1
|
Zhang J, Pandey M, Awe A, Lue N, Kittock C, Fikse E, Degner K, Staples J, Mokhasi N, Chen W, Yang Y, Adikaram P, Jacob N, Greenfest-Allen E, Thomas R, Bomeny L, Zhang Y, Petros TJ, Wang X, Li Y, Simonds WF. The association of GNB5 with Alzheimer disease revealed by genomic analysis restricted to variants impacting gene function. Am J Hum Genet 2024; 111:473-486. [PMID: 38354736 PMCID: PMC10940018 DOI: 10.1016/j.ajhg.2024.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gβ5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.
Collapse
Affiliation(s)
- Jianhua Zhang
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mritunjay Pandey
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Awe
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Lue
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claire Kittock
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma Fikse
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Degner
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenna Staples
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Mokhasi
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8/Rm 1A11, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanqin Yang
- Laboratory of Transplantation Genomics, National Heart Lung and Blood Institute, Bldg. 10/Rm 7S261, National Institutes of Health, Bethesda, MD 20892, USA
| | - Poorni Adikaram
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Greenfest-Allen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Bomeny
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaowen Wang
- Partek Incorporated, 12747 Olive Boulevard, St. Louis, MO 63141, USA
| | - Yulong Li
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Maggio R, Fasciani I, Petragnano F, Coppolino MF, Scarselli M, Rossi M. Unraveling the Functional Significance of Unstructured Regions in G Protein-Coupled Receptors. Biomolecules 2023; 13:1431. [PMID: 37892113 PMCID: PMC10604838 DOI: 10.3390/biom13101431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Unstructured regions in functional proteins have gained attention in recent years due to advancements in informatics tools and biophysical methods. G protein-coupled receptors (GPCRs), a large family of cell surface receptors, contain unstructured regions in the form of the i3 loop and C-terminus. This review provides an overview of the functional significance of these regions in GPCRs. GPCRs transmit signals from the extracellular environment to the cell interior, regulating various physiological processes. The i3 loop, located between the fifth and sixth transmembrane helices, and the C-terminus, connected to the seventh transmembrane helix, are determinant of interactions with G proteins and with other intracellular partners such as arrestins. Recent studies demonstrate that the i3 loop and C-terminus play critical roles in allosterically regulating GPCR activation. They can act as autoregulators, adopting conformations that, by restricting G protein access, modulate receptor coupling specificity. The length and unstructured nature of the i3 loop and C-terminus provide unique advantages in GPCR interactions with intracellular protein partners. They act as "fishing lines", expanding the radius of interaction and enabling GPCRs to tether scaffolding proteins, thus facilitating receptor stability during cell membrane movements. Additionally, the i3 loop may be involved in domain swapping between GPCRs, generating novel receptor dimers with distinct binding and coupling characteristics. Overall, the i3 loop and C-terminus are now widely recognized as crucial elements in GPCR function and regulation. Understanding their functional roles enhances our comprehension of GPCR structure and signaling complexity and holds promise for advancements in receptor pharmacology and drug development.
Collapse
Affiliation(s)
- Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Maria Francesca Coppolino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| |
Collapse
|
3
|
A RGS7-CaMKII complex drives myocyte-intrinsic and myocyte-extrinsic mechanisms of chemotherapy-induced cardiotoxicity. Proc Natl Acad Sci U S A 2023; 120:e2213537120. [PMID: 36574707 PMCID: PMC9910480 DOI: 10.1073/pnas.2213537120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dose-limiting cardiotoxicity remains a major limitation in the clinical use of cancer chemotherapeutics. Here, we describe a role for Regulator of G protein Signaling 7 (RGS7) in chemotherapy-dependent heart damage, the demonstration for a functional role of RGS7 outside of the nervous system and retina. Though expressed at low levels basally, we observed robust up-regulation of RGS7 in the human and murine myocardium following chemotherapy exposure. In ventricular cardiomyocytes (VCM), RGS7 forms a complex with Ca2+/calmodulin-dependent protein kinase (CaMKII) supported by key residues (K412 and P391) in the RGS domain of RGS7. In VCM treated with chemotherapeutic drugs, RGS7 facilitates CaMKII oxidation and phosphorylation and CaMKII-dependent oxidative stress, mitochondrial dysfunction, and apoptosis. Cardiac-specific RGS7 knockdown protected the heart against chemotherapy-dependent oxidative stress, fibrosis, and myocyte loss and improved left ventricular function in mice treated with doxorubicin. Conversely, RGS7 overexpression induced fibrosis, reactive oxygen species generation, and cell death in the murine myocardium that were mitigated following CaMKII inhibition. RGS7 also drives production and release of the cardiokine neuregulin-1, which facilitates paracrine communication between VCM and neighboring vascular endothelial cells (EC), a maladaptive mechanism contributing to VCM dysfunction in the failing heart. Importantly, while RGS7 was both necessary and sufficient to facilitate chemotherapy-dependent cytotoxicity in VCM, RGS7 is dispensable for the cancer-killing actions of these same drugs. These selective myocyte-intrinsic and myocyte-extrinsic actions of RGS7 in heart identify RGS7 as an attractive therapeutic target in the mitigation of chemotherapy-driven cardiotoxicity.
Collapse
|
4
|
Das K, Basak M, Mahata T, Kumar M, Kumar D, Biswas S, Chatterjee S, Moniruzzaman M, Saha NC, Mondal K, Kumar P, Das P, Stewart A, Maity B. RGS11-CaMKII complex mediated redox control attenuates chemotherapy-induced cardiac fibrosis. Redox Biol 2022; 57:102487. [PMID: 36228439 PMCID: PMC9557029 DOI: 10.1016/j.redox.2022.102487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Dose limiting cardiotoxicity remains a major limiting factor in the clinical use of several cancer chemotherapeutics including anthracyclines and the antimetabolite 5-fluorouracil (5-FU). Prior work has demonstrated that chemotherapeutics increase expression of R7 family regulator of G protein signaling (RGS) protein-binding partner Gβ5, which drives myocyte cytotoxicity. However, though several R7 family members are expressed in heart, the exact role of each protein in chemotherapy driven heart damage remains unclear. Here, we demonstrate that RGS11, downregulated in the human heart following chemotherapy exposure, possesses potent anti-apoptotic actions, in direct opposition to the actions of fellow R7 family member RGS6. RGS11 forms a direct complex with the apoptotic kinase CaMKII and stress responsive transcription factor ATF3 and acts to counterbalance the ability of CaMKII and ATF3 to trigger oxidative stress, mitochondrial dysfunction, cell death, and release of the cardiokine neuregulin-1 (NRG1), which mediates pathological intercommunication between myocytes and endothelial cells. Doxorubicin triggers RGS11 depletion in the murine myocardium, and cardiac-specific OE of RGS11 decreases doxorubicin-induced fibrosis, myocyte hypertrophy, apoptosis, oxidative stress, and cell loss and aids in the maintenance of left ventricular function. Conversely, RGS11 knockdown in heart promotes cardiac fibrosis associated with CaMKII activation and ATF3/NRG1 induction. Indeed, inhibition of CaMKII largely prevents the fibrotic remodeling resulting from cardiac RGS11 depletion underscoring the functional importance of the RGS11-CaMKII interaction in the pathogenesis of cardiac fibrosis. These data describe an entirely new role for RGS11 in heart and identify RGS11 as a potential new target for amelioration of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kiran Das
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Madhuri Basak
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Manish Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sayan Biswas
- Forensic Medicine, College of Medicine and Sagore Dutta Hospital, B.T. Road, Kamarhati, Kolkata, West Bengal, 700058, India
| | | | | | | | - Kausik Mondal
- Zoology, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Pranesh Kumar
- Pharmaceutical Sciences, Aryakul College of Pharmacy & Research, Natkur, Aryakul College Road, Lucknow, Uttar Pradesh, 226002, India
| | - Priyadip Das
- Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Adele Stewart
- Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
5
|
Liu S, Suhail Y, Novin A, Perpetua L, Kshitiz. Metastatic Transition of Pancreatic Ductal Cell Adenocarcinoma Is Accompanied by the Emergence of Pro-Invasive Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:2197. [PMID: 35565326 PMCID: PMC9104173 DOI: 10.3390/cancers14092197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are now appreciated as key regulators of cancer metastasis, particularly in cancers with high stromal content, e.g., pancreatic ductal cell carcinoma (PDAC). However, it is not yet well understood if fibroblasts are always primed to be cooperative in PDAC transition to metastasis, if they undergo transformation which ensures their cooperativity, and if such transformations are cancer-driven or intrinsic to fibroblasts. We performed a fibroblast-centric analysis of PDAC cancer, as it transitioned from the primary site to trespass stromal compartment reaching the lymph node using published single-cell RNA sequencing data by Peng et al. We have characterized the change in fibroblast response to cancer from a normal wound healing response in the initial stages to the emergence of subclasses with myofibroblast and inflammatory fibroblasts such as signatures. We have previously posited "Evolved Levels of Invasibility (ELI)", a framework describing the evolution of stromal invasability as a selected phenotype, which explains the large and correlated reduction in stromal invasion by placental trophoblasts and cancer cells in certain mammals. Within PDAC samples, we found large changes in fibroblast subclasses at succeeding stages of PDAC progression, with the emergence of specific subclasses when cancer trespasses stroma to metastasize to proximal lymph nodes (stage IIA to IIB). Surprisingly, we found that the initial metastatic transition is accompanied by downregulation of ELI-predicted pro-resistive genes, and the emergence of a subclass of fibroblasts with ELI-predicted increased invasibility. Interestingly, this trend was also observed in stellate cells. Using a larger cohort of bulk RNAseq data from The Cancer Genome Atlas for PDAC cancers, we confirmed that genes describing this emergent fibroblast subclass are also correlated with lymph node metastasis of cancer cells. Experimental testing of selected genes characterizing pro-resistive and pro-invasive fibroblast clusters confirmed their contribution in regulating stromal invasability as a phenotype. Our data confirm that the complexity of stromal response to cancer is really a function of stage-wise emergence of distinct fibroblast clusters, characterized by distinct gene sets which confer initially a predominantly pro-resistive and then a pro-invasive property to the stroma. Stromal response therefore transitions from being tumor-limiting to a pro-metastatic state, facilitating stromal trespass and the onset of metastasis.
Collapse
Affiliation(s)
- Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
| | - Lorrie Perpetua
- Research Tissue Repository, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
6
|
Oscillatory calcium release and sustained store-operated oscillatory calcium signaling prevents differentiation of human oligodendrocyte progenitor cells. Sci Rep 2022; 12:6160. [PMID: 35418597 PMCID: PMC9007940 DOI: 10.1038/s41598-022-10095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.
Collapse
|
7
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
8
|
Patt J, Alenfelder J, Pfeil EM, Voss JH, Merten N, Eryilmaz F, Heycke N, Rick U, Inoue A, Kehraus S, Deupi X, Müller CE, König GM, Crüsemann M, Kostenis E. An experimental strategy to probe Gq contribution to signal transduction in living cells. J Biol Chem 2021; 296:100472. [PMID: 33639168 PMCID: PMC8024710 DOI: 10.1016/j.jbc.2021.100472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.
Collapse
Affiliation(s)
- Julian Patt
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Funda Eryilmaz
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Uli Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Nguyen DD, Luo LJ, Lai JY. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. Acta Biomater 2020; 111:302-315. [PMID: 32428681 DOI: 10.1016/j.actbio.2020.04.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/02/2023]
Abstract
Structural designing of carriers with extended drug release profiles is critically important for achieving long-acting drug delivery systems toward efficient managements of chronic diseases. Here, we present a strategy to exploit the effects of the shell thickness of hollow poly(lactic acid) nanoparticles (HPLA NPs) in sustained glaucoma therapy. Formulations based on pilocarpine-loaded HPLA NPs with tailorable shell thickness ranging from 10 to 100 nm were shown to be highly compatible with human lens epithelial cells in vitro and with rabbit eyes in vivo. Specifically, shell thickness regulated the release of pilocarpine, with thick shells (~70 to 100 nm) providing sustained drug release performance but limited drug-loading efficiency, whereas ultrathin shells (~10 nm) induced the opposite effects. Remarkably, moderately thick shells (~40 nm) showed the most effective release profile of pilocarpine (above the therapeutic levels of ~10 µg/mL for over 56 days). In a rabbit model of glaucoma, single intracameral administration of an HPLA NP-based formulation with shell thickness of ~40 nm sustainably alleviated ocular hypertension for over 56 days, consequently protecting the structural integrity of the corneal endothelium, preserving the electrophysiological functions of the retina, and attenuating retinal and optic nerve degeneration in progressively glaucomatous eyes. The findings therefore implied a promising use of shell thickness effects in the development of long-acting drug delivery systems for pharmacological treatment of chronic ocular diseases. STATEMENT OF SIGNIFICANCE: Owing to their large surface areas and modifiable structures, nanoparticles have been considered as a promising platform for drug delivery; however, achieving drug nanocarrier systems with reduced burst release and sustained therapeutic efficacy remains challenges. This work presents the first report on rational design of hollow poly(lactic acid) nanocarriers for tailoring the structure-property-function relationships toward effective treatment of glaucoma. The shell thickness of the hollow nanocarriers is demonstrated to have influential impacts on pilocarpine encapsulation efficiency and release profile, indicating that the most sustained delivery performance (maintaining the release of pilocarpine above therapeutic level over 56 days) can be obtained for the polymeric nanoparticles with moderate shell thickness of ~40 nm.
Collapse
|
10
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
11
|
Lavenus S, Simard É, Besserer-Offroy É, Froehlich U, Leduc R, Grandbois M. Label-free cell signaling pathway deconvolution of angiotensin type 1 receptor reveals time-resolved G-protein activity and distinct AngII and AngIIIIV responses. Pharmacol Res 2018; 136:108-120. [PMID: 29959993 DOI: 10.1016/j.phrs.2018.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/14/2023]
Abstract
Angiotensin II (AngII) type 1 receptor (AT1R) is a G protein-coupled receptor known for its role in numerous physiological processes and its implication in many vascular diseases. Its functions are mediated through G protein dependent and independent signaling pathways. AT1R has several endogenous peptidic agonists, all derived from angiotensinogen, as well as several synthetic ligands known to elicit biased signaling responses. Here, surface plasmon resonance (SPR) was used as a cell-based and label-free technique to quantify, in real time, the response of HEK293 cells stably expressing the human AT1R. The goal was to take advantage of the integrative nature of this assay to identify specific signaling pathways in the features of the response profiles generated by numerous endogenous and synthetic ligands of AT1R. First, we assessed the contributions of Gq, G12/13, Gi, Gβγ, ERK1/2 and β-arrestins pathways in the cellular responses measured by SPR where Gq, G12/Rho/ROCK together with β-arrestins and ERK1/2 were found to play significant roles. More specifically, we established a major role for G12 in the early events of the AT1R-dependent response, which was followed by a robust ERK1/2 component associated to the later phase of the signal. Interestingly, endogenous AT1R ligands (AngII, AngIII and AngIV) exhibited distinct responses signatures with a significant increase of the ERK1/2-like components for both AngIII and AngIV, which points toward possibly distinct physiological roles for the later. We also tested AT1R biased ligands, all of which affected both the early and later events. Our results support SPR-based integrative cellular assays as a powerful approach to delineate the contribution of specific signaling pathways for a given cell response and reveal response differences associated with ligands with distinct pharmacological properties.
Collapse
Affiliation(s)
- Sandrine Lavenus
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Simard
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Michel Grandbois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| |
Collapse
|
12
|
Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochem Pharmacol 2017; 148:111-129. [PMID: 29277692 DOI: 10.1016/j.bcp.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/27/2023]
Abstract
The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is a therapeutic target for the treatment of hypercalcaemia of malignancy, Paget's disease and osteoporosis. In primates, the CTR is subject to alternative splicing, with a unique, primate-specific splice variant being preferentially expressed in reproductive organs, lung and kidney. In addition, humans possess a common non-synonymous single-nucleotide polymorphism (SNP) encoding a proline/leucine substitution in the C-terminal tail. In low power studies, the leucine polymorphism has been associated with increased risk of osteoporosis in East Asian populations and, independently, with increased risk of kidney stone disease in a central Asian population. The CTR is pleiotropically coupled, though the relative physiological importance of these pathways is poorly understood. Using both COS-7 and HEK293 cells recombinantly expressing human CTR, we have characterized both splice variant and polymorphism dependent response to CTs from several species in key signalling pathways and competition binding assays. These data indicate that the naturally occurring changes to the intracellular face of CTR alter ligand affinity and signalling, in a pathway and agonist dependent manner. These results further support the potential for these primate-specific CTR variants to engender different physiological responses. In addition, we report that the CTR exhibits constitutive internalization, independent of splice variant and polymorphism and this profile is unaltered by peptide binding.
Collapse
|
13
|
Pronin AN, Wang Q, Slepak VZ. Teaching an Old Drug New Tricks: Agonism, Antagonism, and Biased Signaling of Pilocarpine through M3 Muscarinic Acetylcholine Receptor. Mol Pharmacol 2017; 92:601-612. [PMID: 28893976 PMCID: PMC5635516 DOI: 10.1124/mol.117.109678] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Pilocarpine is a prototypical drug used to treat glaucoma and dry mouth and is classified as either a full or partial muscarinic agonist. Here, we report several unexpected results pertaining to its interaction with muscarinic M3 receptor (M3R). We found that pilocarpine was 1000 times less potent in stimulating mouse-eye pupil constriction than muscarinic agonists oxotremorin-M (Oxo-M) or carbachol (CCh), although all three ligands have similar Kd values for M3R. In contrast to CCh or Oxo-M, pilocarpine does not induce Ca2+ mobilization via endogenous M3R in human embryonic kidney cell line 293T (HEK293T) or mouse insulinoma (MIN6) cells. Pilocarpine also fails to stimulate insulin secretion and, instead, antagonizes the insulinotropic effect of Oxo-M and CCh-induced Ca2+ upregulation; however, in HEK293T or Chinese hamster ovary-K1 cells overexpressing M3R, pilocarpine induces Ca2+ transients like those recorded with another cognate G protein-coupled muscarinic receptor, M1R. Stimulation of cells overexpressing M1R or M3R with CCh resulted in a similar reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). In contrast to CCh, pilocarpine stimulated PIP2 hydrolysis only in cells overexpressing M1R but not M3R. Moreover, pilocarpine blocked CCh-stimulated PIP2 hydrolysis in M3R-overexpressing cells, thus, it acted as an antagonist. Pilocarpine activates extracellular regulated kinase 1/2 in MIN6 cells. The stimulatory effect on extracellular regulated kinase (ERK1/2) was blocked by the Src family kinase inhibitor PP2, indicating that the action of pilocarpine on endogenous M3R is biased toward β-arrestin. Taken together, our findings show that pilocarpine can act as either an agonist or antagonist of M3R, depending on the cell type, expression level, and signaling pathway downstream of this receptor.
Collapse
Affiliation(s)
- Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
14
|
Lee CH, Li YJ, Huang CC, Lai JY. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. NANOSCALE 2017; 9:11754-11764. [PMID: 28782783 DOI: 10.1039/c7nr03221h] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glaucoma is an eye-related disease accompanied by highly elevated intraocular pressure (IOP), which causes damage to the optic nerve and results in vision loss and even blindness. Although the treatment of glaucoma with eye drops may reduce the IOP, eye drops have some limitations, such as poor patient compliance and short duration. To develop drug carriers that facilitate the sustained and long-term release of drugs for glaucoma therapy, we synthesized poly(ε-caprolactone) nanoparticles (PCL NPs) capable of loading pilocarpine, a widely used drug for the treatment of dry eye and glaucoma. We prepared two types of PCL NPs, namely, nanospheres (NSs), which are solid spheres capable of harboring the drug in their solid mass, and nanocapsules (NCs), which are hollow spherical structures for encapsulating the drug. The influence of the vesicular structure of PCL NPs on the drug loading efficiencies and release was investigated. The loading of pilocarpine in the PCL NCs was approximately 3 times higher than that in the PCL NSs. In addition, pilocarpine-loaded PCL NCs (PILO-PCL NCs) exhibited a sustained drug release profile. Effective pharmacological responses (i.e., IOP reduction and pupillary constriction) were observed in rabbits intracamerally treated with pilocarpine-loaded PCL NPs. Moreover, the PILO-PCL NCs show long-term therapeutic ability in alleviating ocular hypertension-induced corneal and retinal injuries under physiological conditions, even after 42 days. The results of in vivo studies also reveal that the PCL NCs are advantageous for the treatment of chronic ocular hypertension in glaucomatous eyes.
Collapse
Affiliation(s)
- Chih-Hung Lee
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | | | | | | |
Collapse
|
15
|
Wang Q, Pronin AN, Levay K, Almaca J, Fornoni A, Caicedo A, Slepak VZ. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion. FASEB J 2017; 31:4734-4744. [PMID: 28687610 DOI: 10.1096/fj.201700197rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
In pancreatic β cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in β cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gβ5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gβ5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gβ5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic β-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Joana Almaca
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alessia Fornoni
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alejandro Caicedo
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| |
Collapse
|
16
|
Kamato D, Mitra P, Davis F, Osman N, Chaplin R, Cabot PJ, Afroz R, Thomas W, Zheng W, Kaur H, Brimble M, Little PJ. Ga q proteins: molecular pharmacology and therapeutic potential. Cell Mol Life Sci 2017; 74:1379-1390. [PMID: 27815595 PMCID: PMC11107756 DOI: 10.1007/s00018-016-2405-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Seven transmembrane G protein-coupled receptors (GPCRs) have gained much interest in recent years as it is the largest class among cell surface receptors. G proteins lie in the heart of GPCRs signalling and therefore can be therapeutically targeted to overcome complexities in GPCR responses and signalling. G proteins are classified into four families (Gi, Gs, G12/13 and Gq); Gq is further subdivided into four classes. Among them Gαq and Gαq/11 isoforms are most crucial and ubiquitously expressed; these isoforms are almost 88% similar at their amino acid sequence but may exhibit functional divergences. However, uncertainties often arise about Gαq and Gαq/11 inhibitors, these G proteins might also have suitability to the invention of novel-specific inhibitors for each isoforms. YM-254890 and UBO-QIC are discovered as potent inhibitors of Gαq functions and also investigated in thrombin protease-activated receptor (PAR)-1 inhibitors and platelet aggregation inhibition. The most likely G protein involved in PAR-1 stimulates responses is one of the Gαq family isoforms. In this review, we highlight the molecular structures and pharmacological responses of Gαq family which may reflect the biochemical and molecular role of Gαq and Gαq/11. The advanced understanding of Gαq and Gαq/11 role in GPCR signalling may shed light on our understanding on cell biology, cellular physiology and pathophysiology and also lead to the development of novel therapeutic agents for a number of diseases.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Partha Mitra
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Davis
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Narin Osman
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
- Department of Immunology, Monash University, Melbounre, VIC, 3004, Australia
| | - Rebecca Chaplin
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Rizwana Afroz
- Department of Biochemistry, Primeasia University, Banani, 1213, Bangladesh
| | - Walter Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4102, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Harveen Kaur
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret Brimble
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
17
|
Benredjem B, Dallaire P, Pineyro G. Analyzing biased responses of GPCR ligands. Curr Opin Pharmacol 2017; 32:71-76. [DOI: 10.1016/j.coph.2016.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
|
18
|
Chou SF, Luo LJ, Lai JY, Ma DHK. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery. Int J Pharm 2016; 511:30-43. [PMID: 27374201 DOI: 10.1016/j.ijpharm.2016.06.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023]
Abstract
To overcome the drawbacks associated with conventional antiglaucoma eye drops, this work demonstrated the feasibility of an effective alternative strategy to administer pilocarpine directly via intracameral injections of drug-containing biodegradable in situ gelling GN copolymers composed of gelatin and poly(N-isopropylacrylamide). Specifically, this study aims to understand the importance of Bloom number of gelatin, a physicochemical parameter, to the development of GN carriers for intracameral drug delivery in glaucoma therapy. Our results showed that both imino acid and triple-helix contents increased with increasing Bloom index from 75-100 to 300. The drug encapsulation efficiency in response to temperature-triggered phase transition in GN copolymers was affected by the Bloom index of gelatin. In addition, the differences in protein secondary structure significantly influenced the degradation rates of GN carriers, which were highly correlated with drug release profiles. The increase in released pilocarpine concentration led to a high intracellular calcium level in rabbit ciliary smooth muscle cell cultures, indicating a beneficial pharmacological response to a drug. Irrespective of Bloom number of gelatin, all carrier materials exhibited excellent in vitro and in vivo biocompatibility with corneal endothelium. In a glaucomatous rabbit model, intracameral injections of pilocarpine-containing GN synthesized from gelatins with various Bloom numbers had different abilities to improve ocular hypertension and induce pupillary constriction, indicating distinct antiglaucoma efficacies due to in vivo drug release. It is concluded that the effects on pharmacological treatment using GN carriers for intracameral pilocarpine administration demonstrate a strong dependence on the Bloom number of gelatin.
Collapse
Affiliation(s)
- Shih-Feng Chou
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, ROC; Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA
| | - Li-Jyuan Luo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, ROC; Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC.
| | - David Hui-Kang Ma
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| |
Collapse
|
19
|
On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin. Biochem Pharmacol 2016; 107:59-66. [PMID: 26954502 DOI: 10.1016/j.bcp.2016.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
Gαq inhibitor UBO-QIC (FR900359) is becoming an important pharmacological tool, but its selectivity against other G proteins and their subunits, especially βγ, has not been well characterized. We examined UBO-QIC's effect on diverse signaling pathways mediated via various G protein-coupled receptors (GPCRs) and G protein subunits by comparison with known Gαi inhibitor pertussis toxin. As expected, UBO-QIC inhibited Gαq signaling in all assay systems examined. However, other non-Gαq-events, e.g. Gβγ-mediated intracellular calcium release and inositol phosphate production, following activation of Gi-coupled A1 adenosine and M2 muscarinic acetylcholine receptors, were also blocked by low concentrations of UBO-QIC, indicating that its effect is not limited to Gαq. Thus, UBO-QIC also inhibits Gβγ-mediated signaling similarly to pertussis toxin, although UBO-QIC does not affect Gαi-mediated inhibition or Gαs-mediated stimulation of adenylyl cyclase activity. However, the blockade by UBO-QIC of GPCR signaling, such as carbachol- or adenosine-mediated calcium or inositol phosphate increases, does not always indicate inhibition of Gαq-mediated events, as the βγ subunits released from Gi proteins following the activation of Gi-coupled receptors, e.g. M2 and A1Rs, may produce similar signaling events. Furthermore, UBO-QIC completely inhibited Akt signaling, but only partially blocked ERK1/2 activity stimulated by the Gq-coupled P2Y1R. Thus, we have revealed new aspects of the pharmacological interactions of UBO-QIC.
Collapse
|
20
|
Tinker A, Finlay M, Nobles M, Opel A. The contribution of pathways initiated via the Gq\11 G-protein family to atrial fibrillation. Pharmacol Res 2016; 105:54-61. [DOI: 10.1016/j.phrs.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/28/2023]
|
21
|
Tayou J, Wang Q, Jang GF, Pronin AN, Orlandi C, Martemyanov KA, Crabb JW, Slepak VZ. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein. J Biol Chem 2016; 291:9133-47. [PMID: 26895961 DOI: 10.1074/jbc.m115.694075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners.
Collapse
Affiliation(s)
- Junior Tayou
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Qiang Wang
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Alexey N Pronin
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Cesare Orlandi
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - John W Crabb
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Vladlen Z Slepak
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136,
| |
Collapse
|
22
|
Liao Y, Lu B, Ma Q, Wu G, Lai X, Zang J, Shi Y, Liu D, Han F, Zhou N. Human Neuropeptide S Receptor Is Activated via a Gαq Protein-biased Signaling Cascade by a Human Neuropeptide S Analog Lacking the C-terminal 10 Residues. J Biol Chem 2016; 291:7505-16. [PMID: 26865629 DOI: 10.1074/jbc.m115.704122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human neuropeptide S (NPS) and its cognate receptor regulate important biological functions in the brain and have emerged as a future therapeutic target for treatment of a variety of neurological and psychiatric diseases. The human NPS (hNPS) receptor has been shown to dually couple to Gαs- and Gαq-dependent signaling pathways. The human NPS analog hNPS-(1-10), lacking 10 residues from the C terminus, has been shown to stimulate Ca(2+)mobilization in a manner comparable with full-length hNPSin vitrobut seems to fail to induce biological activityin vivo Here, results derived from a number of cell-based functional assays, including intracellular cAMP-response element (CRE)-driven luciferase activity, Ca(2+)mobilization, and ERK1/2 phosphorylation, show that hNPS-(1-10) preferentially activates Gαq-dependent Ca(2+)mobilization while exhibiting less activity in triggering Gαs-dependent CRE-driven luciferase activity. We further demonstrate that both Gαq- and Gαs-coupled signaling pathways contribute to full-length hNPS-mediated activation of ERK1/2, whereas hNPS-(1-10)-promoted ERK1/2 activation is completely inhibited by the Gαqinhibitor UBO-QIC but not by the PKA inhibitor H89. Moreover, the results of Ala-scanning mutagenesis of hNPS-(1-13) indicated that residues Lys(11)and Lys(12)are structurally crucial for the hNPS receptor to couple to Gαs-dependent signaling. In conclusion, our findings demonstrate that hNPS-(1-10) is a biased agonist favoring Gαq-dependent signaling. It may represent a valuable chemical probe for further investigation of the therapeutic potential of human NPS receptor-directed signalingin vivo.
Collapse
Affiliation(s)
- Yuan Liao
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Bin Lu
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Qiang Ma
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Gang Wu
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Xiangru Lai
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Jiashu Zang
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Dongxiang Liu
- the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences, and
| |
Collapse
|
23
|
Carr R, Koziol-White C, Zhang J, Lam H, An SS, Tall GG, Panettieri RA, Benovic JL. Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms. Mol Pharmacol 2016; 89:94-104. [PMID: 26464325 PMCID: PMC4702101 DOI: 10.1124/mol.115.100339] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022] Open
Abstract
Gαqβγ heterotrimer (Gq), an important mediator in the pathology of airway disease, plays a central role in bronchoconstriction and airway remodeling, including airway smooth muscle growth and inflammation. Current therapeutic strategies to treat airway disease include the use of muscarinic and leukotriene receptor antagonists; however, these pharmaceuticals demonstrate a limited clinical efficacy as multiple Gq-coupled receptor subtypes contribute to these pathologies. Thus, broadly inhibiting the activation of Gq may be an advantageous therapeutic approach. Here, we investigated the effects of broadly inhibiting Gq activation in vitro and ex vivo using receptor-dependent and receptor-independent strategies. P4pal-10 is a protease activated receptor 4-derived pepducin that exhibits efficacy toward multiple Gq-coupled receptors. Mechanistic studies demonstrated that P4pal-10 selectively inhibits all G protein coupling to several Gq-coupled receptors, including protease activated receptor 1, muscarinic acetylcholine M3, and histamine H1 receptors, while demonstrating no direct effect on Gq. We also evaluated the ability of FR900359, also known as UBO-QIC, to directly inhibit Gq activation. FR900359 inhibited spontaneous Gαq nucleotide exchange, while having little effect on Gαsβγ, Gαiβγ, or Gα12/13βγ heterotrimer activity. Both P4pal-10 and FR900359 inhibited Gq-mediated intracellular signaling and primary human airway smooth muscle growth, whereas only FR900359 effectively interdicted agonist-promoted airway contraction in human precision cut lung slices. These studies serve as a proof of concept that the broad-based inhibition of Gq activation may be a useful therapeutic approach to treat multiple common pathologies of airway disease.
Collapse
Affiliation(s)
- Richard Carr
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| | - Cynthia Koziol-White
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| | - Jie Zhang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| | - Hong Lam
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| | - Steven S An
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| | - Gregory G Tall
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| | - Reynold A Panettieri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania (R.C., J.L.B.); Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (C.K.W., J.Z., R.A.P.); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (H.L., S.S.A.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (G.G.T.)
| |
Collapse
|
24
|
Charles R, Namkung Y, Cotton M, Laporte SA, Claing A. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. J Biol Chem 2015; 291:3967-81. [PMID: 26703465 DOI: 10.1074/jbc.m115.684357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage β-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of β-arrestin proteins, we overexpressed β-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, β-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to β-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration.
Collapse
Affiliation(s)
- Ricardo Charles
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | - Yoon Namkung
- the Department of Medicine, Research Institute of McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Mathieu Cotton
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | - Stéphane A Laporte
- the Department of Medicine, Research Institute of McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Audrey Claing
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| |
Collapse
|
25
|
Abstract
G protein-coupled receptors (GPCRs) remain a major domain of pharmaceutical discovery. The identification of GPCR lead compounds and their optimization are now structure-based, thanks to advances in X-ray crystallography, molecular modeling, protein engineering and biophysical techniques. In silico screening provides useful hit molecules. New pharmacological approaches to tuning the pleotropic action of GPCRs include: allosteric modulators, biased ligands, GPCR heterodimer-targeted compounds, manipulation of polypharmacology, receptor antibodies and tailoring of drug molecules to fit GPCR pharmacogenomics. Measurements of kinetics and drug efficacy are factors influencing clinical success. With the exception of inhibitors of GPCR kinases, targeting of intracellular GPCR signaling or receptor cycling for therapeutic purposes remains a futuristic concept. New assay approaches are more efficient and multidimensional: cell-based, label-free, fluorescence-based assays, and biosensors. Tailoring GPCR drugs to a patient's genetic background is now being considered. Chemoinformatic tools can predict ADME-tox properties. New imaging technology visualizes drug action in vivo. Thus, there is reason to be optimistic that new technology for GPCR ligand discovery will help reverse the current narrowing of the pharmaceutical pipeline.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892, USA.
| |
Collapse
|
26
|
The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 2015; 6:10156. [PMID: 26658454 PMCID: PMC4682109 DOI: 10.1038/ncomms10156] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.
Collapse
|
27
|
Wauson EM, Guerra ML, Dyachok J, McGlynn K, Giles J, Ross EM, Cobb MH. Differential Regulation of ERK1/2 and mTORC1 Through T1R1/T1R3 in MIN6 Cells. Mol Endocrinol 2015; 29:1114-22. [PMID: 26168033 DOI: 10.1210/me.2014-1181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MAPKs ERK1/2 respond to nutrients and other insulin secretagogues in pancreatic β-cells and mediate nutrient-dependent insulin gene transcription. Nutrients also stimulate the mechanistic target of rapamycin complex 1 (mTORC1) to regulate protein synthesis. We showed previously that activation of both ERK1/2 and mTORC1 in the MIN6 pancreatic β-cell-derived line by extracellular amino acids (AAs) is at least in part mediated by the heterodimeric T1R1/T1R3, a G protein-coupled receptor. We show here that AAs differentially activate these two signaling pathways in MIN6 cells. Pretreatment with pertussis toxin did not prevent the activation of either ERK1/2 or mTORC1 by AAs, indicating that G(I) is not central to either pathway. Although glucagon-like peptide 1, an agonist for a G(s-)coupled receptor, activated ERK1/2 well and mTORC1 to a small extent, AAs had no effect on cytosolic cAMP accumulation. Ca(2+) entry is required for ERK1/2 activation by AAs but is dispensable for AA activation of mTORC1. Pretreatment with UBO-QIC, a selective G(q) inhibitor, reduced the activation of ERK1/2 but had little effect on the activation of mTORC1 by AAs, suggesting a differential requirement for G(q). Inhibition of G(12/13) by the overexpression of the regulator of G protein signaling domain of p115 ρ-guanine nucleotide exchange factor had no effect on mTORC1 activation by AAs, suggesting that these G proteins are also not involved. We conclude that AAs regulate ERK1/2 and mTORC1 through distinct signaling pathways.
Collapse
Affiliation(s)
- Eric M Wauson
- Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines, Iowa 50312
| | - Marcy L Guerra
- Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines, Iowa 50312
| | - Julia Dyachok
- Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines, Iowa 50312
| | - Kathleen McGlynn
- Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines, Iowa 50312
| | - Jennifer Giles
- Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines, Iowa 50312
| | - Elliott M Ross
- Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines, Iowa 50312
| | - Melanie H Cobb
- Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines, Iowa 50312
| |
Collapse
|
28
|
Robinson JD, McDonald PH. The orexin 1 receptor modulates kappa opioid receptor function via a JNK-dependent mechanism. Cell Signal 2015; 27:1449-56. [PMID: 25857454 PMCID: PMC5549559 DOI: 10.1016/j.cellsig.2015.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
The orexin 1 receptor (OX1R) and the kappa opioid receptor (KOR) are two G protein-coupled receptors (GPCRs) previously demonstrated to play important roles in modulating the rewarding effects of drugs of abuse such as cocaine. Using cells heterologously expressing both receptors, we investigated whether OX1R can regulate the function of KOR and vice versa. Activation of OX1R was found to attenuate agonist-activated KOR-mediated inhibition of cAMP production. In contrast, agonist-activated KOR-mediated β-arrestin recruitment and p38 activation were enhanced in the presence of activated OX1R. These effects are independent of OX1R internalization but are blocked in the presence of the JNK inhibitor SP-600125. OX1R signaling does not affect ligand binding by KOR. Taken together, these data suggest that OX1R signaling can modulate KOR function in a JNK-dependent manner, promoting preferential signaling of KOR via β-arrestin/p38 rather than Gαi. Conversely, Gαq coupling of OX1R is unaffected by activation of KOR, suggesting that this crosstalk is unidirectional. Given that KOR Gαi-mediated signaling events and β-arrestin-mediated signaling events are thought to promote distinct cellular responses and physiological outcomes downstream of KOR activation, this mechanism may have important implications on the behavioral effects of KOR activity.
Collapse
Affiliation(s)
- James D Robinson
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Patricia H McDonald
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
29
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
30
|
Inamdar V, Patel A, Manne BK, Dangelmaier C, Kunapuli SP. Characterization of UBO-QIC as a Gαq inhibitor in platelets. Platelets 2015; 26:771-8. [PMID: 25734215 DOI: 10.3109/09537104.2014.998993] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gαq plays an important role in platelet activation by agonists such as thrombin, adenosine diphosphate (ADP) and thromboxane. The significance of Gαq signaling in platelets was established using YM254890, a Gαq/11-specific inhibitor and Gαq knockout murine platelets. However, YM-254890 is no longer available for investigators and there is a need to characterize other Gαq inhibitors. The aim of this study is to characterize the specificity of a compound, {L-threonine,(3R)-N-acetyl-3-hydroxy-L-leucyl-(aR)-a-hydroxybenzenepropanoyl-2,3-idehydro-N-methylalanyl-L-alanyl-N-methyl-L-alanyl-(3R)-3-[[(2S,3R)-3-hydroxy-4-methyl-1-oxo-2-[(1-oxopropyl)amino]pentyl]oxy]-L-leucyl-N,O-dimethyl-,(7 → 1)-lactone (9CI)} (UBO-QIC), as a Gαq inhibitor in platelets. Human platelets treated with UBO-QIC showed a concentration-dependent inhibition of platelet aggregation and secretion by protease-activated receptors (PAR) agonists, U46619 and ADP. UBO-QIC also abolished Gαq pathway signaling events such as calcium mobilization and pleckstrin phosphorylation. UBO-QIC had no nonspecific effects on the Gα12/13 pathway since platelet shape change was intact in Gαq knockout murine platelets stimulated with PAR agonists in the presence of the inhibitor. In addition, UBO-QIC-treated platelets did not affect collagen-related peptide-induced platelet activation suggesting that this inhibitor had no non-specific effects on the GPVI pathway. Furthermore, Akt phosphorylation downstream of the Gαi and Gαz pathways, and vasodilator-stimulated phosphoprotein phosphorylation downstream of the Gαs pathway were not inhibited in UBO-QIC-treated platelets. UBO-QIC is a specific inhibitor for Gαq, which can be a useful tool for investigating Gαq-coupled receptor signaling pathways in platelets.
Collapse
Affiliation(s)
- Vaishali Inamdar
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Akruti Patel
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Bhanu Kanth Manne
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Carol Dangelmaier
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Satya P Kunapuli
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| |
Collapse
|
31
|
Karpinsky-Semper D, Tayou J, Levay K, Schuchardt BJ, Bhat V, Volmar CH, Farooq A, Slepak VZ. Helix 8 and the i3 loop of the muscarinic M3 receptor are crucial sites for its regulation by the Gβ5-RGS7 complex. Biochemistry 2015; 54:1077-88. [PMID: 25551629 PMCID: PMC4318586 DOI: 10.1021/bi500980d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The muscarinic M3 receptor (M3R)
is a Gq-coupled receptor and is
known to interact with many intracellular regulatory proteins. One
of these molecules is Gβ5-RGS7, the permanently associated heterodimer
of G protein β-subunit Gβ5 and RGS7, a regulator of G
protein signaling. Gβ5-RGS7 can attenuate M3R-stimulated release
of Ca2+ from intracellular stores or enhance the influx
of Ca2+ across the plasma membrane. Here we show that deletion
of amino acids 304–345 from the central portion of the i3 loop
renders M3R insensitive to regulation by Gβ5-RGS7. In addition
to the i3 loop, interaction of M3R with Gβ5-RGS7 requires helix
8. According to circular dichroism spectroscopy, the peptide corresponding
to amino acids 548–567 in the C-terminus of M3R assumes an
α-helical conformation. Substitution of Thr553 and Leu558 with
Pro residues disrupts this α-helix and abolished binding to
Gβ5-RGS7. Introduction of the double Pro substitution into full-length
M3R (M3RTP/LP) prevents trafficking of the receptor to
the cell surface. Using atropine or other antagonists as pharmacologic
chaperones, we were able to increase the level of surface expression
of the TP/LP mutant to levels comparable to that of wild-type M3R.
However, M3R-stimulated calcium signaling is still severely compromised.
These results show that the interaction of M3R with Gβ5-RGS7
requires helix 8 and the central portion of the i3 loop.
Collapse
Affiliation(s)
- Darla Karpinsky-Semper
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , 1600 NW 10th Avenue, RMSB6024A, Miami, Florida 33136, United States
| | | | | | | | | | | | | | | |
Collapse
|