1
|
Hamouda AK, Bautista MR, Akinola LS, Alkhlaif Y, Jackson A, Carper M, Toma WB, Garai S, Chen YC, Thakur GA, Fowler CD, Damaj MI. Potentiation of (α4)2(β2)3, but not (α4)3(β2)2, nicotinic acetylcholine receptors reduces nicotine self-administration and withdrawal symptoms. Neuropharmacology 2021; 190:108568. [PMID: 33878302 PMCID: PMC8169606 DOI: 10.1016/j.neuropharm.2021.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/28/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
The low sensitivity (α4)3(β2)2 (LS) and high sensitivity (α4)2(β2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4β2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4β2 nAChRs, and CMPI, a PAM selective for the LS nAChR. We found that dFBr, but not CMPI, decreased intravenous nicotine self-administration in male mice in a dose-dependent manner. Unlike dFBr, which fully reverses somatic and affective symptoms of nicotine withdrawal, CMPI at doses up to 15 mg/kg in male mice only partially reduced nicotine withdrawal-induced somatic signs, anxiety-like behavior and sucrose preference, but had no effects on nicotine withdrawal-induced hyperalgesia. These results indicate that potentiation of HS α4β2 nAChRs is necessary to modulate nicotine's reinforcing properties that underlie nicotine intake and to reverse nicotine withdrawal symptoms that influence nicotine abstinence. In contrast, both dFBr and CMPI enhanced nicotine's hypothermic effect and reduced nicotine's antinociceptive effects in male mice. Therefore, these results indicate a more prevalent role of HS α4β2 nAChR isoforms in mediating various behavioral effects associated with nicotine, whereas the LS α4β2 nAChR isoform has a limited role in mediating body temperature and nociceptive responses. These findings will facilitate the development of more selective, efficacious, and safe nAChR-based therapeutics for nicotine addiction treatment.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA.
| | - Malia R Bautista
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Wisam B Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci 2021; 78:1051-1064. [PMID: 32472188 PMCID: PMC11071962 DOI: 10.1007/s00018-020-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, β2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4β2 and α4β2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and β2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.
Collapse
Affiliation(s)
- Marie S Prevost
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Hichem Bouchenaki
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Nathalie Barilone
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Marc Gielen
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France.
- Sorbonne Université, 21, rue de l'école de médecine, 75006, Paris, France.
| | | |
Collapse
|
3
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Liao VWY, Kusay AS, Balle T, Ahring PK. Heterologous expression of concatenated nicotinic ACh receptors: Pros and cons of subunit concatenation and recommendations for construct designs. Br J Pharmacol 2020; 177:4275-4295. [PMID: 32627170 DOI: 10.1111/bph.15188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Concatenation of Cys-loop receptor subunits is a commonly used technique to ensure experimental control of receptor assembly. However, we recently demonstrated that widely used constructs did not lead to the expression of uniform pools of ternary and more complex receptors. The aim was therefore to identify viable strategies for designing concatenated constructs that would allow strict control of resultant receptor pools. EXPERIMENTAL APPROACH Concatenated dimeric, tetrameric, and pentameric α4β2-containing nicotinic ACh (nACh) receptor constructs were designed with successively shorter linker lengths and expressed in Xenopus laevis oocytes. Resulting receptor stoichiometries were investigated by functional analysis in two-electrode voltage-clamp experiments. Molecular dynamics simulations were performed to investigate potential effects of linkers on the 3D structure of concatemers. KEY RESULTS Dimeric constructs were found to be unreliable and should be avoided for expression of ternary receptors. By introducing two short linkers, we obtained efficient expression of uniform receptor pools with tetrameric and pentameric constructs. However, linkers should not be excessively short as that introduces strain on the 3D structure of concatemers. CONCLUSION AND IMPLICATIONS The data demonstrate that design of concatenated Cys-loop receptors requires a compromise between the desire for control of assembly and avoiding introduction of strain on the resulting protein. The overall best strategy was found to be pentameric constructs with carefully optimised linker lengths. Our findings will advance studies of ternary or more complex Cys-loop receptors as well as enabling detailed analysis of how pharmacological agents interact with stoichiometry-specific binding sites.
Collapse
Affiliation(s)
- Vivian Wan Yu Liao
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Ali Saad Kusay
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Thomas Balle
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Philip Kiaer Ahring
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.,Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. Int J Mol Sci 2020; 21:ijms21144918. [PMID: 32664647 PMCID: PMC7404387 DOI: 10.3390/ijms21144918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a key physiological phenomenon that can be pervasive when dysregulated. Persistent chronic inflammation precedes several pathophysiological conditions forming one of the critical cellular homeostatic checkpoints. With a steady global surge in inflammatory diseases, it is imperative to delineate underlying mechanisms and design suitable drug molecules targeting the cellular partners that mediate and regulate inflammation. Nicotinic acetylcholine receptors have a confirmed role in influencing inflammatory pathways and have been a subject of scientific scrutiny underlying drug development in recent years. Drugs designed to target allosteric sites on the nicotinic acetylcholine receptors present a unique opportunity to unravel the role of the cholinergic system in regulating and restoring inflammatory homeostasis. Such a therapeutic approach holds promise in treating several inflammatory conditions and diseases with inflammation as an underlying pathology. Here, we briefly describe the potential of cholinergic allosterism and some allosteric modulators as a promising therapeutic option for the treatment of neuroinflammation.
Collapse
|
6
|
Maskos U. The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in disease: Functional dissection and remaining challenges. J Neurochem 2020; 154:241-250. [PMID: 32078158 DOI: 10.1111/jnc.14989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are major signalling molecules in the central and peripheral nervous system. Over the last decade, they have been linked to a number of major human psychiatric and neurological conditions, like smoking, schizophrenia, Alzheimer's disease and many others. Human Genome-Wide Association Studies (GWAS) have robustly identified genetic alterations at a locus of chromosome 15q to several of these diseases. In this review, we discuss a major coding polymorphism in the alpha5 subunit, referred to as α5SNP, and its functional dissection in vitro and in vivo. Its presence at high frequency in many human populations lends itself to pharmaceutical intervention in the context of 'positive allosteric modulators' (PAMs). We will present the prospects of this novel treatment, and the remaining challenges to identify suitable molecules.
Collapse
Affiliation(s)
- Uwe Maskos
- Department of Neuroscience, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Wilkerson JL, Deba F, Crowley ML, Hamouda AK, McMahon LR. Advances in the In vitro and In vivo pharmacology of Alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology 2020; 168:108008. [PMID: 32113032 DOI: 10.1016/j.neuropharm.2020.108008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Receptors containing α4 and β2 subunits are a major neuronal nicotinic acetylcholine receptor (nAChR) subtype in the brain. This receptor plays a critical role in nicotine addiction, with potential smoking cessation therapeutics producing modulation of α4β2 nAChR. In addition, compounds that act as agonists at α4β2 nAChR may be useful for the treatment of pathological pain. Further, as the α4β2 nAChR has been implicated in cognition, therapeutics that act as α4β2 nAChR agonists are also being examined as treatments for cognitive disorders and neurological diseases that impact cognitive function, such as Alzheimer's disease and schizophrenia. This review will cover the molecular in vitro evidence that allosteric modulators of the α4β2 neuronal nAChR provide several advantages over traditional α4β2 nAChR orthosteric ligands. Specifically, we explore the concept that nAChR allosteric modulators allow for greater pharmacological selectivity, while minimizing potential deleterious off-target effects. Further, here we discuss the development and preclinical in vivo behavioral assessment of allosteric modulators at the α4β2 neuronal nAChR as therapeutics for smoking cessation, pathological pain, as well as cognitive disorders and neurological diseases that impact cognitive function. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| | - Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States
| | - Morgan L Crowley
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States.
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
8
|
Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models. Curr Top Behav Neurosci 2020; 45:101-121. [PMID: 32468493 DOI: 10.1007/7854_2020_134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence.
Collapse
|
9
|
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr Neuropharmacol 2018; 16:338-349. [PMID: 28901280 PMCID: PMC6018187 DOI: 10.2174/1570159x15666170912110450] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a super-family of Cys-loop ligand-gated ion chan-nels that respond to endogenous acetylcholine (ACh) or other cholinergic ligands. These receptors are also the targets of drugs such as nicotine (the main addictive agent delivered by cigarette smoke) and are involved in a variety of physiological and pathophysiological processes. Numerous studies have shown that the expression and/or function of nAChRs is com-promised in many neurological and psychiatric diseases. Furthermore, recent studies have shown that neuronal nAChRs are found in a large number of non-neuronal cell types in-cluding endothelial cells, glia, immune cells, lung epithelia and cancer cells where they regulate cell differentiation, prolifera-tion and inflammatory responses. The aim of this review is to describe the most recent findings concerning the structure and function of native nAChRs inside and outside the nervous system.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Pucci
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| |
Collapse
|
10
|
Morton G, Nasirova N, Sparks DW, Brodsky M, Sivakumaran S, Lambe EK, Turner EE. Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure. J Neurosci 2018; 38:6900-6920. [PMID: 29954848 PMCID: PMC6070661 DOI: 10.1523/jneurosci.0023-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the α5, α3, and β4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, after recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENT Understanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here, we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.
Collapse
Affiliation(s)
- Glenn Morton
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | - Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Matthew Brodsky
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Evelyn K Lambe
- Department of Physiology
- Department of Obstetrics and Gynecology, and
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute,
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98101
| |
Collapse
|
11
|
Ahring PK, Liao VWY, Balle T. Concatenated nicotinic acetylcholine receptors: A gift or a curse? J Gen Physiol 2018; 150:453-473. [PMID: 29382698 PMCID: PMC5839718 DOI: 10.1085/jgp.201711846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/15/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022] Open
Abstract
Nicotine acetylcholine receptors can form countless heteromeric stoichiometries from a common set of subunits. Ahring et al. present the limitations of subunit concatenation and establish a refinement that achieves substantiated expression of uniform receptor pools from complex stoichiometric origins. Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are vital for normal mammalian brain function. Cys-loop receptors are pentameric ligand-gated ion channels formed from five identical or homologous subunits oriented around a central ion-conducting pore, which result in homomeric or heteromeric receptors, respectively. Within a given Cys-loop receptor family, many different heteromeric receptors can assemble from a common set of subunits, and understanding the properties of these heteromeric receptors is crucial for the continuing quest to generate novel treatments for human diseases. Yet this complexity also presents a hindrance for studying Cys-loop receptors in heterologous expression systems, where full control of the receptor stoichiometry and assembly is required. Therefore, subunit concatenation technology is commonly used to control receptor assembly. In theory, this methodology should facilitate full control of the stoichiometry. In reality, however, we find that commonly used constructs do not yield the expected receptor stoichiometries. With ternary or more complex receptors, concatenated subunits must assemble uniformly in only one orientation; otherwise, the resulting receptor pool will consist of receptors with mixed stoichiometries. We find that typically used constructs of α4β2 nAChR dimers, tetramers, and pentamers assemble readily in both the clockwise and the counterclockwise orientations. Consequently, we investigate the possibility of successfully directing the receptor assembly process using concatenation. We begin by investigating the three-dimensional structures of the α4β2 nAChR. Based on this, we hypothesize that the minimum linker length required to bridge the C terminus of one subunit to the N terminus of the next is shortest in the counterclockwise orientation. We then successfully express receptors with a uniform stoichiometry by systematically shortening linker lengths, proving the hypothesis correct. Our results will significantly aid future studies of heteromeric Cys-loop receptors and enable clarification of the current contradictions in the literature.
Collapse
Affiliation(s)
| | | | - Thomas Balle
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Wang ZJ, Deba F, Mohamed TS, Chiara DC, Ramos K, Hamouda AK. Unraveling amino acid residues critical for allosteric potentiation of (α4)3(β2)2-type nicotinic acetylcholine receptor responses. J Biol Chem 2017; 292:9988-10001. [PMID: 28446611 DOI: 10.1074/jbc.m116.771246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Indexed: 01/29/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are promising drug targets to manage several neurological disorders and nicotine addiction. Growing evidence indicates that positive allosteric modulators of nAChRs improve pharmacological specificity by binding to unique sites present only in a subpopulation of nAChRs. Furthermore, nAChR positive allosteric modulators such as NS9283 and CMPI have been shown to potentiate responses of (α4)3(β2)2 but not (α4)2(β2)3 nAChR isoforms. This selective potentiation underlines that the α4:α4 interface, which is present only in the (α4)3(β2)2 nAChR, is an important and promising drug target. In this report we used site-directed mutagenesis to substitute specific amino acid residues and computational analyses to elucidate CMPI's binding mode at the α4:α4 subunit extracellular interface and identified a unique set of amino acid residues that determined its affinity. We found that amino acid residues α4Gly-41, α4Lys-64, and α4Thr-66 were critical for (α4)3(β2)2 nAChR potentiation by CMPI, but not by NS9283, whereas amino acid substitution at α4His-116, a known determinant of NS9283 and of agonist binding at the α4:α4 subunit interface, did not reduce CMPI potentiation. In contrast, substitutions at α4Gln-124 and α4Thr-126 reduced potentiation by CMPI and NS9283, indicating that their binding sites partially overlap. These results delineate the role of amino acid residues contributing to the α4:α4 subunit extracellular interface in nAChR potentiation. These findings also provide structural information that will facilitate the structure-based design of novel therapeutics that target selectively the (α4)3(β2)2 nAChR.
Collapse
Affiliation(s)
- Ze-Jun Wang
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Farah Deba
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Tasnim S Mohamed
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kara Ramos
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Ayman K Hamouda
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363, .,Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Sciences Center, Bryan, Texas 77807, and
| |
Collapse
|
13
|
Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2017; 175:1805-1821. [PMID: 28199738 DOI: 10.1111/bph.13745] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2)2 α5, (α4β2)2 β3 and (α6β2)2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Jingyi Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Ray C, Soderblom EJ, Bai Y, Carroll FI, Caron MG, Barak LS. Probing the Allosteric Role of the α5 Subunit of α3β4α5 Nicotinic Acetylcholine Receptors by Functionally Selective Modulators and Ligands. ACS Chem Biol 2017; 12:702-714. [PMID: 28045487 DOI: 10.1021/acschembio.6b01117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors regulate the nicotine dependence encountered with cigarette smoking, and this has stimulated a search for drugs binding the responsible receptor subtypes. Studies link a gene cluster encoding for α3β4α5-D398N nicotinic acetylcholine receptors to lung cancer risk as well as link a second mutation in this cluster to an increased risk for nicotine dependence. However, there are currently no recognized drugs for discriminating α3β4α5 signaling. In this study, we describe the development of homogeneous HEK-293 cell clones of α3β4 and α3β4α5 receptors appropriate for drug screening and characterizing biochemical and pharmacological properties of incorporated α5 subunits. Clones were assessed for plasma membrane expression of the individual receptor subunits by mass spectrometry and immunochemistry, and their calcium flux was measured in the presence of a library of kinase inhibitors and a focused library of acetylcholine receptor ligands. We demonstrated an incorporation of two α3 subunits in approximately 98% of plasma membrane receptor pentamers, indicating a 2/3 subunit expression ratio of α3 to β4 alone or to coexpressed β4 and α5. With prolonged nicotine exposure, the plasma membrane expression of receptors with and without incorporated α5 increased. Whereas α5 subunit expression decreased the cell calcium response to nicotine and reduced plasma membrane receptor number, it partially protected receptors from nicotine mediated desensitization. Hit compounds from both libraries suggest the α5 and α5-D398N subunits allosterically modify the behavior of nicotine at the parent α3β4 nicotinic acetylcholine receptor. These studies identify pharmacological tools from two distinct classes of drugs, antagonists and modifiers that are α5 and α5-D398N subtype selective that provide a means to characterize the role of the CHRNA5/A3/B4 gene cluster in smoking and cancer.
Collapse
Affiliation(s)
| | | | | | - F. Ivy Carroll
- Departments
of Pharmacology and Toxicology, RTI International, 3040 E. Cornwallis Road, Durham, North Carolina 27709, United States
| | | | | |
Collapse
|
15
|
Jin X, McCollum MM, Germann AL, Akk G, Steinbach JH. The E Loop of the Transmitter Binding Site Is a Key Determinant of the Modulatory Effects of Physostigmine on Neuronal Nicotinic α4β2 Receptors. Mol Pharmacol 2017; 91:100-109. [PMID: 27895161 PMCID: PMC5267520 DOI: 10.1124/mol.116.106484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022] Open
Abstract
Physostigmine is a well known inhibitor of acetylcholinesterase, which can also activate, potentiate, and inhibit acetylcholine receptors, including neuronal nicotinic receptors comprising α4 and β2 subunits. We have found that the two stoichiometric forms of this receptor differ in the effects of physostigmine. The form containing three copies of α4 and two of β2 was potentiated at low concentrations of acetylcholine chloride (ACh) and physostigmine, whereas the form containing two copies of α4 and three of β2 was inhibited. Chimeric constructs of subunits indicated that the presence of inhibition or potentiation depended on the source of the extracellular ligand binding domain of the subunit. Further sets of chimeric constructs demonstrated that a portion of the ACh binding domain, the E loop, is a key determinant. Transferring the E loop from the β2 subunit to the α4 subunit resulted in strong inhibition, whereas the reciprocal transfer reduced inhibition. To control the number and position of the incorporated chimeric subunits, we expressed chimeric constructs with subunit dimers. Surprisingly, incorporation of a subunit with an altered E loop had similar effects whether it contributed either to an intersubunit interface containing a canonical ACh binding site or to an alternative interface. The observation that the α4 E loop is involved suggests that physostigmine interacts with regions of subunits that contribute to the ACh binding site, whereas the lack of interface specificity indicates that interaction with a particular ACh binding site is not the critical factor.
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology (X.J., M.M.C., A.L.G., G.A., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| | - Megan M McCollum
- Department of Anesthesiology (X.J., M.M.C., A.L.G., G.A., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| | - Allison L Germann
- Department of Anesthesiology (X.J., M.M.C., A.L.G., G.A., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology (X.J., M.M.C., A.L.G., G.A., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology (X.J., M.M.C., A.L.G., G.A., J.H.S.) and Taylor Family Institute for Innovative Psychiatric Research (G.A., J.H.S.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Jain A, Kuryatov A, Wang J, Kamenecka TM, Lindstrom J. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors. J Biol Chem 2016; 291:23452-23463. [PMID: 27645992 DOI: 10.1074/jbc.m116.749150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/06/2022] Open
Abstract
All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2)2α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2)2α5 and (α4β2)2β3 nAChRs. The α4/α5 interface in (β2α4)2α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders.
Collapse
Affiliation(s)
- Akansha Jain
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexander Kuryatov
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jingyi Wang
- the Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and
| | - Theodore M Kamenecka
- the Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458
| | - Jon Lindstrom
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
17
|
Nichols WA, Henderson BJ, Marotta CB, Yu CY, Richards C, Dougherty DA, Lester HA, Cohen BN. Mutation Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Reduces Low-Sensitivity α4β2, and Increases α5α4β2, Nicotinic Receptor Surface Expression. PLoS One 2016; 11:e0158032. [PMID: 27336596 PMCID: PMC4918917 DOI: 10.1371/journal.pone.0158032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
A number of mutations in α4β2-containing (α4β2*) nicotinic acetylcholine (ACh) receptors (nAChRs) are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), including one in the β2 subunit called β2V287L. Two α4β2* subtypes with different subunit stoichiometries and ACh sensitivities co-exist in the brain, a high-sensitivity subtype with (α4)2(β2)3 subunit stoichiometry and a low-sensitivity subtype with (α4)3(β2)2 stoichiometry. The α5 nicotinic subunit also co-assembles with α4β2 to form a high-sensitivity α5α4β2 nAChR. Previous studies suggest that the β2V287L mutation suppresses low-sensitivity α4β2* nAChR expression in a knock-in mouse model and also that α5 co-expression improves the surface expression of ADNFLE mutant nAChRs in a cell line. To test these hypotheses further, we expressed mutant and wild-type (WT) nAChRs in oocytes and mammalian cell lines, and measured the effects of the β2V287L mutation on surface receptor expression and the ACh response using electrophysiology, a voltage-sensitive fluorescent dye, and superecliptic pHluorin (SEP). The β2V287L mutation reduced the EC50 values of high- and low-sensitivity α4β2 nAChRs expressed in Xenopus oocytes for ACh by a similar factor and suppressed low-sensitivity α4β2 expression. In contrast, it did not affect the EC50 of α5α4β2 nAChRs for ACh. Measurements of the ACh responses of WT and mutant nAChRs expressed in mammalian cell lines using a voltage-sensitive fluorescent dye and whole-cell patch-clamping confirm the oocyte data. They also show that, despite reducing the maximum response, β2V287L increased the α4β2 response to a sub-saturating ACh concentration (1 μM). Finally, imaging SEP-tagged α5, α4, β2, and β2V287L subunits showed that β2V287L reduced total α4β2 nAChR surface expression, increased the number of β2 subunits per α4β2 receptor, and increased surface α5α4β2 nAChR expression. Thus, the β2V287L mutation alters the subunit composition and sensitivity of α4β2 nAChRs, and increases α5α4β2 surface expression.
Collapse
Affiliation(s)
- Weston A Nichols
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Brandon J Henderson
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Christopher B Marotta
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Caroline Y Yu
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Chris Richards
- Department of Chemistry, University of Kentucky, Lexington, KY, United States of America
| | - Dennis A Dougherty
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Henry A Lester
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Bruce N Cohen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
18
|
Hamouda AK, Deba F, Wang ZJ, Cohen JB. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator. Mol Pharmacol 2016; 89:575-84. [PMID: 26976945 PMCID: PMC4851301 DOI: 10.1124/mol.116.103341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Farah Deba
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Ze-Jun Wang
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Jonathan B Cohen
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| |
Collapse
|
19
|
Jin X, Steinbach JH. Potentiation of Neuronal Nicotinic Receptors by 17β-Estradiol: Roles of the Carboxy-Terminal and the Amino-Terminal Extracellular Domains. PLoS One 2015; 10:e0144631. [PMID: 26684647 PMCID: PMC4684330 DOI: 10.1371/journal.pone.0144631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/21/2015] [Indexed: 01/21/2023] Open
Abstract
The endogenous steroid 17β-estradiol (βEST) potentiates activation of neuronal nicotinic receptors containing α4 subunits. Previous work has shown that the final 4 residues of the α4 subunit are required for potentiation. However, receptors containing the α2 subunit are not potentiated although it has these 4 residues, and only one amino acid difference in the C-terminal tail (FLAGMI vs. WLAGMI). Previous work had indicated that the tryptophan residue was involved in binding an analog of βEST, but not in potentiation by βEST. To determine the structural basis for the loss of potentiation we analyzed data from chimeric subunits, which indicated that the major factor underlying the difference between α2 and α4 is the tryptophan/phenylalanine difference, while the N-terminal extracellular domain is a less significant factor. When the tryptophan in α4 was mutated, both phenylalanine and tyrosine conferred lower potentiation while lysine and leucine did not. The reduction reflected a reduced maximal magnitude of potentiation, indicating that the tryptophan is involved in transduction of steroid effects. The regions of the α4 N-terminal extracellular domain involved in potentiation lie near the agonist-binding pocket, rather than close to the membrane or the C-terminal tail, and appear to be involved in transduction rather than binding. These observations indicate that the C-terminal region is involved in both steroid binding (AGMI residues) and transduction (W). The role of the N-terminus appears to be independent of the C-terminal tryptophan and likely reflects an influence on conformational changes caused during channel activation by agonist and potentiation by estradiol.
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Mohamed TS, Jayakar SS, Hamouda AK. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation. Front Mol Neurosci 2015; 8:71. [PMID: 26635524 PMCID: PMC4658446 DOI: 10.3389/fnmol.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.
Collapse
Affiliation(s)
- Tasnim S Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA
| | - Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA ; Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Sciences Center Bryan, TX, USA
| |
Collapse
|
21
|
Wang J, Kuryatov A, Jin Z, Norleans J, Kamenecka TM, Kenny PJ, Lindstrom J. A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit. J Biol Chem 2015; 290:28834-46. [PMID: 26432642 DOI: 10.1074/jbc.m115.676551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs.
Collapse
Affiliation(s)
- Jingyi Wang
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexander Kuryatov
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhuang Jin
- Department of Molecular Therapeutics, Scripps Research Institute, Scripps, Florida 33458, and
| | - Jack Norleans
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, Scripps Research Institute, Scripps, Florida 33458, and
| | - Paul J Kenny
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jon Lindstrom
- From the Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
22
|
Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 2015; 96:302-11. [DOI: 10.1016/j.neuropharm.2014.11.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/11/2014] [Accepted: 11/08/2014] [Indexed: 01/01/2023]
|
23
|
Sciaccaluga M, Moriconi C, Martinello K, Catalano M, Bermudez I, Stitzel JA, Maskos U, Fucile S. Crucial role of nicotinic α5 subunit variants for Ca2+ fluxes in ventral midbrain neurons. FASEB J 2015; 29:3389-98. [PMID: 25911614 DOI: 10.1096/fj.14-268102] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/16/2015] [Indexed: 02/05/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit modulate nicotine consumption, and the human CHRNA5 rs16969968 polymorphism, causing the replacement of the aspartic acid residue at position 398 with an asparagine (α5DN), has recently been associated with increased use of tobacco and higher incidence of lung cancer. We show that in ventral midbrain neurons, the α5 subunit is essential for heteromeric nAChR-induced intracellular-free Ca(2+) concentration elevations and that in α5(-/-) mice, a class of large-amplitude nicotine-evoked currents is lost. Furthermore, the expression of the α5DN subunit is not able to restore nicotinic responses, indicating a loss of function by this subunit in native neurons. To understand how α5DN impairs heteromeric nAChR functions, we coexpressed α4, α5, or α5DN subunits with a dimeric concatemer (β2α4) in a heterologous system, to obtain nAChRs with fixed stoichiometry. Both α5(β2α4)2 and α5DN(β2α4)2 nAChRs yielded similar levels of functional expression and Ca(2+) permeability, measured as fractional Ca(2+) currents (8.2 ± 0.7% and 8.0 ± 1.9%, respectively), 2-fold higher than α4(β2α4)2. Our results indicate that the loss of function of nicotinic responses observed in α5DN-expressing ventral midbrain neurons is neither due to an intrinsic inability of this subunit to form functional nAChRs nor to an altered Ca(2+) permeability but likely to intracellular modulation.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| | - Claudia Moriconi
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| | - Katiuscia Martinello
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| | - Myriam Catalano
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| | - Isabel Bermudez
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| | - Jerry A Stitzel
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| | - Uwe Maskos
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| | - Sergio Fucile
- *Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy; Department of Biology and Biotechnology "Charles Darwin," and Department of Physiology and Pharmacology, Institute Pasteur-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA; and Neurobiologie Intégrative des Systèmes Cholinergiques, and Centre National de la Recherche Scientifique Unités Mixtes de Recherche, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a critical component of the brain's cholinergic neurotransmission system that modulates important physiological processes and whose dysfunction has been observed in patients with neurodegenerative diseases and mental illness. nAChRs are a heterogeneous family of receptor subtypes consisting of pentameric combinations of α and β subunits, and are widely expressed throughout the central and peripheral nervous system. nAChR subtypesnAChR subtypes share a common basic structure but their biophysical and pharmacological properties depend on their subunit compositionSubunit composition , which is therefore central to understanding receptor function in the nervous system and discovering new subtype-selective drugs. We briefly review some recent findings concerning the structure and function of nAChRs, particularly the native subtypes.
Collapse
Affiliation(s)
- Francesca Fasoli
- Department of Medical Biotechnologies and Translational Medicine, Consiglio Nazionale Delle Ricerche, Institute of Neuroscience, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | | |
Collapse
|