. The carotenoid β-carotene reduces adiposity and insulin resistance in clinical trials. Our goal was to examine if carotenoids strengthen the beneficial effects of naringenin on human adipocyte metabolism. Methods Human preadipocytes from donors with obesity were differentiated in culture and treated with 8µM naringenin + 2µM β-carotene (NRBC) for seven days. Candidate genes involved in thermogenesis and glucose metabolism were measured as well as hormone-stimulated lipolysis. Results We found that β-carotene acts synergistically with naringenin to boost UCP1 and glucose metabolism genes including GLUT4 and adiponectin, compared to naringenin alone. Protein levels of PPARα, PPARγ and PPARγ-coactivator-1α, key modulators of thermogenesis and insulin sensitivity, were also upregulated after treatment with NRBC. Transcriptome sequencing was conducted and the bioinformatics analyses of the data revealed that NRBC induced enzymes for several non-UCP1 pathways for energy expenditure including triglyceride cycling, creatine kinases, and Peptidase M20 Domain Containing 1 (PM20D1). A comprehensive analysis of changes in receptor expression showed that NRBC upregulated eight receptors that have been linked to lipolysis or thermogenesis including the β1-adrenergic receptor and the parathyroid hormone receptor. NRBC increased levels of triglyceride lipases and agonist-stimulated lipolysis in adipocytes. We observed that expression of RXRγ, an isoform of unknown function, was induced ten-fold after treatment with NRBC. We show that RXRγ is a coactivator bound to the immunoprecipitated PPARγ protein complex from white and beige human adipocytes. Discussion There is a need for obesity treatments that can be administered long-term without side effects. NRBC increases the abundance and lipolytic response of multiple receptors for hormones released after exercise and cold exposure. Lipolysis provides the fuel for thermogenesis, and these observations suggest that NRBC has therapeutic potential.
Collapse
Affiliation(s)
- Ann A. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Frank L. Greenway
- Clinical Trials, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Dachuan Zhang
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Adjunct Faculty, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Cathryn R. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sarah L. James
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Yanlin He
- Brain Glycemic and Metabolism Control, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Luke A. Cusimano
- Cusimano Plastic and Reconstructive Surgery, Baton Rouge, LA, United States
| | - Candida J. Rebello
- Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay. Appl Biochem Biotechnol 2023; 195:1014-1041. [PMID: 36264481 DOI: 10.1007/s12010-022-04190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
The clinically used glitazones (rosiglitazone and pioglitazone) for type 2 diabetes mellitus therapy have been linked to serious side effects such as fluid retention, congestive heart failure, weight gain, bone loss, and an increased risk of bladder cancer. The complete activation of PPAR-γ receptors in target tissues is linked to these effects. Many studies have demonstrated that partial PPAR-γ activators (GW0072, PAT5A, GQ16) give equivalent therapeutic benefits to full PPAR-γ agonists without the associated side effects. These breakthroughs cleared the path for the development of partial agonists or selective PPAR-γ modulators (SPPARγMs). This study combined pharmacophore modeling, molecular docking, and an adipogenesis experiment to identify thiazolidine analogs as SPPARMs/partial agonists. A custom library of 220 molecules was created and virtual screened to discover 90 compounds as SPPARγMs/ partial agonists. The chosen eight compounds were synthesized and tested for adipogenesis using 3T3L1 cell lines. These compounds' partial agonistic activity was evaluated in 3T3L1 cell lines by comparing their capacity to stimulate PPAR-γ mediated adipogenesis to that of a full agonist, rosiglitazone. The findings of the adipogenesis experiment demonstrate that all eight compounds examined had a partial potential to stimulate adipogenesis when compared to the full agonist, rosiglitazone. The current investigation identified eight possible PPAR-γ partial agonists or SPPARγMs that may be effective in the treatment of type 2 diabetes mellitus.
Collapse
|
5
|
Benova A, Ferencakova M, Bardova K, Funda J, Prochazka J, Spoutil F, Cajka T, Dzubanova M, Balcaen T, Kerckhofs G, Willekens W, van Lenthe GH, Alquicer G, Pecinova A, Mracek T, Horakova O, Rossmeisl M, Kopecky J, Tencerova M. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol Metab 2022; 65:101598. [PMID: 36103974 PMCID: PMC9508355 DOI: 10.1016/j.molmet.2022.101598] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. Methods Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by μCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. Results The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. Conclusion Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases. MSDC-0602K improves bone quality and increases proportion of smaller BMAds in obese mice. MSDC-0602K-treated mice show lower adipogenic differentiation with less senescent phenotype in primary BM-MSCs. MSDC-0602K induces higher glycolytic activity in BM-MSCs compared to pioglitazone. MSDC-0602-treated BM-MSCs prefer glutamine over glucose uptake in comparison to AT-MSCs. Beneficial effect of MSDC-06002K in BM-MSCs manifests by absence of MPC inhibition.
Collapse
Affiliation(s)
- Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Ferencakova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Department of Materials Engineering, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | | | | | - Glenda Alquicer
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic.
| |
Collapse
|
6
|
Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J Autoimmun 2020; 113:102510. [PMID: 32622513 PMCID: PMC7327470 DOI: 10.1016/j.jaut.2020.102510] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/10/2023]
Abstract
Autoimmune diseases are common diseases of the immune system that are characterized by the loss of self-tolerance and the production of autoantibodies; the breakdown of immune tolerance and the prolonged inflammatory reaction are undisputedly core steps in the initiation and maintenance of autoimmunity. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that belong to the nuclear hormone receptor family and act as ligand-activated transcription factors. There are three different isotypes of PPARs: PPARα, PPARγ, and PPARβ/δ. PPARγ is an established regulator of glucose homeostasis and lipid metabolism. Recent studies have demonstrated that PPARγ exhibits anti-inflammatory and anti-fibrotic effects in multiple disease models. PPARγ can also modulate the activation and polarization of macrophages, regulate the function of dendritic cells and mediate T cell survival, activation, and differentiation. In this review, we summarize the signaling pathways and biological functions of PPARγ and focus on how PPARγ and its agonists play protective roles in autoimmune diseases, including autoimmune thyroid diseases, multiple sclerosis, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, primary Sjogren syndrome and primary biliary cirrhosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Jiayu Wang
- Xiangya Medical School, Central South University, #176 Tongzipo Rd, Changsha, Hunan, 410013, PR China
| | - Shuangyan Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Yi Zhan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
7
|
Huan Y, Pan X, Peng J, Jia C, Sun S, Bai G, Wang X, Zhou T, Li R, Liu S, Li C, Liu Q, Liu Z, Shen Z. A novel specific peroxisome proliferator-activated receptor γ (PPARγ) modulator YR4-42 ameliorates hyperglycaemia and dyslipidaemia and hepatic steatosis in diet-induced obese mice. Diabetes Obes Metab 2019; 21:2553-2563. [PMID: 31364797 PMCID: PMC6851555 DOI: 10.1111/dom.13843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023]
Abstract
AIMS To evaluate a novel tetrahydroisoquinoline derivative YR4-42 as a selective peroxisome proliferator-activated receptor γ (PPARγ) modulator (SPPARM) and explore its anti-diabetic effects in vitro and in vivo. MATERIALS AND METHODS Using two standard full PPARγ agonists rosiglitazone and pioglitazone as controls, the PPARγ binding affinity and transactivation action of YR4-42 were evaluated using biochemical and cell-based reporter gene assays. The capacity of YR4-42 to recruit coactivators of PPARγ was also assessed. The effects of YR4-42 on adipogenesis and glucose consumption and PPARγ Ser273 phosphorylation were investigated in 3T3-L1 adipocytes. The effects of YR4-42 and pioglitazone, serving as positive control, on glucose and lipids metabolism were investigated in high-fat diet-induced obese (DIO) C57BL/6J mice. The expression of PPARγ target genes involved in glucose and lipid metabolism was also assessed in vitro and in vivo. RESULTS In vitro biochemical and cell-based functional assays showed that YR4-42 has much weaker binding affinity, transactivation, and recruitment to PPARγ of the coactivators thyroid hormone receptor-associated protein complex 220 kDa component (TRAP220) and PPARγ coactivator 1-α (PGC1α) compared to full agonists. In 3 T3-L1 adipocytes, YR4-42 significantly improved glucose consumption without a lipogenesis effect, while blocking tumour necrosis factor α-mediated phosphorylation of PPARγ at Ser273, thereby upregulating the expression of the PPARγ Ser273 phosphorylation-dependent genes. Furthermore, in DIO mice, oral administration of YR4-42 ameliorated the hyperglycaemia, with a similar insulin sensitization effect to that of pioglitazone. Importantly, YR4-42 also improved hyperlipidaemia-associated hepatic steatosis without weight gain, which avoids a major side effect of pioglitazone. Thus, YR4-42 appeared to selectively modulate PPARγ responses. This finding was supported by the gene expression analysis, which showed that YR4-42 selectively targets PPARγ-regulated genes mapped to glucose and lipid metabolism in DIO mice. CONCLUSIONS We conclude that YR4-42 is a novel anti-diabetic drug candidate with significant advantages compared to standard PPARγ agonists. YR4-42 should be further investigated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xuan Pan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chunming Jia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sujuan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guoliang Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xing Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | | | - Rongcui Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhanzhu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of BeijingInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Konger RL, Derr-Yellin E, Ermatov N, Ren L, Sahu RP. The PPARγ Agonist Rosiglitazone Suppresses Syngeneic Mouse SCC (Squamous Cell Carcinoma) Tumor Growth through an Immune-Mediated Mechanism. Molecules 2019; 24:E2192. [PMID: 31212694 PMCID: PMC6600265 DOI: 10.3390/molecules24112192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 01/01/2023] Open
Abstract
Recent evidence suggests that PPARγ agonists may promote anti-tumor immunity. We show that immunogenic PDV cutaneous squamous cell carcinoma (CSCC) tumors are rejected when injected intradermally at a low cell number (1 × 106) into immune competent syngeneic hosts, but not immune deficient mice. At higher cell numbers (5 × 106 PDV cells), progressively growing tumors were established in 14 of 15 vehicle treated mice while treatment of mice with the PPARγ agonist rosiglitazone resulted in increased tumor rejection (5 of 14 tumors), a significant decrease in PDV tumor size, and a significant decrease in tumor cell Ki67 labeling. Rosiglitazone treatment had no effect on tumor rejection, tumor volume or PDV tumor cell proliferation in immune deficient NOD.CB17-PrkdcSCID/J mice. Rosiglitazone treatment also promoted an increase in tumor infiltrating CD3+ T-cells at both early and late time points. In contrast, rosiglitazone treatment had no significant effect on myeloid cells expressing either CD11b or Gr-1 but suppressed a late accumulation of myeloid cells expressing both CD11b and Gr-1, suggesting a potential role for CD11b+Gr-1+ myeloid cells in the late anti-tumor immune response. Overall, our data provides evidence that the PPARγ agonist rosiglitazone promotes immune-mediated anti-neoplastic activity against tumors derived from this immunogenic CSCC cell line.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Progression
- Hypoglycemic Agents/pharmacology
- Immunomodulation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- PPAR gamma/agonists
- Rosiglitazone/pharmacology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transplantation, Isogeneic
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nurmukambed Ermatov
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Currently in the Department of Pathology, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | - Lu Ren
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Ravi P Sahu
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
9
|
Ren L, Konger RL. Evidence that peroxisome proliferator-activated receptor γ suppresses squamous carcinogenesis through anti-inflammatory signaling and regulation of the immune response. Mol Carcinog 2019; 58:1589-1601. [PMID: 31111568 DOI: 10.1002/mc.23041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 01/13/2023]
Abstract
A variety of evidence suggests that peroxisome proliferator-activated receptor (PPAR)γ agonists may represent a potential pharmacologic target in the prevention or treatment of skin cancer. In particular, recent reports suggest that PPARγ activation may exert at least some of its anti-neoplastic effects through the suppression of tumor promoting chronic inflammation as well as by strengthening antitumor immune responses. This activity is thought to occur through a distinct mode of ligand interaction with PPARγ that causes transrepression of transcription factors that are involved in inflammatory and immunomodulatory signaling. However, current thiazolidinedione (TZD)-type PPARγ agonists have significant safety concerns that limit their usefulness as a preventive or therapeutic option. Due to the relatively large ligand binding pocket of PPARγ, a diverse group of ligands can be seen to interact with distinct modes of binding to PPARγ, leading to the phenomenon of partial agonist activity and selective PPARγ modulators (SPPARγM). This has led to the development of ligands that are tailored to deliver desired pharmacologic activity, but lack some of the negative side effects associated with full agonists, such as the currently utilized TZD-type PPARγ agonists. In addition, there is evidence that a number of phytochemicals that are currently being touted as antineoplastic nutraceuticals also possess PPARγ activity that may partially explain their pharmacologic activity. We propose that one or more of these partial agonists, SPPARγMs, or putative phytochemical PPARγ ligands could presumably be used as a starting point to design more efficacious anti-neoplastic PPARγ ligands that lack adverse pharmacological effects.
Collapse
Affiliation(s)
- Lu Ren
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pathology and Laboratory Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Raymond L Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pathology and Laboratory Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
10
|
Simeone TA, Matthews SA, Simeone KA. Synergistic protection against acute flurothyl-induced seizures by adjuvant treatment of the ketogenic diet with the type 2 diabetes drug pioglitazone. Epilepsia 2017; 58:1440-1450. [PMID: 28555877 DOI: 10.1111/epi.13809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We have previously found that the transcription factor peroxisome proliferator-activated receptor γ (PPARγ) contributes to the mechanism of action of the ketogenic diet (KD), an established treatment for pediatric refractory epilepsy. We have found that the KD increases brain PPARγ and that inhibition or genetic loss of PPARγ prevents the antiseizure effects of the KD on (1) acutely induced seizures in nonepileptic mice and (2) spontaneous recurrent seizures in epileptic mice. Here, we tested the hypothesis that adjuvant treatment of KD-treated mice with a PPARγ agonist, pioglitazone, would result in an additive effect. METHODS Acute seizures were induced in three groups of C57Bl/6 mice by inhalation exposure to flurothyl gas. In Group 1, mice were weaned onto either a standard diet or KD comprised of a fat:carbohydrate/protein ratio of either 6:1, 3:1, or 1:1 for 2 weeks. In Group 2, vehicle or pioglitazone (0.1, 1, 10, 80 mg/kg) was administered 4 h prior to flurothyl exposure. In Group 3, vehicle or increasing doses of pioglitazone were administered to KD-treated mice 4 h prior to flurothyl exposure. Latency times to clonic seizures and generalized tonic-clonic (GTC) seizures were recorded, and isobolographic analysis was used to determine combinatorial interactions. RESULTS Neither KD treatment nor pioglitazone alone or in combination affected clonic seizures. However, the latency to GTC seizures was dose-dependently and significantly increased by both KD (~57%, p < 0.05) and pioglitazone (~28%, p < 0.05). Coadministration of an ineffective 1:1 KD and pioglitazone resulted in ~47-55% (p < 0.05) increase in latency to GTC. Isobolographic analysis indicated a synergistic interaction of the KD and pioglitazone. SIGNIFICANCE These results suggest coadministration may enable reduction of the KD ratio without loss of seizure protection. Such adjuvant treatment could improve quality of life and limit adverse effects of a classic KD or high-dose pioglitazone.
Collapse
Affiliation(s)
- Timothy A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, U.S.A
| | - Stephanie A Matthews
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, U.S.A
| | - Kristina A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, U.S.A
| |
Collapse
|
11
|
PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 2017; 387:95-107. [PMID: 28558994 DOI: 10.1016/j.tox.2017.05.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous and persistent environmental contaminants. Compounds such as perfluoroocanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) are readily found in the tissues of humans and wildlife. While PFOA and PFOS have been the subject of numerous studies since they were first described over a decade ago, less is known about the biological activity of PFHxS and PFNA. Most PFAAs are activators of peroxisome proliferator-activated receptor α (PPARα), although the biological effects of these compounds are likely mediated by other factors in addition to PPARα. To evaluate the effects of PFHxS and PFNA, male wild-type and Pparα-null mice were dosed by oral gavage with PFHxS (3 or 10mg/kg/day), PFNA (1 or 3mg/kg/day), or vehicle for 7days, and liver gene expression was evaluated by full-genome microarrays. Gene expression patterns were then compared to historical in-house data for PFOA and PFOS in addition to the experimental hypolipidemic agent, WY-14,643. While WY-14,643 altered most genes in a PPARα-dependent manner, approximately 11-24% of regulated genes in PFAA-treated mice were independent of PPARα. The possibility that PFAAs regulate gene expression through other molecular pathways was evaluated. Using data available through a microarray database, PFAA gene expression profiles were found to exhibit significant similarity to profiles from mouse tissues exposed to agonists of the constitutive activated receptor (CAR), estrogen receptor α (ERα), and PPARγ. Human PPARγ and ERα were activated by all four PFAAs in trans-activation assays from the ToxCast screening program. Predictive gene expression biomarkers showed that PFAAs activate CAR in both genotypes and cause feminization of the liver transcriptome through suppression of signal transducer and activator of transcription 5B (STAT5B). These results indicate that, in addition to activating PPARα as a primary target, PFAAs also have the potential to activate CAR, PPARγ, and ERα as well as suppress STAT5B.
Collapse
|
12
|
Watt J, Webster TF, Schlezinger JJ. Generalized Concentration Addition Modeling Predicts Mixture Effects of Environmental PPARγ Agonists. Toxicol Sci 2016; 153:18-27. [PMID: 27255385 DOI: 10.1093/toxsci/kfw100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vast array of potential environmental toxicant combinations necessitates the development of efficient strategies for predicting toxic effects of mixtures. Current practices emphasize the use of concentration addition to predict joint effects of endocrine disrupting chemicals in coexposures. Generalized concentration addition (GCA) is one such method for predicting joint effects of coexposures to chemicals and has the advantage of allowing for mixture components to have differences in efficacy (ie, dose-response curve maxima). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays a central role in regulating lipid homeostasis, insulin sensitivity, and bone quality and is the target of an increasing number of environmental toxicants. Here, we tested the applicability of GCA in predicting mixture effects of therapeutic (rosiglitazone and nonthiazolidinedione partial agonist) and environmental PPARγ ligands (phthalate compounds identified using EPA's ToxCast database). Transcriptional activation of human PPARγ1 by individual compounds and mixtures was assessed using a peroxisome proliferator response element-driven luciferase reporter. Using individual dose-response parameters and GCA, we generated predictions of PPARγ activation by the mixtures, and we compared these predictions with the empirical data. At high concentrations, GCA provided a better estimation of the experimental response compared with 3 alternative models: toxic equivalency factor, effect summation and independent action. These alternatives provided reasonable fits to the data at low concentrations in this system. These experiments support the implementation of GCA in mixtures analysis with endocrine disrupting compounds and establish PPARγ as an important target for further studies of chemical mixtures.
Collapse
Affiliation(s)
- James Watt
- Boston University School of Public Health, Boston, Massachusetts 02118
| | - Thomas F Webster
- Boston University School of Public Health, Boston, Massachusetts 02118
| | | |
Collapse
|
13
|
Lin CM, Tsai JT, Chang CK, Cheng JT, Lin JW. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4709-17. [PMID: 26316709 PMCID: PMC4544623 DOI: 10.2147/dddt.s86616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decrease of peroxisome proliferator-activated receptors-δ (PPARδ) expression has been observed after spinal cord injury (SCI). Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application. METHODS In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage. RESULTS Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI. CONCLUSION The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Chen Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| |
Collapse
|
14
|
von Knethen A, Sha LK, Knape T, Kuchler L, Giegerich AK, Schulz M, Hauser IA, Brüne B. Activation of the peroxisome proliferator-activated receptor γ counteracts sepsis-induced T cell cytotoxicity toward alloantigenic target cells. J Mol Med (Berl) 2015; 93:633-44. [PMID: 25559266 DOI: 10.1007/s00109-014-1249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 01/14/2023]
Abstract
UNLABELLED Sepsis still emerges as a major cause of patient death in intensive care units. Therefore, new therapeutic approaches are mandatory. Because during sepsis progression cytotoxic T lymphocytes (CTLs) can be activated in an autoimmune fashion contributing to multiorgan damage, it remains unclear whether CTLs are activated toward alloantigenic cells. This is important for patients receiving an immunosuppressive therapy to permit organ transplantation and, thus, known to be at high risk for developing sepsis. Therefore, we analyzed whether sepsis activates CTL toward alloantigenic target cells and whether this can be inhibited by PPARγ activation, known to block T helper cell responses. To mimic septic conditions, CTLs were isolated from cecal ligation and puncture-operated mice. CTL cytotoxicity was analyzed following a direct alloantigenic activation regime or following classical ex vivo splenocyte-driven activation in a cytotoxicity assay. With this readout, we found that CTL derived from septic mice enhanced cytotoxicity toward alloantigenic target cells, which was lowered by in vivo and ex vivo PPARγ activation. With CTL derived from T cell-specific PPARγ knockout mice, PPARγ activation was ineffective, pointing to a PPARγ-dependent mechanism. In vivo and ex vivo PPARγ activation reduced Fas and granzyme B expression in activated CTL. KEY MESSAGE In the sepsis CLP mouse model, CTLs are activated toward alloantigenic target cells. Sepsis-mediated alloantigenic CTL activation is blocked in vivo by PPARγ activation. PPARγ deletion or antagonization restored rosiglitazone-dependent inhibition of CTL cytotoxicity. PPARγ inhibits the expression of Fas and granzyme B in CTLs.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes. PLoS One 2014; 9:e87848. [PMID: 24498211 PMCID: PMC3907559 DOI: 10.1371/journal.pone.0087848] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
Aims/Hypothesis We developed KDT501, a novel substituted 1,3-cyclopentadione chemically derived from hop extracts, and evaluated it in various in vitro and in vivo models of diabetes and insulin sensitivity. Methods KDT501 was evaluated for anti-inflammatory effects in monocyte/macrophage cells; agonistic activity for peroxisome proliferator-activated receptors (PPAR); lipogenesis and gene expression profile in human subcutaneous adipocytes. Body composition, glucose, insulin sensitivity, and lipids were assessed in diet-induced obesity (DIO) mice and Zucker Diabetic Fatty (ZDF) rats after oral administration. Results KDT501 mediated lipogenesis in 3T3L1 and human subcutaneous adipocytes; however, the gene expression profile of KDT501 differed from that of the full PPARγ agonist rosiglitazone, suggesting that KDT501 has pleiotropic biological activities. In addition, KDT501 showed only modest, partial PPARγ agonist activity and exhibited anti-inflammatory effects in monocytes/macrophages that were not observed with rosiglitazone. In a DIO mouse model, oral administration of KDT501 significantly reduced fed blood glucose, glucose/insulin AUC following an oral glucose bolus, and body fat. In ZDF rats, oral administration of KDT501 significantly reduced fed glucose, fasting plasma glucose, and glucose AUC after an oral glucose bolus. Significant, dose-dependent reductions of plasma hemoglobin A1c, weight gain, total cholesterol, and triglycerides were also observed in animals receiving KDT501. Conclusion These results indicate that KDT501 produces a unique anti-diabetic profile that is distinct in its spectrum of pharmacological effects and biological mechanism from both metformin and pioglitazone. KDT501 may thus constitute a novel therapeutic agent for the treatment of Type 2 diabetes and associated conditions.
Collapse
|