1
|
Wang Z, Ren Y, Zhang D, She G, Wang Y, Li G, Sun X, Zheng D, Wang Z, Deng XL, Zhao Y, Zhao L. Elevated K Ca3.1 expression by angiotensin II via the ERK/NF-κB pathway contributes to atrial fibrosis. J Mol Cell Cardiol 2025; 202:133-143. [PMID: 40122157 DOI: 10.1016/j.yjmcc.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia characterized by atrial fibrosis which involves excessed proliferation and increased activity of fibroblast and myofibroblast, as well as alterations in the extracellular matrix (ECM). The specific mechanism driving fibrosis in atrial fibroblasts and myofibroblsats remains incompletely understood. This study investigates the role of the intermediate-conductance Ca2+-activated K+ channel (KCa3.1) in Angiotensin II (Ang II)-induced atrial fibrosis and elucidates the underlying mechanisms. Primary rat atrial fibroblasts/myofibroblasts were treated with Ang II to evaluate KCa3.1 expression, cells proliferation and ECM production. The involvement of ERK/NF-κB signaling pathway was assessed using specific inhibitors. Ang II treatment increased KCa3.1 expression, stimulated the proliferation of fibroblasts/myofibroblasts, and enhanced ECM production, effects that were attenuated by the Ang II receptor antagonist Losartan and the KCa3.1 inhibitor TRAM-34. Knockdown of KCa3.1 using siRNA significantly reduced Ang II-induced collagen synthesis, confirming its critical role in fibrosis. The ERK/NF-κB pathway was found to mediate Ang II-induced upregulation of KCa3.1, as evidenced by inhibition with specific inhibitors. In vivo, Ang II infusion in rats increased KCa3.1 expression and atrial fibrosis, with atria showing greater susceptibility to fibrosis compared to ventricle. These effects were mitigated by losartan and TRAM-34. In conclusion, our findings demonstrate that Ang II-induced upregulation of KCa3.1 through ERK/NF-κB pathway activation in atrial fibroblasts/myofibroblasts promotes cellular proliferation and collagen deposition, ultimately contributing to atrial fibrosis. KCa3.1 represents a promising therapeutic target for the treatment of atrial fibrosis in AF.
Collapse
Affiliation(s)
- Zujuan Wang
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Yujie Ren
- Department of Pathology, Xi'an People's Hospital (Xian Fourth Hospital), 21 Jiefang Road, Xi'an 710004, Shaanxi, China
| | - Dongmei Zhang
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Guangyao Li
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Xiaodong Sun
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Dong Zheng
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Zhongjuan Wang
- Institute of Biology and Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Ying Zhao
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China.
| | - Limei Zhao
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
2
|
Kuo C, Nikan M, Yeh ST, Chappell AE, Tanowitz M, Seth PP, Prakash TP, Mullick AE. Targeted Delivery of Antisense Oligonucleotides Through Angiotensin Type 1 Receptor. Nucleic Acid Ther 2022; 32:300-311. [PMID: 35612431 DOI: 10.1089/nat.2021.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We evaluated the potential of AGTR1, the principal receptor for angiotensin II (Ang II) and a member of the G protein-coupled receptor family, for targeted delivery of antisense oligonucleotides (ASOs) in cells and tissues with abundant AGTR1 expression. Ang II peptide ASO conjugates maintained robust AGTR1 signaling and receptor internalization when ASO was placed at the N-terminus of the peptide, but not at C-terminus. Conjugation of Ang II peptide improved ASO potency up to 12- to 17-fold in AGTR1-expressing cells. Additionally, evaluation of Ang II conjugates in cells lacking AGTR1 revealed no enhancement of ASO potency. Ang II peptide conjugation improves potency of ASO in mouse heart, adrenal, and adipose tissues. The data presented in this report add to a growing list of approaches for improving ASO potency in extrahepatic tissues.
Collapse
Affiliation(s)
- Carol Kuo
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Mehran Nikan
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Steve T Yeh
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | | | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | | |
Collapse
|
3
|
Hernández-Alvarado RB, Madariaga-Mazón A, Cosme-Vela F, Marmolejo-Valencia AF, Nefzi A, Martinez-Mayorga K. Encoding mu-opioid receptor biased agonism with interaction fingerprints. J Comput Aided Mol Des 2021; 35:1081-1093. [PMID: 34713377 DOI: 10.1007/s10822-021-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Opioids are potent painkillers, however, their therapeutic use requires close medical monitoring to diminish the risk of severe adverse effects. The G-protein biased agonists of the μ-opioid receptor (MOR) have shown safer therapeutic profiles than non-biased ligands. In this work, we performed extensive all-atom molecular dynamics simulations of two markedly biased ligands and a balanced reference molecule. From those simulations, we identified a protein-ligand interaction fingerprint that characterizes biased ligands. Then, we built and virtually screened a database containing 68,740 ligands with proven or potential GPCR agonistic activity. Exemplary molecules that fulfill the interacting pattern for biased agonism are showcased, illustrating the usefulness of this work for the search of biased MOR ligands and how this contributes to the understanding of MOR biased signaling.
Collapse
Affiliation(s)
| | | | - Fernando Cosme-Vela
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Adel Nefzi
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | |
Collapse
|
4
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
5
|
Structural insights into ligand recognition and activation of angiotensin receptors. Trends Pharmacol Sci 2021; 42:577-587. [PMID: 33985815 DOI: 10.1016/j.tips.2021.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
G protein-coupled angiotensin II receptors, AT1R and AT2R, are integral components of the renin-angiotensin system (RAS) that regulates blood pressure and fluid balance in humans. While AT1R is a well-established target of angiotensin receptor blockers (ARBs) for managing hypertension and a prime system for studying biased signaling, AT2R has been recognized as a promising target against neuropathic pain and lung fibrosis. In this review, we discuss how recent structural advances illuminate ligand-binding modes and subtype selectivity, shared and distinct features of the receptors, their transducer-coupling patterns, and downstream signaling responses. We also underscore the key ATR aspects that require further studies to fully appreciate the mechanistic framework that fine-tunes their cellular and physiological functions, providing untapped potential for drug discovery.
Collapse
|
6
|
Takahashi T, Huang Y, Yamamoto K, Hamano G, Kakino A, Kang F, Imaizumi Y, Takeshita H, Nozato Y, Nozato S, Yokoyama S, Nagasawa M, Kawai T, Takeda M, Fujimoto T, Hongyo K, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Gaisano HY, Sawamura T, Rakugi H. The endocytosis of oxidized LDL via the activation of the angiotensin II type 1 receptor. iScience 2021; 24:102076. [PMID: 33659870 PMCID: PMC7890409 DOI: 10.1016/j.isci.2021.102076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
Arrestin-dependent activation of a G-protein-coupled receptor (GPCR) triggers endocytotic internalization of the receptor complex. We analyzed the interaction between the pattern recognition receptor (PRR) lectin-like oxidized low-density lipoprotein (oxLDL) receptor (LOX-1) and the GPCR angiotensin II type 1 receptor (AT1) to report a hitherto unidentified mechanism whereby internalization of the GPCR mediates cellular endocytosis of the PRR ligand. Using genetically modified Chinese hamster ovary cells, we found that oxLDL activates Gαi but not the Gαq pathway of AT1 in the presence of LOX-1. Endocytosis of the oxLDL-LOX-1 complex through the AT1-β-arrestin pathway was demonstrated by real-time imaging of the membrane dynamics of LOX-1 and visualization of endocytosis of oxLDL. Finally, this endocytotic pathway involving GPCR kinases (GRKs), β-arrestin, and clathrin is relevant in accumulating oxLDL in human vascular endothelial cells. Together, our findings indicate that oxLDL activates selective G proteins and β-arrestin-dependent internalization of AT1, whereby the oxLDL-LOX-1 complex undergoes endocytosis. The binding of oxidized LDL (oxLDL) to LOX-1 induces selective activation of AT1 oxLDL and angiotensin II additively or competitively activate AT1 in different cells oxLDL promotes β-arrestin-dependent internalization of oxLDL-LOX-1-AT1 complex
Collapse
Affiliation(s)
- Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Yibin Huang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Corresponding author
| | - Go Hamano
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Fei Kang
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Yuki Imaizumi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoko Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Serina Yokoyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motonori Nagasawa
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Kawai
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masao Takeda
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Hongyo
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Futoshi Nakagami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Herbert Y. Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
8
|
Suomivuori CM, Latorraca NR, Wingler LM, Eismann S, King MC, Kleinhenz ALW, Skiba MA, Staus DP, Kruse AC, Lefkowitz RJ, Dror RO. Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor. Science 2020; 367:881-887. [PMID: 32079767 DOI: 10.1126/science.aaz0326] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Biased signaling, in which different ligands that bind to the same G protein-coupled receptor preferentially trigger distinct signaling pathways, holds great promise for the design of safer and more effective drugs. Its structural mechanism remains unclear, however, hampering efforts to design drugs with desired signaling profiles. Here, we use extensive atomic-level molecular dynamics simulations to determine how arrestin bias and G protein bias arise at the angiotensin II type 1 receptor. The receptor adopts two major signaling conformations, one of which couples almost exclusively to arrestin, whereas the other also couples effectively to a G protein. A long-range allosteric network allows ligands in the extracellular binding pocket to favor either of the two intracellular conformations. Guided by this computationally determined mechanism, we designed ligands with desired signaling profiles.
Collapse
Affiliation(s)
- Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Laura M Wingler
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephan Eismann
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Matthew C King
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alissa L W Kleinhenz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dean P Staus
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Lefkowitz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA. .,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Johnson AC, Wu W, Attipoe EM, Sasser JM, Taylor EB, Showmaker KC, Kyle PB, Lindsey ML, Garrett MR. Loss of Arhgef11 in the Dahl Salt-Sensitive Rat Protects Against Hypertension-Induced Renal Injury. Hypertension 2020; 75:1012-1024. [PMID: 32148127 DOI: 10.1161/hypertensionaha.119.14338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arhgef11 is a Rho-guanine nucleotide exchange factor that was previously implicated in kidney injury in the Dahl salt-sensitive (SS) rat, a model of hypertension-related chronic kidney disease. Reduced Arhgef11 expression in an SS-Arhgef11SHR-minimal congenic strain (spontaneously hypertensive rat allele substituted for S allele) significantly decreased proteinuria, fibrosis, and improved renal hemodynamics, without impacting blood pressure compared with the control SS (SS-wild type). Here, SS-Arhgef11-/- and SS-wild type rats were placed on either low or elevated salt (0.3% or 2% NaCl) from 4 to 12 weeks of age. On low salt, starting at week 6 and through week 12, SS-Arhgef11-/- animals demonstrated a 3-fold decrease in proteinuria compared with SS-wild type. On high salt, beginning at week 6, SS-Arhgef11-/- animals demonstrated >2-fold lower proteinuria from weeks 8 to 12 and 30 mm Hg lower BP compared with SS-wild type. To better understand the molecular mechanisms of the renal protection from loss of Arhgef11, both RNA sequencing and discovery proteomics were performed on kidneys from week 4 (before onset of renal injury/proteinuria between groups) and at week 12 (low salt). The omics data sets revealed loss of Arhgef11 (SS-Arhgef11-/-) initiates early transcriptome/protein changes in the cytoskeleton starting as early as week 4 that impact a number of cellular functions, including actin cytoskeletal regulation, mitochondrial metabolism, and solute carrier transporters. In summary, in vivo phenotyping coupled with a multi-omics approach provides strong evidence that increased Arhgef11 expression in the Dahl SS rat leads to actin cytoskeleton-mediated changes in cell morphology and cell function that promote kidney injury, hypertension, and decline in kidney function.
Collapse
Affiliation(s)
- Ashley C Johnson
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Wenjie Wu
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Esinam M Attipoe
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Jennifer M Sasser
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Erin B Taylor
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Kurt C Showmaker
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Patrick B Kyle
- Department of Pathology (P.B.K.), University of Mississippi Medical Center
| | - Merry L Lindsey
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Michael R Garrett
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center.,Department of Medicine (Nephrology) (M.R.G.), University of Mississippi Medical Center
| |
Collapse
|
10
|
Ali A, Palakkott A, Ashraf A, Al Zamel I, Baby B, Vijayan R, Ayoub MA. Positive Modulation of Angiotensin II Type 1 Receptor-Mediated Signaling by LVV-Hemorphin-7. Front Pharmacol 2019; 10:1258. [PMID: 31708782 PMCID: PMC6823245 DOI: 10.3389/fphar.2019.01258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Hemorphins are hemoglobin β-chain–derived peptides initially known for their analgesic effects via binding to the opioid receptors belonging to the family of G protein–coupled receptor (GPCR), as well as their physiological action on blood pressure. However, their molecular mechanisms in the regulation of blood pressure are not fully understood. Studies have reported an antihypertensive action via the inhibition of the angiotensin-converting enzyme, a key enzyme in the renin–angiotensin system. In this study, we hypothesized that hemorphins may also target angiotensin II (AngII) type 1 receptor (AT1R) as a key GPCR in the renin–angiotensin system. To investigate this, we examined the effects of LVV–hemorphin-7 on AT1R transiently expressed in human embryonic kidney (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology for the assessment of AT1R/Gαq coupling and β-arrestin 2 recruitment. Interestingly, while LVV–hemorphin-7 alone had no significant effect on BRET signals between AT1R and Gαq or β-arrestin 2, it nicely potentiated AngII-induced BRET signals and significantly increased AngII potency. The BRET data were also correlated with AT1R downstream signaling with LVV–hemorphin-7 potentiating the canonical AngII-mediated Gq-dependent inositol phosphate pathway as well as the activation of the extracellular signal–regulated kinases (ERK1/2). Both AngII and LVV–hemorphin-7–mediated responses were fully abolished by AT1R antagonist demonstrating the targeting of the active conformation of AT1R. Our data report for the first time the targeting and the positive modulation of AT1R signaling by hemorphins, which may explain their role in the physiology and pathophysiology of both vascular and renal systems. This finding further consolidates the pharmacological targeting of GPCRs by hemorphins as previously shown for the opioid receptors in analgesia opening a new era for investigating the role of hemorphins in physiology and pathophysiology via the targeting of GPCR pharmacology and signaling.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Isra Al Zamel
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Ma H, Chen SR, Chen H, Pan HL. Endogenous AT1 receptor-protein kinase C activity in the hypothalamus augments glutamatergic input and sympathetic outflow in hypertension. J Physiol 2019; 597:4325-4340. [PMID: 31241170 PMCID: PMC6697190 DOI: 10.1113/jp278427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The angiotensin AT1 receptor expression and protein kinase C (PKC)-mediated NMDA receptor phosphorylation levels in the hypothalamus are increased in a rat genetic model of hypertension. Blocking AT1 receptors or PKC activity normalizes the increased pre- and postsynaptic NMDA receptor activity of hypothalamic presympathetic neurons in hypertensive animals. Inhibition of AT1 receptor-PKC activity in the hypothalamus reduces arterial blood pressure and sympathetic nerve discharges in hypertensive animals. AT1 receptors in the hypothalamus are endogenously activated to sustain NMDA receptor hyperactivity and elevated sympathetic outflow via PKC in hypertension. ABSTRACT Increased synaptic N-methyl-d-aspartate receptor (NMDAR) activity in the hypothalamic paraventricular nucleus (PVN) plays a major role in elevated sympathetic output in hypertension. Although exogenous angiotensin II (AngII) can increase NMDAR activity in the PVN, whether endogenous AT1 receptor-protein kinase C (PKC) activity mediates the augmented NMDAR activity of PVN presympathetic neurons in hypertension is unclear. Here we show that blocking AT1 receptors with losartan or inhibiting PKC with chelerythrine significantly decreased the frequency of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of puff NMDA currents of retrogradely labelled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs). Also, treatment with chelerythrine abrogated the potentiating effect of AngII on mEPSCs and puff NMDA currents of labelled PVN neurons in SHRs. In contrast, neither losartan nor chelerythrine had any effect on mEPSCs or puff NMDA currents in labelled PVN neurons in Wistar-Kyoto (WKY) rats. Furthermore, levels of AT1 receptor mRNA and PKC-mediated NMDAR phosphorylation in the PVN were significantly higher in SHRs than in WKY rats. In addition, microinjection of losartan or chelerythrine into the PVN substantially reduced blood pressure and renal sympathetic nerve discharges in SHRs but not in WKY rats. Chelerythrine blocked sympathoexcitatory responses to AngII microinjected into the PVN. Our findings suggest that endogenous AT1 receptor-PKC activity is essential for presynaptic and postsynaptic NMDAR hyperactivity of PVN presympathetic neurons and for the augmented sympathetic outflow in hypertension. This information advances our mechanistic understanding of the interplay between angiotensinergic and glutamatergic excitatory inputs in hypertension.
Collapse
Affiliation(s)
- Huijie Ma
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Connolly A, Holleran BJ, Simard É, Baillargeon JP, Lavigne P, Leduc R. Interplay between intracellular loop 1 and helix VIII of the angiotensin II type 2 receptor controls its activation. Biochem Pharmacol 2019; 168:330-338. [PMID: 31348898 DOI: 10.1016/j.bcp.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023]
Abstract
The signaling mechanisms of the angiotensin II type 2 receptor (AT2R), a heptahelical receptor, have not yet been clearly and completely defined. In the present contribution, we set out to identify the molecular determinants involved in AT2R activation. Although AT2R has not been shown to engage Gq/11, G12, Gi2, and β-arrestin (βarr) pathways as does the AT1R upon angiotensin II (AngII) stimulation, the atypical positioning of helix VIII in the recently published AT2R structure may play a role in the receptor's capacity to couple to downstream effectors. In the AT2R structure, helix VIII points inwards and towards intracellular loop 3 (ICL3) to form tertiary interactions with transmembrane domain 6 (TM6), possibly impeding access to signaling effectors. On the other hand, in most class A GPCRs, helix VIII is found to be engaged in tertiary interactions with ICL1 and away from the effector binding site. Upon closer examination of the AT2R structure, we found that the residues contained within intracellular loop 1 (ICL1) may be involved in driving this unusual conformation of helix VIII. To explore this hypothesis, we designed a series of AT1R/AT2R receptor chimeras to validate the roles of ICL1 and helix VIII in AT2R signaling. Substituting the AT1R ICL1 into AT2R led to a mutant receptor that coupled to Gi2. The substitution of the helix VIII and C-terminal domains of AT2R into the AT1R backbone led to a mutant receptor that retained AT1R-like signaling properties. These results suggest that the C-terminal portion of AT2R is compatible with canonical GPCR signaling and that ICL1 of AT2R is involved in repositioning helix VIII, which impedes engagement of classical GPCR effectors such as G proteins or βarrs.
Collapse
Affiliation(s)
- Alexandre Connolly
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brian J Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Élie Simard
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Patrice Baillargeon
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre Lavigne
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
13
|
Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell 2019; 176:468-478.e11. [PMID: 30639099 DOI: 10.1016/j.cell.2018.12.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 12/04/2018] [Indexed: 01/14/2023]
Abstract
"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or β-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. β-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.
Collapse
|
14
|
Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC. Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell 2019; 176:479-490.e12. [PMID: 30639100 DOI: 10.1016/j.cell.2018.12.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/16/2018] [Accepted: 12/04/2018] [Indexed: 01/14/2023]
Abstract
The angiotensin II (AngII) type 1 receptor (AT1R) is a critical regulator of cardiovascular and renal function and is an important model for studies of G-protein-coupled receptor (GPCR) signaling. By stabilizing the receptor with a single-domain antibody fragment ("nanobody") discovered using a synthetic yeast-displayed library, we determined the crystal structure of active-state human AT1R bound to an AngII analog with partial agonist activity. The nanobody binds to the receptor's intracellular transducer pocket, stabilizing the large conformational changes characteristic of activated GPCRs. The peptide engages the AT1R through an extensive interface spanning from the receptor core to its extracellular face and N terminus, remodeling the ligand-binding cavity. Remarkably, the mechanism used to propagate conformational changes through the receptor diverges from other GPCRs at several key sites, highlighting the diversity of allosteric mechanisms among GPCRs. Our structure provides insight into how AngII and its analogs stimulate full or biased signaling, respectively.
Collapse
Affiliation(s)
- Laura M Wingler
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dean P Staus
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 719] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
16
|
Pickering RJ, Tikellis C, Rosado CJ, Tsorotes D, Dimitropoulos A, Smith M, Huet O, Seeber RM, Abhayawardana R, Johnstone EK, Golledge J, Wang Y, Jandeleit-Dahm KA, Cooper ME, Pfleger KD, Thomas MC. Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis. J Clin Invest 2018; 129:406-421. [PMID: 30530993 DOI: 10.1172/jci99987] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Activation of the type 1 angiotensin II receptor (AT1) triggers proinflammatory signaling through pathways independent of classical Gq signaling that regulate vascular homeostasis. Here, we report that the AT1 receptor preformed a heteromeric complex with the receptor for advanced glycation endproducts (RAGE). Activation of the AT1 receptor by angiotensin II (Ang II) triggered transactivation of the cytosolic tail of RAGE and NF-κB-driven proinflammatory gene expression independently of the liberation of RAGE ligands or the ligand-binding ectodomain of RAGE. The importance of this transactivation pathway was demonstrated by our finding that adverse proinflammatory signaling events induced by AT1 receptor activation were attenuated when RAGE was deleted or transactivation of its cytosolic tail was inhibited. At the same time, classical homeostatic Gq signaling pathways were unaffected by RAGE deletion or inhibition. These data position RAGE transactivation by the AT1 receptor as a target for vasculoprotective interventions. As proof of concept, we showed that treatment with the mutant RAGE peptide S391A-RAGE362-404 was able to inhibit transactivation of RAGE and attenuate Ang II-dependent inflammation and atherogenesis. Furthermore, treatment with WT RAGE362-404 restored Ang II-dependent atherogenesis in Ager/Apoe-KO mice, without restoring ligand-mediated signaling via RAGE, suggesting that the major effector of RAGE activation was its transactivation.
Collapse
Affiliation(s)
- Raelene J Pickering
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Christos Tikellis
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Carlos J Rosado
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Monique Smith
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Olivier Huet
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Anaesthesia and Intensive Care, Centre Hospitalier Régional Universitaire (CHRU) La Cavale Blanche, Université de Bretagne Ouest, Brest, France
| | - Ruth M Seeber
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Australia
| | - Rekhati Abhayawardana
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Australia
| | - Elizabeth Km Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Australia
| | - Yutang Wang
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Australia
| | - Karin A Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Kevin Dg Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Australia.,Dimerix Limited, Nedlands, Western Australia, Australia
| | - Merlin C Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
17
|
Namkung Y, LeGouill C, Kumar S, Cao Y, Teixeira LB, Lukasheva V, Giubilaro J, Simões SC, Longpré JM, Devost D, Hébert TE, Piñeyro G, Leduc R, Costa-Neto CM, Bouvier M, Laporte SA. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci Signal 2018; 11:11/559/eaat1631. [PMID: 30514808 DOI: 10.1126/scisignal.aat1631] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are important therapeutic targets that exhibit functional selectivity (biased signaling), in which different ligands or receptor variants elicit distinct downstream signaling. Understanding all the signaling events and biases that contribute to both the beneficial and adverse effects of GPCR stimulation by given ligands is important for drug discovery. Here, we report the design, validation, and use of pathway-selective bioluminescence resonance energy transfer (BRET) biosensors that monitor the engagement and activation of signaling effectors downstream of G proteins, including protein kinase C (PKC), phospholipase C (PLC), p63RhoGEF, and Rho. Combined with G protein and β-arrestin BRET biosensors, our sensors enabled real-time monitoring of GPCR signaling at different levels in downstream pathways in both native and engineered cells. Profiling of the responses to 14 angiotensin II (AngII) type 1 receptor (AT1R) ligands enabled the clustering of compounds into different subfamilies of biased ligands and showed that, in addition to the previously reported functional selectivity between Gαq and β-arrestin, there are also biases among G protein subtypes. We also demonstrated that biases observed at the receptor and G protein levels propagated to downstream signaling pathways and that these biases could occur through the engagement of different G proteins to activate a common effector. We also used these tools to determine how naturally occurring AT1R variants affected signaling bias. This suite of BRET biosensors provides a useful resource for fingerprinting biased ligands and mutant receptors and for dissecting functional selectivity at various levels of GPCR signaling.
Collapse
Affiliation(s)
- Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC H4A 3J1, Canada
| | - Christian LeGouill
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sahil Kumar
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC H4A 3J1, Canada
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Larissa B Teixeira
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Viktoriya Lukasheva
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jenna Giubilaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Sarah C Simões
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Jean-Michel Longpré
- Institut de Pharmacologie de Sherbrooke and Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Graciela Piñeyro
- Centre de Recherche de l'Hôpital Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Richard Leduc
- Institut de Pharmacologie de Sherbrooke and Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Claudio M Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC H4A 3J1, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
18
|
Lavenus S, Simard É, Besserer-Offroy É, Froehlich U, Leduc R, Grandbois M. Label-free cell signaling pathway deconvolution of angiotensin type 1 receptor reveals time-resolved G-protein activity and distinct AngII and AngIIIIV responses. Pharmacol Res 2018; 136:108-120. [PMID: 29959993 DOI: 10.1016/j.phrs.2018.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/14/2023]
Abstract
Angiotensin II (AngII) type 1 receptor (AT1R) is a G protein-coupled receptor known for its role in numerous physiological processes and its implication in many vascular diseases. Its functions are mediated through G protein dependent and independent signaling pathways. AT1R has several endogenous peptidic agonists, all derived from angiotensinogen, as well as several synthetic ligands known to elicit biased signaling responses. Here, surface plasmon resonance (SPR) was used as a cell-based and label-free technique to quantify, in real time, the response of HEK293 cells stably expressing the human AT1R. The goal was to take advantage of the integrative nature of this assay to identify specific signaling pathways in the features of the response profiles generated by numerous endogenous and synthetic ligands of AT1R. First, we assessed the contributions of Gq, G12/13, Gi, Gβγ, ERK1/2 and β-arrestins pathways in the cellular responses measured by SPR where Gq, G12/Rho/ROCK together with β-arrestins and ERK1/2 were found to play significant roles. More specifically, we established a major role for G12 in the early events of the AT1R-dependent response, which was followed by a robust ERK1/2 component associated to the later phase of the signal. Interestingly, endogenous AT1R ligands (AngII, AngIII and AngIV) exhibited distinct responses signatures with a significant increase of the ERK1/2-like components for both AngIII and AngIV, which points toward possibly distinct physiological roles for the later. We also tested AT1R biased ligands, all of which affected both the early and later events. Our results support SPR-based integrative cellular assays as a powerful approach to delineate the contribution of specific signaling pathways for a given cell response and reveal response differences associated with ligands with distinct pharmacological properties.
Collapse
Affiliation(s)
- Sandrine Lavenus
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Simard
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Michel Grandbois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| |
Collapse
|
19
|
Angiotensin II cyclic analogs as tools to investigate AT 1R biased signaling mechanisms. Biochem Pharmacol 2018; 154:104-117. [PMID: 29684376 DOI: 10.1016/j.bcp.2018.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023]
Abstract
G protein coupled receptors (GPCRs) produce pleiotropic effects by their capacity to engage numerous signaling pathways once activated. Functional selectivity (also called biased signaling), where specific compounds can bring GPCRs to adopt conformations that enable selective receptor coupling to distinct signaling pathways, continues to be significantly investigated. However, an important but often overlooked aspect of functional selectivity is the capability of ligands such as angiotensin II (AngII) to adopt specific conformations that may preferentially bind to selective GPCRs structures. Understanding both receptor and ligand conformation is of the utmost importance for the design of new drugs targeting GPCRs. In this study, we examined the properties of AngII cyclic analogs to impart biased agonism on the angiotensin type 1 receptor (AT1R). Positions 3 and 5 of AngII were substituted for cysteine and homocysteine residues ([Sar1Hcy3,5]AngII, [Sar1Cys3Hcy5]AngII and [Sar1Cys3,5]AngII) and the resulting analogs were evaluated for their capacity to activate the Gq/11, G12, Gi2, Gi3, Gz, ERK and β-arrestin (βarr) signaling pathways via AT1R. Interestingly, [Sar1Hcy3,5]AngII exhibited potency and full efficacy on all pathways tested with the exception of the Gq pathway. Molecular dynamic simulations showed that the energy barrier associated with the insertion of residue Phe8 of AngII within the hydrophobic core of AT1R, associated with Gq/11 activation, is increased with [Sar1Hcy3,5]AngII. These results suggest that constraining the movements of molecular determinants within a given ligand by introducing cyclic structures may lead to the generation of novel ligands providing more efficient biased agonism.
Collapse
|
20
|
Michel MC, Charlton SJ. Biased Agonism in Drug Discovery-Is It Too Soon to Choose a Path? Mol Pharmacol 2018; 93:259-265. [PMID: 29326242 DOI: 10.1124/mol.117.110890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
A single receptor can activate multiple signaling pathways that have distinct or even opposite effects on cell function. Biased agonists stabilize receptor conformations preferentially stimulating one of these pathways, and therefore allow a more targeted modulation of cell function and treatment of disease. Dedicated development of biased agonists has led to promising drug candidates in clinical development, such as the G protein-biased µ opioid receptor agonist oliceridine. However, leveraging the theoretical potential of biased agonism for drug discovery faces several challenges. Some of these challenges are technical, such as techniques for quantitative analysis of bias and development of suitable screening assays; others are more fundamental, such as the need to robustly identify in a very early phase which cell type harbors the cellular target of the drug candidate, which signaling pathway leads to the desired therapeutic effect, and how these pathways may be modulated in the disease to be treated. We conclude that biased agonism has potential mainly in the treatment of conditions with a well-understood pathophysiology; in contrast, it may increase effort and commercial risk under circumstances where the pathophysiology has been less well defined, as is the case with many highly innovative treatments.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| | - Steven J Charlton
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| |
Collapse
|
21
|
Devost D, Sleno R, Pétrin D, Zhang A, Shinjo Y, Okde R, Aoki J, Inoue A, Hébert TE. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context. J Biol Chem 2017; 292:5443-5456. [PMID: 28213525 DOI: 10.1074/jbc.m116.763854] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gαq, Gα11, Gα12, and Gα13 or β-arrestins, we showed that Gαq and Gα11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin.
Collapse
Affiliation(s)
- Dominic Devost
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Rory Sleno
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Darlaine Pétrin
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alice Zhang
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yuji Shinjo
- the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Rakan Okde
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Junken Aoki
- the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,the Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan, and
| | - Asuka Inoue
- the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,the Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Terence E Hébert
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada,
| |
Collapse
|
22
|
Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 2016; 7:12178. [PMID: 27397672 PMCID: PMC4942582 DOI: 10.1038/ncomms12178] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes. Cellular signaling processes often involve trafficking of receptors and other proteins between subcellular compartments. Here the authors demonstrate a method based on the concept of Enhanced bystander Bioluminescence Resonance Energy Transfer (EbBRET) that allows efficient real time monitoring of endocytosis and trafficking.
Collapse
Affiliation(s)
- Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Christian Le Gouill
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Viktoria Lukashova
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Hiroyuki Kobayashi
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Mireille Hogue
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Etienne Khoury
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Mideum Song
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Michel Bouvier
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7
| |
Collapse
|
23
|
Devost D, Audet N, Zhou C, Kobayashi H, Bonin H, Lukashova V, Le Gouill C, Bouvier M, Hébert TE. Cellular and subcellular context determine outputs from signaling biosensors. Methods Cell Biol 2016; 132:319-37. [DOI: 10.1016/bs.mcb.2015.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Hébert TE. Biasing the odds: Approaches to capturing, understanding and exploiting functional selectivity in GPCRs. Methods 2015; 92:1-4. [PMID: 26416495 DOI: 10.1016/j.ymeth.2015.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023] Open
Abstract
There is significant expectation in the pharmacological community that an understanding of biased signalling will lead to the development of new drugs and a better understanding of molecular targets in the in vivo context. I think it is safe to say that Pharma is withholding judgment on the promise and potential of what they view as an interesting pharmacological curiosity. That said, beyond successes of biased ligands in clinical trials and their appearance on the market, what it is need is a clear plan and the right tools and analytical methods to characterize functional selectivity from in cellulo to in vivo. In this issue of Methods, we have put together a series of articles that help lay out a methodological and analytical framework to help get us there.
Collapse
Affiliation(s)
- Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
25
|
Cabana J, Holleran B, Leduc R, Escher E, Guillemette G, Lavigne P. Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associated with the Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulations. J Biol Chem 2015; 290:15835-15854. [PMID: 25934394 DOI: 10.1074/jbc.m114.627356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 01/14/2023] Open
Abstract
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar(1),Ile(8)]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor.
Collapse
Affiliation(s)
- Jérôme Cabana
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4; PROTEO (Quebec Network on Protein Structure, Function, and Engineering), Université Laval, Québec, Québec G1V 0A6, Canada
| | - Brian Holleran
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Richard Leduc
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Emanuel Escher
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Gaétan Guillemette
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Pierre Lavigne
- PROTEO (Quebec Network on Protein Structure, Function, and Engineering), Université Laval, Québec, Québec G1V 0A6, Canada; Biochemistry, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4.
| |
Collapse
|