1
|
Sunaga N, Kaira K, Shimizu K, Tanaka I, Miura Y, Nakazawa S, Ohtaki Y, Kawabata‐Iwakawa R, Sato M, Girard L, Minna JD, Hisada T. The oncogenic role of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer. Thorac Cancer 2024; 15:131-141. [PMID: 38014454 PMCID: PMC10788478 DOI: 10.1111/1759-7714.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Molecular abnormalities in the Wnt/β-catenin pathway confer malignant phenotypes in lung cancer. Previously, we identified the association of leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6) with oncogenic Wnt signaling, and its downregulation upon β-catenin knockdown in non-small cell lung cancer (NSCLC) cells carrying CTNNB1 mutations. The aim of this study was to explore the mechanisms underlying this association and the accompanying phenotypes. METHODS LGR6 expression in lung cancer cell lines and surgical specimens was analyzed using quantitative RT-PCR and immunohistochemistry. Cell growth was assessed using colony formation assay. Additionally, mRNA sequencing was performed to compare the expression profiles of cells subjected to different treatments. RESULTS LGR6 was overexpressed in small cell lung cancer (SCLC) and NSCLC cell lines, including the CTNNB1-mutated NSCLC cell lines HCC15 and A427. In both cell lines, LGR6 knockdown inhibited cell growth. LGR6 expression was upregulated in spheroids compared to adherent cultures of A427 cells, suggesting that LGR6 participates in the acquisition of cancer stem cell properties. Immunohistochemical analysis of lung cancer specimens revealed that the LGR6 protein was predominantly overexpressed in SCLCs, large cell neuroendocrine carcinomas, and lung adenocarcinomas, wherein LGR6 overexpression was associated with vascular invasion, the wild-type EGFR genotype, and an unfavorable prognosis. Integrated mRNA sequencing analysis of HCC15 and A427 cells with or without LGR6 knockdown revealed LGR6-related pathways and genes associated with cancer development and stemness properties. CONCLUSIONS Our findings highlight the oncogenic roles of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of SurgeryShinshu University School of MedicineNaganoJapan
| | - Ichidai Tanaka
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yosuke Miura
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Reika Kawabata‐Iwakawa
- Division of Integrated Oncology ResearchGunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Pharmacology, University of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Internal MedicineUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Takeshi Hisada
- Gunma University Graduate School of Health SciencesMaebashiJapan
| |
Collapse
|
2
|
van Kerkhof P, Kralj T, Spanevello F, van Bloois L, Jordens I, van der Vaart J, Jamieson C, Merenda A, Mastrobattista E, Maurice MM. RSPO3 Furin domain-conjugated liposomes for selective drug delivery to LGR5-high cells. J Control Release 2023; 356:72-83. [PMID: 36813038 DOI: 10.1016/j.jconrel.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The transmembrane receptor LGR5 potentiates Wnt/β-catenin signaling by binding both secreted R-spondin (RSPOs) and the Wnt tumor suppressors RNF43/ZNRF3, directing clearance of RNF43/ZNRF3 from the cell surface. Besides being widely used as a stem cell marker in various tissues, LGR5 is overexpressed in many types of malignancies, including colorectal cancer. Its expression characterizes a subpopulation of cancer cells that play a crucial role in tumor initiation, progression and cancer relapse, known as cancer stem cells (CSCs). For this reason, ongoing efforts are aimed at eradicating LGR5-positive CSCs. Here, we engineered liposomes decorated with different RSPO proteins to specifically detect and target LGR5-positive cells. Using fluorescence-loaded liposomes, we show that conjugation of full-length RSPO1 to the liposomal surface mediates aspecific, LGR5-independent cellular uptake, largely mediated by heparan sulfate proteoglycan binding. By contrast, liposomes decorated only with the Furin (FuFu) domains of RSPO3 are taken up by cells in a highly specific, LGR5-dependent manner. Moreover, encapsulating doxorubicin in FuFuRSPO3 liposomes allowed us to selectively inhibit the growth of LGR5-high cells. Thus, FuFuRSPO3-coated liposomes allow for the selective detection and ablation of LGR5-high cells, providing a potential drug delivery system for LGR5-targeted anti-cancer strategies.
Collapse
Affiliation(s)
- Peter van Kerkhof
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Tomica Kralj
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Francesca Spanevello
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis van Bloois
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Ingrid Jordens
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jelte van der Vaart
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Cara Jamieson
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Alessandra Merenda
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands.
| | - Madelon M Maurice
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Karim JA, Lambert NA, Pioszak AA. Time- and cost-efficient bacterial expression and purification of potato apyrase. Protein Expr Purif 2023; 203:106215. [PMID: 36535546 PMCID: PMC9807108 DOI: 10.1016/j.pep.2022.106215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Apyrase from potato (Solanum tuberosum) is a divalent metal ion-dependent enzyme that catalyzes the hydrolysis of nucleoside di- and tri-phosphates with broad substrate specificity. The enzyme is widely used to manipulate nucleotide levels such as in the G protein-coupled receptor (GPCR) field where it is used to deplete guanine nucleotides to stabilize nucleotide-free ternary agonist-GPCR-G protein complexes. Potato apyrase is available commercially as the native enzyme purified from potatoes or as a recombinant protein, but these are prohibitively expensive for some research applications. Here, we report a relatively simple method for the bacterial production of soluble, active potato apyrase. Apyrase has several disulfide bonds, so we co-expressed the enzyme bearing a C-terminal (His)6 tag with the E. coli disulfide isomerase DsbC at low temperature (18 °C) in the oxidizing cytoplasm of E. coli Origami B (DE3). This allowed low level production of soluble apyrase. A two-step purification procedure involving Ni-affinity followed by Cibacron Blue-affinity chromatography yielded highly purified apyrase at a level of ∼0.5 mg per L of bacterial culture. The purified enzyme was functional for ATP hydrolysis in an ATPase assay and for GTP/GDP hydrolysis in a GPCR-G protein coupling assay. This methodology enables the time- and cost-efficient production of recombinant apyrase for various research applications.
Collapse
Affiliation(s)
- Jordan A Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Cui J, Toh Y, Park S, Yu W, Tu J, Wu L, Li L, Jacob J, Pan S, Carmon KS, Liu QJ. Drug Conjugates of Antagonistic R-Spondin 4 Mutant for Simultaneous Targeting of Leucine-Rich Repeat-Containing G Protein-Coupled Receptors 4/5/6 for Cancer Treatment. J Med Chem 2021; 64:12572-12581. [PMID: 34406767 DOI: 10.1021/acs.jmedchem.1c00395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
LGR4-6 (leucine-rich repeat-containing G-protein-coupled receptors 4, 5, and 6) are three related receptors with an upregulated expression in gastrointestinal cancers to various extents, and LGR5 is enriched in cancer stem cells. Antibody-drug conjugates (ADCs) targeting LGR5 showed a robust antitumor effect in vivo but could not eradicate tumors due to plasticity of LGR5-positive cancer cells. As LGR5-negative cancer cells often express LGR4 or LGR6 or both, we reasoned that simultaneous targeting of all three LGRs may provide a more effective approach. R-spondins (RSPOs) bind to LGR4-6 with high affinity and potentiate Wnt signaling. We identified an RSPO4 furin domain mutant (Q65R) that retains potent LGR binding but no longer potentiates Wnt signaling. Drug conjugates of a peptibody comprising the RSPO4 mutant and IgG1-Fc showed potent cytotoxic effects on cancer cell lines expressing any LGR in vitro and suppressed tumor growth in vivo without inducing intestinal enlargement or other adverse effects.
Collapse
Affiliation(s)
- Jie Cui
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Yukimatsu Toh
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Soohyun Park
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Wangsheng Yu
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Jianghua Tu
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Ling Wu
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Li Li
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Joan Jacob
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Sheng Pan
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Kendra S Carmon
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| | - Qingyun J Liu
- Center for Translational Cancer Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, Texas 77030, United States
| |
Collapse
|
5
|
Su X, Zhou G, Tian M, Wu S, Wang Y. Silencing of RSPO1 mitigates obesity-related renal fibrosis in mice by deactivating Wnt/β-catenin pathway. Exp Cell Res 2021; 405:112713. [PMID: 34181940 DOI: 10.1016/j.yexcr.2021.112713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Obesity, a global epidemic, is one of the critical causes of chronic kidney disease (CKD). R-spondin1 (RSPO1) possessing the potential to activate Wnt/β-catenin pathway was reported to be elevated in circulation of obesity objects. However, the function of RSPO1 and the latent mechanism in obesity-related CKD are still left to be revealed. In the present study, renal RSPO1 expression was increased in mice fed on high-fat diet (HFD) for 12 weeks. Lentivirus-mediated RSPO1 knockdown partly recovered obesity-related metabolic symptoms, while distinctly remitted kidney dysfunction and renal fibrosis in obesity mice. In vitro, recombinant RSPO1 was found to elevate leucine-rich repeat-containing G protein coupled receptor 4 (LGR4) expression, promote Wnt/β-catenin signaling pathway activation, facilitate epithelial-mesenchymal transition (EMT) and increase collagen deposition in HK2 renal tubular cells. Such pro-fibrotic effect of RSPO1 was diminished by LGR4 siRNA in HK2 cells. In summary, we demonstrate that RSPO1/LGR4 axis is involved in obesity-related renal fibrosis at least through activating Wnt/β-catenin signaling pathway, providing a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Si Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
6
|
Park S, Wu L, Tu J, Yu W, Toh Y, Carmon KS, Liu QJ. Unlike LGR4, LGR5 potentiates Wnt-β-catenin signaling without sequestering E3 ligases. Sci Signal 2020; 13:13/660/eaaz4051. [PMID: 33262293 DOI: 10.1126/scisignal.aaz4051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LGR4 and LGR5 encode two homologous receptors with critical, yet distinct, roles in organ development and adult stem cell survival. Both receptors are coexpressed in intestinal crypt stem cells, bind to R-spondins (RSPOs) with high affinity, and potentiate Wnt-β-catenin signaling, presumably by the same mechanism: forming RSPO-bridged complexes with the E3 ligases RNF43 and ZNRF3 to inhibit ubiquitylation of Wnt receptors. However, direct evidence for RSPO-bound, full-length LGR5 interacting with these E3 ligases in whole cells has not been reported, and only LGR4 is essential for the self-renewal of intestinal stem cells. Here, we examined the mechanisms of action of LGR4 and LGR5 in parallel using coimmunoprecipitation, proximity ligation, competition binding, and time-resolved FRET assays in whole cells. Full-length LGR4 formed a tight complex with ZNRF3 and RNF43 even without RSPO, whereas LGR5 did not interact with either E3 ligase with or without RSPO. Domain-swapping experiments with LGR4 and LGR5 revealed that the seven-transmembrane domain of LGR4 conferred interaction with the E3 ligases. Native LGR4 and LGR5 existed as dimers on the cell surface, and LGR5 interacted with both FZD and LRP6 of the Wnt signalosome to enhance LRP6 phosphorylation and potentiate Wnt-β-catenin signaling. These findings provide a molecular basis for the weaker activity of LGR5 in the potentiation of Wnt signaling that may underlie the distinct roles of LGR4 and LGR5 in organ development, as well as the self-renewal and fitness of adult stem cells.
Collapse
Affiliation(s)
- Soohyun Park
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ling Wu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianghua Tu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wangsheng Yu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yukimatsu Toh
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kendra S Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingyun J Liu
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
7
|
McCarthy N, Kraiczy J, Shivdasani RA. Cellular and molecular architecture of the intestinal stem cell niche. Nat Cell Biol 2020; 22:1033-1041. [PMID: 32884148 DOI: 10.1038/s41556-020-0567-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Intestinal stem and progenitor cells replicate and differentiate in distinct compartments, influenced by Wnt, BMP, and other subepithelial cues. The cellular sources of these signals were long obscure because intestinal mesenchyme was insufficiently characterised. In this Review, we discuss how recent mRNA profiles of mouse and human intestinal submucosa, coupled with fine-resolution microscopy and gene and cell disruptions, reveal a coherent picture of an organised tissue carrying cells with distinct molecular properties and functions.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Judith Kraiczy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
van Neerven SM, Vermeulen L. The interplay between intrinsic and extrinsic Wnt signaling in controlling intestinal transformation. Differentiation 2019; 108:17-23. [PMID: 30799131 PMCID: PMC6717105 DOI: 10.1016/j.diff.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
The intestinal epithelial layer is the fastest renewing tissue in the human body. Due to its incredible turnover rate, the intestine is especially prone to develop cancer, in particular in the colon. Colorectal cancer (CRC) development is characterized by the stepwise accumulation of mutations over time, of which mutations in the tumor suppressor APC are often very early to occur. Generally, mutations in this gene lead to truncated APC proteins that cannot bind to β-catenin to promote its degradation, resulting in a constant overstimulation of the Wnt pathway. The level of intrinsic Wnt activation is dependent on the number of functional β-catenin binding sites remaining within the APC proteins, and the right amount of Wnt signaling is rate-limiting in the formation of polyps. In addition, the intestinal niche provides an extensive spectrum of Wnt ligands, amplifiers and antagonists that locally regulate basal Wnt levels and consequently influence polyp formation propensity. Here we will discuss the crosstalk between transforming epithelial cells and their regional niche in the development of intestinal cancer.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands.
| |
Collapse
|
9
|
Raslan AA, Yoon JK. R-spondins: Multi-mode WNT signaling regulators in adult stem cells. Int J Biochem Cell Biol 2019; 106:26-34. [DOI: 10.1016/j.biocel.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
|
10
|
Hinck AP. Structure-guided engineering of TGF-βs for the development of novel inhibitors and probing mechanism. Bioorg Med Chem 2018; 26:5239-5246. [PMID: 30026042 DOI: 10.1016/j.bmc.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The increasing availability of detailed structural information on many biological systems provides an avenue for manipulation of these structures, either for probing mechanism or for developing novel therapeutic agents for treating disease. This has been accompanied by the advent of several powerful new methods, such as the ability to incorporate non-natural amino acids or perform fragment screening, increasing the capacity to leverage this new structural information to aid in these pursuits. The abundance of structural information also provides new opportunities for protein engineering, which may become more and more relevant as treatment of diseases using gene therapy approaches become increasingly common. This is illustrated by example with the TGF-β family of proteins, for which there is ample structural information, yet no approved inhibitors for treating diseases, such as cancer and fibrosis that are promoted by excessive TGF-β signaling. The results presented demonstrate that through several relatively simple modifications, primarily involving the removal of an α-helix and replacement of it with a flexible loop, it is possible to alter TGF-βs from being potent signaling proteins into inhibitors of TGF-β signaling. The engineered TGF-βs have improved specificity relative to kinase inhibitors and a much smaller size compared to monoclonal antibodies, and thus may prove successful as either as an injected therapeutic or as a gene therapy-based therapeutic, where other classes of inhibitors have failed.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Park S, Cui J, Yu W, Wu L, Carmon KS, Liu QJ. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. J Biol Chem 2018; 293:9759-9769. [PMID: 29752411 DOI: 10.1074/jbc.ra118.002743] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
The four R-spondins (RSPO1-4) strongly potentiate Wnt signaling and play critical roles in normal development, adult stem cell survival, and cancer development and aggressiveness. All four RSPOs have been suggested to potentiate Wnt signaling by binding to three related receptors, i.e. leucine-rich repeat-containing, G protein-coupled receptors 4, 5, and 6 (LGR4/5/6), and then inducing the clearance of two E3 ubiquitin ligases (RNF43 and ZNRF3) that otherwise would ubiquitinate Wnt receptors for degradation. Here, we show that RSPO1-4 have differential dependence on LGRs in potentiating Wnt/β-catenin signaling and that RSPO2 can enhance this pathway without any LGR. LGR4 knockout (LGR4KO) in HEK293 cells completely abrogated the Wnt/β-catenin signaling response to RSPO1 and RSPO4 and strongly impaired the response to RSPO3. RSPO2, however, retained robust activity albeit with decreased potency. Complete rescue of RSPO1-4 activity in LGR4KO cells required the seven-transmembrane domain of LGR4. Furthermore, an RSPO2 mutant with normal binding affinity to ZNRF3 but no or little binding to LGR4 or LGR5 still potentiated Wnt/β-catenin signaling in vitro, supported the growth of intestinal organoids ex vivo, and stimulated intestinal crypt growth in vivo Mechanistically, RSPO2 could increase Wnt receptor levels in the absence of any LGR without affecting ZNRF3 endocytosis and stability. These findings suggest that RSPO1-4 use distinct mechanisms in regulating Wnt and other signaling pathways, which have important implications for understanding the pleiotropic functions of RSPOs and LGRs in both normal and cancer development.
Collapse
Affiliation(s)
- Soohyun Park
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030 and
| | - Jie Cui
- Wntrix, Inc., Houston, Texas 77021
| | - Wangsheng Yu
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030 and
| | - Ling Wu
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030 and
| | - Kendra S Carmon
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030 and
| | - Qingyun J Liu
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030 and
| |
Collapse
|
12
|
Booe JM, Warner ML, Roehrkasse AM, Hay DL, Pioszak AA. Probing the Mechanism of Receptor Activity-Modifying Protein Modulation of GPCR Ligand Selectivity through Rational Design of Potent Adrenomedullin and Calcitonin Gene-Related Peptide Antagonists. Mol Pharmacol 2018; 93:355-367. [PMID: 29363552 PMCID: PMC5832325 DOI: 10.1124/mol.117.110916] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 01/01/2023] Open
Abstract
Binding of the vasodilator peptides adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) to the class B G protein-coupled receptor calcitonin receptor-like receptor (CLR) is modulated by receptor activity-modifying proteins (RAMPs). RAMP1 favors CGRP, whereas RAMP2 and RAMP3 favor AM. Crystal structures of peptide-bound RAMP1/2-CLR extracellular domain (ECD) heterodimers suggested RAMPs alter ligand preference through direct peptide contacts and allosteric modulation of CLR. Here, we probed this dual mechanism through rational structure-guided design of AM and CGRP antagonist variants. Variants were characterized for binding to purified RAMP1/2-CLR ECD and for antagonism of the full-length CGRP (RAMP1:CLR), AM1 (RAMP2:CLR), and AM2 (RAMP3:CLR) receptors. Short nanomolar affinity AM(37-52) and CGRP(27-37) variants were obtained through substitutions including AM S45W/Q50W and CGRP K35W/A36S designed to stabilize their β-turn. K46L and Y52F substitutions designed to exploit RAMP allosteric effects and direct peptide contacts, respectively, yielded AM variants with selectivity for the CGRP receptor over the AM1 receptor. AM(37-52) S45W/K46L/Q50W/Y52F exhibited nanomolar potency at the CGRP receptor and micromolar potency at AM1 A 2.8-Å resolution crystal structure of this variant bound to the RAMP1-CLR ECD confirmed that it bound as designed. CGRP(27-37) N31D/S34P/K35W/A36S exhibited potency and selectivity comparable to the traditional antagonist CGRP(8-37). Giving this variant the ability to contact RAMP2 through the F37Y substitution increased affinity for AM1, but it still preferred the CGRP receptor. These potent peptide antagonists with altered selectivity inform the development of AM/CGRP-based pharmacological tools and support the hypothesis that RAMPs alter CLR ligand selectivity through allosteric effects and direct peptide contacts.
Collapse
Affiliation(s)
- Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Amanda M Roehrkasse
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Debbie L Hay
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (J.M.B., M.L.W., A.M.R., A.A.P.) and School of Biological Sciences, University of Auckland, Auckland, New Zealand (D.L.H.)
| |
Collapse
|
13
|
PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A 2018; 115:E3173-E3181. [PMID: 29559533 PMCID: PMC5889626 DOI: 10.1073/pnas.1713510115] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue stem cells in vivo reside in highly structured niches that provide signals for proliferation and differentiation. Understanding the role of the niche requires identifying the key cell types that provide these regulators. In the intestine, R-spondins and Wnts are essential regulators of the stem-cell niche. Here we identify subepithelial myofibroblasts of the PDGF receptor α lineage as the specific stromal cell type that secretes these ligands. These data demonstrate the close interaction between epithelial stem cells and the underlying regulatory stroma niche and provide insights into both normal homeostasis and tissue recovery after injury. Wnts and R-spondins (RSPOs) support intestinal homeostasis by regulating crypt cell proliferation and differentiation. Ex vivo, Wnts secreted by Paneth cells in organoids can regulate the proliferation and differentiation of Lgr5-expressing intestinal stem cells. However, in vivo, Paneth cell and indeed all epithelial Wnt production is completely dispensable, and the cellular source of Wnts and RSPOs that maintain the intestinal stem-cell niche is not known. Here we investigated both the source and the functional role of stromal Wnts and RSPO3 in regulation of intestinal homeostasis. RSPO3 is highly expressed in pericryptal myofibroblasts in the lamina propria and is several orders of magnitude more potent than RSPO1 in stimulating both Wnt/β-catenin signaling and organoid growth. Stromal Rspo3 ablation ex vivo resulted in markedly decreased organoid growth that was rescued by exogenous RSPO3 protein. Pdgf receptor alpha (PdgfRα) is known to be expressed in pericryptal myofibroblasts. We therefore evaluated if PdgfRα identified the key stromal niche cells. In vivo, Porcn excision in PdgfRα+ cells blocked intestinal crypt formation, demonstrating that Wnt production in the stroma is both necessary and sufficient to support the intestinal stem-cell niche. Mice with Rspo3 excision in the PdgfRα+ cells had decreased intestinal crypt Wnt/β-catenin signaling and Paneth cell differentiation and were hypersensitive when stressed with dextran sodium sulfate. The data support a model of the intestinal stem-cell niche regulated by both Wnts and RSPO3 supplied predominantly by stromal pericryptal myofibroblasts marked by PdgfRα.
Collapse
|
14
|
The Aryl Hydrocarbon Receptor Relays Metabolic Signals to Promote Cellular Regeneration. Stem Cells Int 2016; 2016:4389802. [PMID: 27563312 PMCID: PMC4987465 DOI: 10.1155/2016/4389802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 02/04/2023] Open
Abstract
While sensing the cell environment, the aryl hydrocarbon receptor (AHR) interacts with different pathways involved in cellular homeostasis. This review summarizes evidence suggesting that cellular regeneration in the context of aging and diseases can be modulated by AHR signaling on stem cells. New insights connect orphaned observations into AHR interactions with critical signaling pathways such as WNT to propose a role of this ligand-activated transcription factor in the modulation of cellular regeneration by altering pathways that nurture cellular expansion such as changes in the metabolic efficiency rather than by directly altering cell cycling, proliferation, or cell death. Targeting the AHR to promote regeneration might prove to be a useful strategy to avoid unbalanced disruptions of homeostasis that may promote disease and also provide biological rationale for potential regenerative medicine approaches.
Collapse
|
15
|
Lee SM, Hay DL, Pioszak AA. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS. J Biol Chem 2016; 291:8686-700. [PMID: 26895962 DOI: 10.1074/jbc.m115.713628] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity.
Collapse
Affiliation(s)
- Sang-Min Lee
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| | - Debbie L Hay
- the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Augen A Pioszak
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| |
Collapse
|
16
|
Zebisch M, Jones EY. ZNRF3/RNF43--A direct linkage of extracellular recognition and E3 ligase activity to modulate cell surface signalling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:112-8. [PMID: 25937466 DOI: 10.1016/j.pbiomolbio.2015.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
The interactions of extracellular ligands with single membrane spanning receptors, such as kinases, typically serve to agonise or antagonise the intracellular activation of signalling pathways. Within the cell, E3 ligases can act to alter the localisation and activity of proteins involved in signalling systems. Structural and functional characterisation of two closely related single membrane spanning molecules, RNF43 and ZNRF3, has recently revealed the receptor-like functionalities of a ligand-binding ectodomain combined with the intracellular architecture and activity of an E3 ligase. This direct link provides a hereto novel mechanism for extracellular control of ubiquitin ligase activity that is used for the modulation of Wnt signalling, a pathway of major importance in embryogenesis, stem cell biology and cancer. In this review we discuss recent findings for the structure and interactions of the extracellular region of RNF43/ZNRF3 and draw parallels with the properties and function of signalling receptor ectodomains.
Collapse
Affiliation(s)
- Matthias Zebisch
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
17
|
Zebisch M, Jones EY. Crystal structure of R-spondin 2 in complex with the ectodomains of its receptors LGR5 and ZNRF3. J Struct Biol 2015; 191:149-55. [PMID: 26123262 PMCID: PMC4533229 DOI: 10.1016/j.jsb.2015.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
The four secreted R-spondin (Rspo1-4) proteins of vertebrates function as stem cell growth factors and potentiate canonical Wnt signalling. Rspo proteins act by cross-linking members of two cell surface receptor families, complexing the stem cell markers LGR4-6 with the Frizzled-specific E3 ubiquitin ligases ZNRF3/RNF43. The consequent internalisation of the ternary LGR-Rspo-E3 complex removes the E3 ligase activity, which otherwise targets the Wnt receptor Frizzled for degradation, and thus enhances Wnt signalling. Multiple combinations of LGR4-6, Rspo1-4 and ZNRF3/RNF43 are possible, implying the existence of generic interaction determinants, but also of specific differences in complex architecture and activity. We present here a high resolution crystal structure of an ectodomain variant of human LGR5 (hLGR5ecto) complexed with a signalling competent fragment of mouse Rspo2 (mRspo2Fu1-Fu2). The structure shows that the particularly potent Rspo2 ligand engages LGR5 in a fashion almost identical to that reported for hRSPO1. Comparison of our hLGR5ecto structure with previously published structures highlights a surprising plasticity of the LGR ectodomains, characterised by a nearly 9° or larger rotation of the N-terminal half of the horseshoe-like fold relative to the C-terminal half. We also report a low resolution hLGR5-mRspo2Fu1-Fu2-mZNRF3ecto ternary complex structure. This crystal structure confirms our previously suggested hypothesis, showing that Rspo proteins cross-link LGRs and ZNRF3 into a 2:2:2 complex, whereas a 1:1:1 complex is formed with RNF43.
Collapse
Affiliation(s)
- Matthias Zebisch
- Division of Structural Biology, Henry Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - E Yvonne Jones
- Division of Structural Biology, Henry Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|