1
|
Giczewska A, Pastuszak K, Houweling M, Abdul KU, Faaij N, Wedekind L, Noske D, Wurdinger T, Supernat A, Westerman BA. Longitudinal drug synergy assessment using convolutional neural network image-decoding of glioblastoma single-spheroid cultures. Neurooncol Adv 2023; 5:vdad134. [PMID: 38047207 PMCID: PMC10691443 DOI: 10.1093/noajnl/vdad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Background In recent years, drug combinations have become increasingly popular to improve therapeutic outcomes in various diseases, including difficult to cure cancers such as the brain cancer glioblastoma. Assessing the interaction between drugs over time is critical for predicting drug combination effectiveness and minimizing the risk of therapy resistance. However, as viability readouts of drug combination experiments are commonly performed as an endpoint where cells are lysed, longitudinal drug-interaction monitoring is currently only possible through combined endpoint assays. Methods We provide a method for massive parallel monitoring of drug interactions for 16 drug combinations in 3 glioblastoma models over a time frame of 18 days. In our assay, viabilities of single neurospheres are to be estimated based on image information taken at different time points. Neurosphere images taken on the final day (day 18) were matched to the respective viability measured by CellTiter-Glo 3D on the same day. This allowed to use of machine learning to decode image information to viability values on day 18 as well as for the earlier time points (on days 8, 11, and 15). Results Our study shows that neurosphere images allow us to predict cell viability from extrapolated viabilities. This enables to assess of the drug interactions in a time window of 18 days. Our results show a clear and persistent synergistic interaction for several drug combinations over time. Conclusions Our method facilitates longitudinal drug-interaction assessment, providing new insights into the temporal-dynamic effects of drug combinations in 3D neurospheres which can help to identify more effective therapies against glioblastoma.
Collapse
Affiliation(s)
- Anna Giczewska
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Pastuszak
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, Gdańsk, Poland
- Department of Algorithms and System Modeling, Gdansk University of Technology, Gdańsk, Poland
| | - Megan Houweling
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| | - Kulsoom U Abdul
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| | - Noa Faaij
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laurine Wedekind
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - David Noske
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| |
Collapse
|
2
|
Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma. Pharmaceutics 2022; 15:pharmaceutics15010097. [PMID: 36678726 PMCID: PMC9862601 DOI: 10.3390/pharmaceutics15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer compounds with both effects need to be developed. In this work, we analyze the antimetastatic properties of prodigiosin and obatoclax (GX15-070), anticancer drugs of the Prodiginines (PGs) family. We studied PGs' effects on cellular adhesion and morphology in the human primary and metastatic melanoma cell lines, SK-MEL-28 and SK-MEL-5, and in the murine melanoma cell line, B16F10A. Cell adhesion sharply decreased in the treated cells, and this was accompanied by a reduction in filopodia protrusions and a significant decrease in the number of focal-adhesion structures. Moreover, cell migration was assessed through the wound-healing assay and cell motility was severely inhibited after 24 h of treatment. To elucidate the molecular mechanisms involved, changes in metastasis-related genes were analyzed through a gene-expression array. Key genes related to cellular invasion, migration and chemoresistance were significantly down-regulated. Finally, an in vivo model of melanoma-induced lung metastasis was established and significant differences in lung tumors were observed in the obatoclax-treated mice. Altogether, these results describe, in depth, PGs' cellular antimetastatic effects and identify in vivo antimetastatic properties of Obatoclax.
Collapse
|
3
|
Pritha A, Anderson R, Anderson DE, Nicolaides T. A Holistic Review on the Current and Future Status of Biology-Driven and Broad-Spectrum Therapeutic Options for Medulloblastoma. Cureus 2022; 14:e23447. [PMID: 35481313 PMCID: PMC9034720 DOI: 10.7759/cureus.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
With a thorough investigation of the etiology of medulloblastomas, a comprehensive review was done to categorize available clinical trials in order to discuss the future potential of breakthroughs in treatment options. The pertinent issues of medulloblastoma therapy with radiation being inapplicable to children under the age of 3, and therapies causing toxicity are detailed and discussed in the context of understanding how the current therapies may address these suboptimal treatment modalities. This study aggregated published studies from the US government clinical trials website and filtered them based on their direct treatment towards medulloblastomas. Thirty-two clinical trials were applicable to be analyzed and the treatment mechanisms were discussed along with the efficacy; molecular groupings of medulloblastomas were also investigated. The investigated therapies tend to target sonic hedgehog (SHH)-subtype medulloblastomas, but there is a necessity for group 3 subtype and group 4 subtype to be targeted as well. Due to the heterogeneous nature of tumor relapse in groups 3 and 4, there are less specified trials towards those molecular groupings, and radiation seems to be the main scope of treatment. Medulloblastomas being primarily a pediatric tumor require treatment options that minimize radiation to increase the quality of living in children and to prevent long-term symptoms of over radiation. Exploring symptomatic treatment with donepezil in children with combination therapies may be a potential route for future trials; immunotherapies seem to hold potential in treating patients reacting adversely to radiation therapy.
Collapse
|
4
|
Balakrishnan I, Danis E, Pierce A, Madhavan K, Wang D, Dahl N, Sanford B, Birks DK, Davidson N, Metselaar DS, Meel MH, Lemma R, Donson A, Vijmasi T, Katagi H, Sola I, Fosmire S, Alimova I, Steiner J, Gilani A, Hulleman E, Serkova NJ, Hashizume R, Hawkins C, Carcaboso AM, Gupta N, Monje M, Jabado N, Jones K, Foreman N, Green A, Vibhakar R, Venkataraman S. Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Rep 2020; 33:108286. [PMID: 33086074 PMCID: PMC7574900 DOI: 10.1016/j.celrep.2020.108286] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/05/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.
Collapse
Affiliation(s)
- Ilango Balakrishnan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Krishna Madhavan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan Dahl
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Bridget Sanford
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diane K Birks
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nate Davidson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rakeb Lemma
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Donson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Trinka Vijmasi
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ismail Sola
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Irina Alimova
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jenna Steiner
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Natalie J Serkova
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel M Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle Monje
- Departments of Neurology, Neurosurgery, Pediatrics, and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Kenneth Jones
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas Foreman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Adam Green
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| | - Sujatha Venkataraman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
5
|
Eustace AJ, Conlon NT, McDermott MSJ, Browne BC, O'Leary P, Holmes FA, Espina V, Liotta LA, O'Shaughnessy J, Gallagher C, O'Driscoll L, Rani S, Madden SF, O'Brien NA, Ginther C, Slamon D, Walsh N, Gallagher WM, Zagozdzon R, Watson WR, O'Donovan N, Crown J. Development of acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis induction by obatoclax and TRAIL. BMC Cancer 2018; 18:965. [PMID: 30305055 PMCID: PMC6180577 DOI: 10.1186/s12885-018-4852-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022] Open
Abstract
Background Lapatinib has clinical efficacy in the treatment of trastuzumab-refractory HER2-positive breast cancer. However, a significant proportion of patients develop progressive disease due to acquired resistance to the drug. Induction of apoptotic cell death is a key mechanism of action of lapatinib in HER2-positive breast cancer cells. Methods We examined alterations in regulation of the intrinsic and extrinsic apoptosis pathways in cell line models of acquired lapatinib resistance both in vitro and in patient samples from the NCT01485926 clinical trial, and investigated potential strategies to exploit alterations in apoptosis signalling to overcome lapatinib resistance in HER2-positive breast cancer. Results In this study, we examined two cell lines models of acquired lapatinib resistance (SKBR3-L and HCC1954-L) and showed that lapatinib does not induce apoptosis in these cells. We identified alterations in members of the BCL-2 family of proteins, in particular MCL-1 and BAX, which may play a role in resistance to lapatinib. We tested the therapeutic inhibitor obatoclax, which targets MCL-1. Both SKBR3-L and HCC1954-L cells showed greater sensitivity to obatoclax-induced apoptosis than parental cells. Interestingly, we also found that the development of acquired resistance to lapatinib resulted in acquired sensitivity to TRAIL in SKBR3-L cells. Sensitivity to TRAIL in the SKBR3-L cells was associated with reduced phosphorylation of AKT, increased expression of FOXO3a and decreased expression of c-FLIP. In SKBR3-L cells, TRAIL treatment caused activation of caspase 8, caspase 9 and caspase 3/7. In a second resistant model, HCC1954-L cells, p-AKT levels were not decreased and these cells did not show enhanced sensitivity to TRAIL. Furthermore, combining obatoclax with TRAIL improved response in SKBR3-L cells but not in HCC1954-L cells. Conclusions Our findings highlight the possibility of targeting altered apoptotic signalling to overcome acquired lapatinib resistance, and identify potential novel treatment strategies, with potential biomarkers, for HER2-positive breast cancer that is resistant to HER2 targeted therapies. Electronic supplementary material The online version of this article (10.1186/s12885-018-4852-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex J Eustace
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | - Neil T Conlon
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Martina S J McDermott
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Brigid C Browne
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Patrick O'Leary
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Frankie A Holmes
- Texas Oncology-Memorial Hermann Memorial City, US Oncology Research, 925 Gessner Road #550, Houston, TX, 77024-2546, USA
| | | | | | | | - Clair Gallagher
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy & Pharmaceutical Sciences, and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Sweta Rani
- School of Pharmacy & Pharmaceutical Sciences, and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Neil A O'Brien
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Charles Ginther
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Dennis Slamon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Naomi Walsh
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka, 59, Warsaw, Poland
| | - William R Watson
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Norma O'Donovan
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,Department of Oncology, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Merino D, Whittle JR, Vaillant F, Serrano A, Gong JN, Giner G, Maragno AL, Chanrion M, Schneider E, Pal B, Li X, Dewson G, Gräsel J, Liu K, Lalaoui N, Segal D, Herold MJ, Huang DCS, Smyth GK, Geneste O, Lessene G, Visvader JE, Lindeman GJ. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci Transl Med 2018; 9:9/401/eaam7049. [PMID: 28768804 DOI: 10.1126/scitranslmed.aam7049] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
The development of BH3 mimetics, which antagonize prosurvival proteins of the BCL-2 family, represents a potential breakthrough in cancer therapy. Targeting the prosurvival member MCL-1 has been an area of intense interest because it is frequently deregulated in cancer. In breast cancer, MCL-1 is often amplified, and high expression predicts poor patient outcome. We tested the MCL-1 inhibitor S63845 in breast cancer cell lines and patient-derived xenografts with high expression of MCL-1. S63845 displayed synergistic activity with docetaxel in triple-negative breast cancer and with trastuzumab or lapatinib in HER2-amplified breast cancer. Using S63845-resistant cells combined with CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) technology, we identified deletion of BAK and up-regulation of prosurvival proteins as potential mechanisms that confer resistance to S63845 in breast cancer. Collectively, our findings provide a strong rationale for the clinical evaluation of MCL-1 inhibitors in breast cancer.
Collapse
Affiliation(s)
- Delphine Merino
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James R Whittle
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - François Vaillant
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Antonin Serrano
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jia-Nan Gong
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Goknur Giner
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ana Leticia Maragno
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Maïa Chanrion
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Emilie Schneider
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Bhupinder Pal
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiang Li
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Grant Dewson
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Julius Gräsel
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kevin Liu
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Najoua Lalaoui
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - David Segal
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marco J Herold
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - David C S Huang
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Gordon K Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Olivier Geneste
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Guillaume Lessene
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane E Visvader
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J Lindeman
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. .,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,Parkville Familial Cancer Centre, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria 3050, Australia
| |
Collapse
|
7
|
Karpel-Massler G, Bâ M, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. TIC10/ONC201 synergizes with Bcl-2/Bcl-xL inhibition in glioblastoma by suppression of Mcl-1 and its binding partners in vitro and in vivo. Oncotarget 2017; 6:36456-71. [PMID: 26474387 PMCID: PMC4742189 DOI: 10.18632/oncotarget.5505] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the most frequent primary brain tumor in adults. Current therapeutic options are sparse and the prognosis of patients suffering from this disease is grim. Abundance in intratumoral heterogeneity among different deregulated signaling pathways is a hallmark of glioblastoma and likely accounts for its recurrence and resistance to treatment. Glioblastomas harbor a plethora of deregulated pathways driving tumor formation and growth. In this study, we show that TIC10/ONC201, a promising compound that is currently in planned clinical development, along with Bcl-2/Bcl-xL inhibition by ABT263 yields a strong synergistic antiproliferative effect on pediatric, adult, proneural glioblastoma and glioma stem-like cells. On the molecular level, treatment with TIC10/ONC201 results in a posttranslational decrease of the anti-apoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), through modulation of the chaperone Bag3 and the deubiquitinase Usp9X. Consistently, the combination treatment of TIC10/ONC201 and ABT263 required the presence of functional BAX and BAK to drive intrinsic apoptosis, but is surprisingly independent of the extrinsic apoptotic pathway. Moreover, the expression of Noxa protein was required for efficient apoptosis induction by TIC10/ONC201 and ABT263. Importantly, the drug combination of TIC10/ONC201 and the BH3-mimetic, ABT263, led to a regression of tumors in vivo, without any notable toxicity and side effects. Overall, TIC10/ONC201 along with Bcl-2/Bcl-xL inhibition holds significant promise as a novel potential approach for the treatment of recalcitrant tumors such as glioblastoma.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Maïmouna Bâ
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| |
Collapse
|
8
|
The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization. PLoS One 2016; 11:e0150696. [PMID: 26950068 PMCID: PMC4780728 DOI: 10.1371/journal.pone.0150696] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022] Open
Abstract
Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal alkalinization contributes to the cytotoxic activity of obatoclax.
Collapse
|
9
|
Koehler BC, Jassowicz A, Scherr AL, Lorenz S, Radhakrishnan P, Kautz N, Elssner C, Weiss J, Jaeger D, Schneider M, Schulze-Bergkamen H. Pan-Bcl-2 inhibitor Obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling. BMC Cancer 2015; 15:919. [PMID: 26585594 PMCID: PMC4653869 DOI: 10.1186/s12885-015-1929-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Colorectal cancer is the third most common malignancy in humans and novel therapeutic approaches are urgently needed. Autophagy is an evolutionarily highly conserved cellular process by which cells collect unnecessary organelles or misfolded proteins and subsequently degrade them in vesicular structures in order to refuel cells with energy. Dysregulation of the complex autophagy signaling network has been shown to contribute to the onset and progression of cancer in various models. The Bcl-2 family of proteins comprises central regulators of apoptosis signaling and has been linked to processes involved in autophagy. The antiapoptotic members of the Bcl-2 family of proteins have been identified as promising anticancer drug targets and small molecules inhibiting those proteins are in clinical trials. METHODS Flow cytometry and colorimetric assays were used to assess cell growth and cell death. Long term 3D cell culture was used to assess autophagy in a tissue mimicking environment in vitro. RNA interference was applied to modulate autophagy signaling. Immunoblotting and q-RT PCR were used to investigate autophagy signaling. Immunohistochemistry and fluorescence microscopy were used to detect autophagosome formation and autophagy flux. RESULTS This study demonstrates that autophagy inhibition by obatoclax induces cell death in colorectal cancer (CRC) cells in an autophagy prone environment. Here, we demonstrate that pan-Bcl-2 inhibition by obatoclax causes a striking, late stage inhibition of autophagy in CRC cells. In contrast, ABT-737, a Mcl-1 sparing Bcl-2 inhibitor, failed to interfere with autophagy signaling. Accumulation of p62 as well as Light Chain 3 (LC3) was observed in cells treated with obatoclax. Autophagy inhibition caused by obatoclax is further augmented in stressful conditions such as starvation. Furthermore, our data demonstrate that inhibition of autophagy caused by obatoclax is independent of the essential pro-autophagy proteins Beclin-1, Atg7 and Atg12. CONCLUSIONS The objective of this study was to dissect the contribution of Bcl-2 proteins to autophagy in CRC cells and to explore the potential of Bcl-2 inhibitors for autophagy modulation. Collectively, our data argue for a Beclin-1 independent autophagy inhibition by obatoclax. Based on this study, we recommend the concept of autophagy inhibition as therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Bruno Christian Koehler
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany.
| | - Adam Jassowicz
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany.
| | - Anna-Lena Scherr
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany.
| | - Stephan Lorenz
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany.
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Nicole Kautz
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany.
| | - Christin Elssner
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany.
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Dirk Jaeger
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany.
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| | - Henning Schulze-Bergkamen
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Internal Medicine II, Marien-Hospital, Wesel, Germany.
| |
Collapse
|
10
|
Gariboldi MB, Taiana E, Bonzi MC, Craparotta I, Giovannardi S, Mancini M, Monti E. The BH3-mimetic obatoclax reduces HIF-1α levels and HIF-1 transcriptional activity and sensitizes hypoxic colon adenocarcinoma cells to 5-fluorouracil. Cancer Lett 2015; 364:156-64. [PMID: 25979228 DOI: 10.1016/j.canlet.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Activation of hypoxia-inducible factor (HIF)-1 is a feature of hypoxic solid tumors that has been associated with drug resistance, mainly due to disruption of Bcl-2 family dynamics. Resetting the balance in favor of proapoptotic family members is an attractive therapeutic goal that has been pursued by developing BH3-mimetic compounds. In the present study we evaluated the response of human colon adenocarcinoma cells to the BH3-mimetic obatoclax (OBX), in terms of growth arrest, apoptosis and autophagy, in the presence or absence of HIF-1α-stabilizing conditions; its possible effect on HIF-1α expression and HIF-1 activity; and the possibility to improve the response of colon cancer cells to cytotoxic chemotherapeutics by combining them with OBX. Colon cancer cell response to the BH3-mimetic was unmodified by HIF-1 activation and OBX induced a decrease in HIF-1α protein levels and HIF-1 transcriptional activity, probably by decreasing HIF-1α synthesis and facilitating a VHL-independent proteasomal degradation pathway. Finally, a chemosensitizing effect of OBX with respect to 5-fluorouracil or oxaliplatin treatment was observed, highlighting the possibility that patients with hypoxic colon tumors might benefit from combined regimens including OBX.
Collapse
Affiliation(s)
- Marzia B Gariboldi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Elisa Taiana
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Maria Chiara Bonzi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Ilaria Craparotta
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Stefano Giovannardi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Monica Mancini
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy.
| |
Collapse
|
11
|
Cruickshanks N, Hamed HA, Booth L, Tavallai S, Syed J, Sajithlal GB, Grant S, Poklepovic A, Dent P. Histone deacetylase inhibitors restore toxic BH3 domain protein expression in anoikis-resistant mammary and brain cancer stem cells, thereby enhancing the response to anti-ERBB1/ERBB2 therapy. Cancer Biol Ther 2013; 14:982-96. [PMID: 24025251 PMCID: PMC3926895 DOI: 10.4161/cbt.26234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The present studies focused on defining the mechanisms by which anoikis-resistant (AR) mammary carcinoma cells can be reverted to a therapy-sensitive phenotype. AR mammary carcinoma cells had reduced expression of the toxic BH3 domain proteins BAX, BAK, NOXA, and PUMA. In AR cells expression of the protective BCL-2 family proteins BCL-XL and MCL-1 was increased. AR cells were resistant to cell killing by multiple anti-tumor cell therapies, including ERBB1/2 inhibitor + MCL-1 inhibitor treatment, and had a reduced autophagic flux response to these therapies, despite similarly exhibiting increased levels of LC3II processing. Knockdown of MCL-1 and BCL-XL caused necro-apoptosis in AR cells to a greater extent than in parental cells. Pre-treatment of anoikis-resistant cells with histone deacetylase inhibitors (HDACIs) for 24 h increased the levels of toxic BH3 domain proteins, reduced MCL-1 levels, and restored/re-sensitized the cell death response of AR tumor cells to multiple toxic therapies. In vivo, pre-treatment of AR breast tumors in the brain with valproate restored the chemo-sensitivity of the tumors and prolonged animal survival. These data argue that one mechanism to enhance the anti-tumor effect of chemotherapy could be HDACI pre-treatment.
Collapse
|
12
|
Abstract
HER2 is a trans-membrane receptor tyrosine kinase that activates multiple growth-promoting signaling pathways including PI3K-AKT and Ras-MAPK. Dysregulation of HER2 is a frequent occurrence in breast cancer that is associated with poor patient outcomes. A primary function of HER2 is suppressing apoptosis to enhance cell survival giving rise to uncontrolled proliferation and tumor growth. There has been much investigation into the mechanisms by which apoptosis is suppressed by HER2 in hopes of finding clinical targets for HER2-positive breast cancers as these cancers often become resistant to therapies that directly target HER2. Several apoptotic mechanisms have been shown to be deregulated in HER2-overexpressing cells with examples in both the intrinsic and extrinsic apoptotic pathways. HER2-mediated activation of PI3K-AKT signaling is required for many of the mechanisms HER2 uses to suppress apoptosis. HER2 overexpression is correlated with increases in anti-apoptotic Bcl-2 proteins including Bcl-2, Bcl-xL, and Mcl-1. HER2 also suppresses p53-mediated apoptosis by upregulation of MDM2 by activation of AKT. In addition, survivin expression is often increased with HER2 overexpression leading to inhibition of caspase activation. There is also recent evidence to suggest HER2 can directly influence apoptosis by translocation to the mitochondria to inhibit cytochrome c release. HER2 can also suppress cellular reaction to death ligands, especially TRAIL-induced apoptosis. Elucidation of the mechanisms of apoptotic suppression by HER2 suggest that clinical treatment will likely need to target multiple components of these pathways as there is redundancy in HER2-mediated cell survival. Several therapies have attempted to target Bcl-2 proteins that have promising pre-clinical results. Next-generation HER2 targeting therapies include irreversible pan-ERBB inhibitors and antibody-drug conjugates, such as T-DM1 that has very promising clinical results thus far. Further investigation should include elucidating mechanisms of resistance to HER2-targeted therapies and targeting of multiple components of HER2-mediated cell survival.
Collapse
Affiliation(s)
- Richard L Carpenter
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Hui-Wen Lo
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
13
|
The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 2013; 12:217-28. [PMID: 23449307 DOI: 10.1038/nrd3870] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of stromal cells and the tumour microenvironment in general in modulating tumour sensitivity is increasingly becoming a key consideration for the development of active anticancer therapeutics. Here, we discuss how these tumour-stromal interactions affect tumour cell signalling, survival, proliferation and drug sensitivity. Particular emphasis is placed on the ability of stromal cells to confer - to tumour cells - resistance or sensitization to different classes of therapeutics, depending on the specific microenvironmental context. The mechanistic understanding of these microenvironmental interactions can influence the evaluation and selection of candidate agents for various cancers, in both the primary site as well as the metastatic setting. Progress in in vitro screening platforms as well as orthotopic and 'orthometastatic' xenograft mouse models has enabled comprehensive characterization of the impact of the tumour microenvironment on therapeutic efficacy. These recent advances can hopefully bridge the gap between preclinical studies and clinical trials of anticancer agents.
Collapse
|
14
|
Liu Q, Wang HG. Anti-cancer drug discovery and development: Bcl-2 family small molecule inhibitors. Commun Integr Biol 2013; 5:557-65. [PMID: 23336025 PMCID: PMC3541322 DOI: 10.4161/cib.21554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deregulated apoptosis is a hallmark of cancer, and the B-cell lymphoma-2 (Bcl-2) family of proteins is pivotal to mediating the intrinsic pathway of this process. Recent advances have yielded both pan-Bcl-2 small molecule inhibitors (SMIs) that inhibit both the Bcl-2 and the Mcl-1 arm of the Bcl-2 family anti-apoptotic proteins, as well as selective SMIs to differentially target the two arms. Of these SMIs, ABT-263 (navitoclax), AT-101 [(-)-gossypol], and obatoclax (GX15-070) are currently in clinical trials for multiple cancers. While pan-Bcl-2 inhibitors such as AT-101 and obatoclax can be more toxic for inhibiting all members of the anti-apoptotic Bcl-2 family of proteins, resistance can quickly develop for ABT-263, a selective Bcl-2 inhibitor. In this article, we discuss the current status of Bcl-2 family SMIs in preclinical and clinical development. As Mcl-1 upregulation is a major mechanism of ABT-263 resistance, Mcl-1-specific inhibitors are expected to be efficacious both in combination/sequential treatments and as a single agent against cancers resistant to ABT-263.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania University College of Medicine; Hershey, PA USA
| | | |
Collapse
|
15
|
Singh A, Lun X, Jayanthan A, Obaid H, Ruan Y, Strother D, Chi SN, Smith A, Forsyth P, Narendran A. Profiling pathway-specific novel therapeutics in preclinical assessment for central nervous system atypical teratoid rhabdoid tumors (CNS ATRT): favorable activity of targeting EGFR- ErbB2 signaling with lapatinib. Mol Oncol 2013; 7:497-512. [PMID: 23375777 DOI: 10.1016/j.molonc.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 01/09/2023] Open
Abstract
Despite intensifying multimodal treatments, children with central nervous system atypical teratoid/rhabdoid tumor (CNS ATRT) continue to endure unacceptably high mortality rates. At present, concerted efforts are focusing on understanding the characteristic INI1 mutation and its implications for the growth and survival of these tumors. Additionally, pharmaceutical pipeline libraries constitute a significant source of potential agents that can be taken to clinical trials in a timely manner. However, this process requires efficient target validation and relevant preclinical studies. As an initial screening approach, a panel of 129 small molecule inhibitors from multiple pharmaceutical pipeline libraries was tested against three ATRT cell lines by in vitro cytotoxicity assays. Based on these data, agents that have strong activity and corresponding susceptible cellular pathways were identified. Target modulation, antibody array analysis, drug combination and in vivo xenograft studies were performed on one of the pathway inhibitors found in this screening. Approximately 20% of agents in the library showed activity with IC(50) values of 1 μM or less and many showed IC(50) values less than 0.05 μM. Intra cell line variability was also noted among some of the drugs. However, it was determined that agents capable of affecting pathways constituting ErbB2, mTOR, proteasomes, Hsp90, Polo like kinases and Aurora kinases were universally effective against the three ATRT cell lines. The first target selected for further analysis, the inhibition of ErbB2-EGFR pathway by the small molecule inhibitor lapatinib, indicated inhibition of cell migration properties and the initiation of apoptosis. Synergy between lapatinib and IGF-IR inhibition was also demonstrated by combination index (CI) values. Xenograft studies showed effective antitumor activity of lapatinib in vivo. We present an experimental approach to identifying agents and drug combinations for future clinical trials and provide evidence for the potential of lapatinib as an effective agent in the context of the biology and heterogeneity of its targets in ATRT.
Collapse
Affiliation(s)
- Anjali Singh
- Pediatric Oncology Experimental Therapeutics Investigators Consortium (POETIC), Laboratory for Pre-Clinical and Drug Discovery Studies, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cruickshanks N, Tang Y, Booth L, Hamed H, Grant S, Dent P. Lapatinib and obatoclax kill breast cancer cells through reactive oxygen species-dependent endoplasmic reticulum stress. Mol Pharmacol 2012; 82:1217-29. [PMID: 22989520 PMCID: PMC3502625 DOI: 10.1124/mol.112.081539] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/18/2012] [Indexed: 01/07/2023] Open
Abstract
Previous studies showed that lapatinib and obatoclax interact in a greater-than-additive fashion to cause cell death and do so through a toxic form of autophagy. The present studies sought to extend our analyses. Lapatinib and obatoclax killed multiple tumor cell types, and cells lacking phosphatase and tensin homolog (PTEN) function were relatively resistant to drug combination lethality; expression of PTEN in PTEN-null breast cancer cells restored drug sensitivity. Coadministration of lapatinib with obatoclax elicited autophagic cell death that was attributable to the actions of mitochondrial reactive oxygen species. Wild-type cells but not mitochondria-deficient rho-zero cells were radiosensitized by lapatinib and obatoclax treatment. Activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase 1/2 (JNK1/2) by the drug combination was enhanced by radiation, and signaling by p38 MAPK and JNK1/2 promoted cell killing. In immunohistochemical analyses, the autophagosome protein p62 was determined to be associated with protein kinase-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1, as well as with binding immunoglobulin protein/78-kDa glucose-regulated protein, in drug combination-treated cells. Knockdown of PERK suppressed drug-induced autophagy and protected tumor cells from the drug combination. Knockdown of PERK suppressed the reduction in Mcl-1 expression after drug combination exposure, and overexpression of Mcl-1 protected cells. Our data indicate that mitochondrial function plays an essential role in cell killing by lapatinib and obatoclax, as well as radiosensitization by this drug combination.
Collapse
Affiliation(s)
- Nichola Cruickshanks
- Department of Neurosurgery, School of Medicne, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The current status of peptides that target the mitochondria in the context of cancer is the focus of this review. Chemotherapy and radiotherapy used to kill tumor cells are principally mediated by the process of apoptosis that is governed by the mitochondria. The failure of anticancer therapy often resides at the level of the mitochondria. Therefore, the mitochondrion is a key pharmacological target in cancer due to many of the differences that arise between malignant and healthy cells at the level of this ubiquitous organelle. Additionally, targeting the characteristics of malignant mitochondira often rely on disruption of protein--protein interactions that are not generally amenable to small molecules. We discuss anticancer peptides that intersect with pathological changes in the mitochondrion.
Collapse
Affiliation(s)
- Jonathan E Constance
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | | |
Collapse
|
18
|
Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res 2012; 72:3069-79. [PMID: 22525702 PMCID: PMC3377792 DOI: 10.1158/0008-5472.can-11-4106] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABT-737 is a small molecule Bcl-2 homology (BH)-3 domain mimetic that binds to the Bcl-2 family proteins Bcl-2 and Bcl-xL and is currently under investigation in the clinic. In this study, we investigated potential mechanisms of resistance to ABT-737 in leukemia cell lines. Compared with parental cells, cells that have developed acquired resistance to ABT-737 showed increased expression of Mcl-1 in addition to posttranslational modifications that facilitated both Mcl-1 stabilization and its interaction with the BH3-only protein Bim. To sensitize resistant cells, Mcl-1 was targeted by two pan-Bcl-2 family inhibitors, obatoclax and gossypol. Although gossypol was effective only in resistant cells, obatoclax induced cell death in both parental and ABT-737-resistant cells. NOXA levels were increased substantially by treatment with gossypol and its expression was critical for the gossypol response. Mechanistically, the newly generated NOXA interacted with Mcl-1 and displaced Bim from the Mcl-1/Bim complex, freeing Bim to trigger the mitochondrial apoptotic pathway. Together, our findings indicate that NOXA and Mcl-1 are critical determinants for gossypol-mediated cell death in ABT-737-resistant cells. These data therefore reveal novel insight into mechanisms of acquired resistance to ABT-737.
Collapse
Affiliation(s)
- Suparna Mazumder
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Ohio 44195, USA
| | | | | | | |
Collapse
|