1
|
Wang Z, Sun Y, Gu K, Tong Y, Liu H, Wang L, Tan T, Yang F, Ren X, Ding L, Sun L, Wang L. Forsythoside B, the active component of Frosythiae fructuse water extract, alleviates Streptococcus pneumoniae virulence by targeting pneumolysin. J Appl Microbiol 2024; 135:lxae251. [PMID: 39366754 DOI: 10.1093/jambio/lxae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024]
Abstract
AIMS To explore the therapeutic potential of Forsythoside B in treating Streptococcus pneumoniae (S. pneumoniae) infections, focusing on its ability to inhibit pneumolysin activity and protect cells from damage. METHODS AND RESULTS Hemolysis tests were used to evaluate Forsythoside B's inhibitory effect on pneumolysin activity, while growth curve analysis assessed its impact on S. pneumoniae growth. Western blotting and oligomerization analysis were conducted to examine its influence on pneumolysin oligomerization. Cytotoxicity assays, including LDH release and live/dead cell staining, evaluated the protective effects of Forsythoside B against pneumolysin-induced damage in A549 cells. Additionally, a mouse model was employed to test the effects on survival rates, lung bacterial load, and inflammation. The results showed that Forsythoside B significantly inhibited pneumolysin activity, reduced its oligomerization, and protected A549 cells from damage without affecting bacterial growth. In the mouse model, it improved survival rates and reduced lung inflammation, indicating its potential as a therapeutic agent against S. pneumoniae infections. CONCLUSIONS Forsythoside B shows potential as a therapeutic agent for treating pneumonia, particularly in infections caused by S. pneumoniae.
Collapse
Affiliation(s)
- Zhongtian Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-Tech Industrial Development Zone, Changchun, Jilin 130117, China
| | - Yingying Sun
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, No. 185, Shenzhen Street, Nanguan District, Changchun, Jilin 130022, China
| | - Kuan Gu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-Tech Industrial Development Zone, Changchun, Jilin 130117, China
| | - Yue Tong
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, No. 185, Shenzhen Street, Nanguan District, Changchun, Jilin 130022, China
| | - Huanyu Liu
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, No. 185, Shenzhen Street, Nanguan District, Changchun, Jilin 130022, China
| | - Lei Wang
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, No. 185, Shenzhen Street, Nanguan District, Changchun, Jilin 130022, China
| | - Tianhui Tan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-Tech Industrial Development Zone, Changchun, Jilin 130117, China
| | - Fushuang Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-Tech Industrial Development Zone, Changchun, Jilin 130117, China
| | - Xiaoting Ren
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-Tech Industrial Development Zone, Changchun, Jilin 130117, China
| | - Lizhong Ding
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, No. 185, Shenzhen Street, Nanguan District, Changchun, Jilin 130022, China
| | - Liping Sun
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, No. 185, Shenzhen Street, Nanguan District, Changchun, Jilin 130022, China
| | - Lie Wang
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, No. 185, Shenzhen Street, Nanguan District, Changchun, Jilin 130022, China
| |
Collapse
|
2
|
Liu Z, Cheng Y, Xiang Y, Chao Z. Unveiling the potential applications of buds of Lonicera japonica Thunb. var. chinensis (Wats.) Bak based on in vitro biological activities, bio-active components, and potential applications coupled to targeted metabolomics. FRONTIERS IN PLANT SCIENCE 2024; 15:1418957. [PMID: 39391770 PMCID: PMC11464324 DOI: 10.3389/fpls.2024.1418957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 10/12/2024]
Abstract
Introduction The buds of Lonicera japonica Thunb. var. chinensis (Wats.) Bak, commonly named red honeysuckle, have attracted attention because of their bright colors. However, owing to the lack of systematic studies, the potential applications of red honeysuckle are not clear, and its development and utilization have not been well known. Methods In this study, compared with the buds of L. japonica Thunb. (honeysuckle), the potential applications of red honeysuckle were explored based on biological activities, bio-active components, and sensory flavor combined with widely targeted metabolomics. Results As a result, in vitro tests showed that it had a stronger antioxidant and a stronger inhibitory effect on the growth of Escherichia coli and Staphylococcus aureus. There was no cytotoxicity on LPS-induced RAW264.7 cells in its aqueous extract using the CCK-8 method. Moreover, it also had a stronger effect on inhibiting the expression of inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). The content of its bio-active components chlorogenic acid and cynaroside was significantly higher (p ≤ 0.001) than that of green honeysuckle. Widely targeted metabolomics analysis revealed that 4 volatile metabolites, such as (E)-4-hexene-1-ol and pyrazole, and 21 non-volatile metabolites, such as macranthoside B and oleanolic acid-3-O-glc(1-2)-(ara)-28-O-glucoside ester, were specific in red honeysuckle. Interestingly, 14 specific terpenoid metabolites were triterpenoid saponins, indicating a stronger biological activity in red honeysuckle. The sensory flavor analysis showed that the red honeysuckle had a stronger herbal and lighter floral flavor. Discussion In conclusion, red honeysuckle had great development value with potential applications in medicines, foods, beverages, pigment additives, and health products.
Collapse
Affiliation(s)
- Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Science, Beijing, China
| | - Yunxia Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaoting Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Gupta LK, Molla J, Prabhu AA. Story of Pore-Forming Proteins from Deadly Disease-Causing Agents to Modern Applications with Evolutionary Significance. Mol Biotechnol 2024; 66:1327-1356. [PMID: 37294530 DOI: 10.1007/s12033-023-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Animal venoms are a complex mixture of highly specialized toxic molecules. Among them, pore-forming proteins (PFPs) or toxins (PFTs) are one of the major disease-causing toxic elements. The ability of the PFPs in defense and toxicity through pore formation on the host cell surface makes them unique among the toxin proteins. These features made them attractive for academic and research purposes for years in the areas of microbiology as well as structural biology. All the PFPs share a common mechanism of action for the attack of host cells and pore formation in which the selected pore-forming motifs of the host cell membrane-bound protein molecules drive to the lipid bilayer of the cell membrane and eventually produces water-filled pores. But surprisingly their sequence similarity is very poor. Their existence can be seen both in a soluble state and also in transmembrane complexes in the cell membrane. PFPs are prevalent toxic factors that are predominately produced by all kingdoms of life such as virulence bacteria, nematodes, fungi, protozoan parasites, frogs, plants, and also from higher organisms. Nowadays, multiple approaches to applications of PFPs have been conducted by researchers both in basic as well as applied biological research. Although PFPs are very devastating for human health nowadays researchers have been successful in making these toxic proteins into therapeutics through the preparation of immunotoxins. We have discussed the structural, and functional mechanism of action, evolutionary significance through dendrogram, domain organization, and practical applications for various approaches. This review aims to emphasize the PFTs to summarize toxic proteins together for basic knowledge as well as to highlight the current challenges, and literature gap along with the perspective of promising biotechnological applications for their future research.
Collapse
Affiliation(s)
- Laxmi Kumari Gupta
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Johiruddin Molla
- Ghatal Rabindra Satabarsiki Mahavidyalaya Ghatal, Paschim Medinipur, Ghatal, West Bengal, 721212, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
4
|
Aziz UBA, Saoud A, Bermudez M, Mieth M, Atef A, Rudolf T, Arkona C, Trenkner T, Böttcher C, Ludwig K, Hoelzemer A, Hocke AC, Wolber G, Rademann J. Targeted small molecule inhibitors blocking the cytolytic effects of pneumolysin and homologous toxins. Nat Commun 2024; 15:3537. [PMID: 38670939 PMCID: PMC11053136 DOI: 10.1038/s41467-024-47741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.
Collapse
Affiliation(s)
- Umer Bin Abdul Aziz
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ali Saoud
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Maren Mieth
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amira Atef
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assuit University, Assiut, 71526, Egypt
| | - Thomas Rudolf
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Arkona
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Timo Trenkner
- Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Christoph Böttcher
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy (FZEM), Freie Universität Berlin, Fabeckstraße 36A, 14195, Berlin, Germany
| | - Kai Ludwig
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy (FZEM), Freie Universität Berlin, Fabeckstraße 36A, 14195, Berlin, Germany
| | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, 20251, Germany
- First Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Zou Y, Wang H, Fang J, Sun H, Deng X, Wang J, Deng Y, Chi G. Isorhamnetin as a novel inhibitor of pneumolysin against Streptococcus pneumoniae infection in vivo/in vitro. Microb Pathog 2023; 185:106382. [PMID: 37839759 DOI: 10.1016/j.micpath.2023.106382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The increasing incidence of Streptococcus pneumoniae (S. pneumoniae) infection severely threatened the global public heath, causing a significant fatality in immunocompromised hosts. Notably, pneumolysin (PLY) as a pore-forming cytolysin plays a crucial role in the pathogenesis of pneumococcal pneumonia and lung injury. In this study, a natural flavonoid isorhamnetin was identified as a PLY inhibition to suppress PLY-induced hemolysis by engaging the predicted residues and attenuate cytolysin PLY-mediated A549 cells injury. Underlying mechanisms revealed that PLY inhibitor isorhamnetin further contributed to decrease the formation of bacterial biofilms without affecting the expression of PLY. In vivo S. pneumoniae infection confirmed that the pathological injury of lung tissue evoked by S. pneumoniae was ameliorated by isorhamnetin treatment. Collectively, these results presented that isorhamnetin could inhibit the biological activity of PLY, thus reducing the pathogenicity of S. pneumoniae. In summary, our study laid a foundation for the feasible anti-virulence strategy targeting PLY, and provided a promising PLY inhibitor for the treatment of S. pneumoniae infection.
Collapse
Affiliation(s)
- Yinuo Zou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haiting Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Juan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanhong Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Gefu Chi
- The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Nei Monggol, China.
| |
Collapse
|
6
|
Cima Cabal MD, Molina F, López-Sánchez JI, Pérez-Santín E, Del Mar García-Suárez M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One 2023; 18:e0282970. [PMID: 36947540 PMCID: PMC10032530 DOI: 10.1371/journal.pone.0282970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.
Collapse
Affiliation(s)
- María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Felipe Molina
- Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Ignacio López-Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - María Del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| |
Collapse
|
7
|
Zheng SJ, Zheng N, Zhang ML, Wu FF, Yang SD, Cheng XH, Bao HY, Zhang R. Probing the binding mechanism of the verbascoside and human serum albumin by fluorescence spectroscopy and molecular docking approach. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-03002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Du R, Wang T, Lv H, Zou Y, Hou X, Hou N, Zhang P, Li H, Chi G. Shionone-Targeted Pneumolysin to Ameliorate Acute Lung Injury Induced by Streptococcus pneumoniae In Vivo and In Vitro. Molecules 2022; 27:molecules27196258. [PMID: 36234795 PMCID: PMC9573397 DOI: 10.3390/molecules27196258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae), as a Gram-positive bacterium, can cause severe bacterial pneumonia, and result in high morbidity and mortality in infected people. Meanwhile, isolated drug-resistant S. pneumoniae is growing, which raises concerns about strategies for combatting S. pneumoniae infection. To disturb S. pneumoniae pathogenicity and its drug-resistance, developing novel anti-infective strategies or compounds is urgent. In this study, the anti-infective effect of shionone was explored. A minimum inhibitory concentration (MIC) assay and growth curve determination were performed to evaluate the effect of the tetracyclic triterpenoid compound shionone against S. pneumoniae. Hemolysis tests, western blotting, oligomerization inhibition assays, and molecular docking were carried out to explore the anti-infective mechanism of shionone. Moreover, the protective effect of shionone was also confirmed in a mousepneumonia model. The results showed that the excellent hemolytic inhibitory activity of shionone was observed at less than 8 μg/mL. Meanwhile, shionone could disturb the oligomerization of pneumolysin (PLY) but did not interfere with PLY expression at less than 4 μg/mL. Molecular docking suggested that shionone targeted the ASP-59, ILE-60, THR-57, PHE-344, and ASN-346 amino acid sites to reduce S. pneumoniae pathogenicity. Furthermore, shionone alleviated lung histopathologic injury and decreased lung bacterial colonization in vivo. The above results showed that shionone could bind to the PLY active pocket under the concentrations of 8 μg/mL and neutralize PLY hemolysis activity to reduce S. pneumoniae pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Runbao Du
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010107, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongfa Lv
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yinuo Zou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoning Hou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nana Hou
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010107, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
| | - Hongen Li
- Department of Ophthalmology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100039, China
- Correspondence: (H.L.); (G.C.)
| | - Gefu Chi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010107, China
- Correspondence: (H.L.); (G.C.)
| |
Collapse
|
9
|
Sheng Q, Hou X, Wang N, Liu M, Zhu H, Deng X, Liang X, Chi G. Corilagin: A Novel Antivirulence Strategy to Alleviate Streptococcus pneumoniae Infection by Diminishing Pneumolysin Oligomers. Molecules 2022; 27:5063. [PMID: 36014299 PMCID: PMC9416474 DOI: 10.3390/molecules27165063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Pneumolysin (PLY) is a significant virulence factor of Streptococcus pneumoniae (S. pneumoniae), able to break through the defense system of a host and mediate the occurrence of a series of infections. Therefore, PLY as the most ideal target to prevent S. pneumoniae infection has received more and more attention and research. Corilagin is a tannic acid that exhibits excellent inhibition of PLY oligomers without bacteriostatic activity to S. pneumoniae. Herein, hemolytic activity assays, cell viability tests and western blot experiments are executed to evaluate the antivirulence efficacy of corilagin against PLY in vitro. Colony observation, hematoxylin and eosin (H&E) staining and cytokines of bronchoalveolar lavage fluid (BALF) are applied to assess the therapeutic effect of corilagin in mice infected by S. pneumoniae. The results indicate the related genes of corilagin act mainly via enrichment in pathways associated with pneumonia disease. Furthermore, molecular docking and molecular dynamics simulations show that corilagin might bind with domains 3 and 4 of PLY and interfere with its hemolytic activity, which is further confirmed by the site-directed mutagenesis of PLY. Additionally, corilagin limits PLY oligomer production without impacting PLY expression in S. pneumoniae cultures. Moreover, corilagin effectively relieves PLY-mediated cell injury without any cytotoxicity, even then reducing the colony count in the lung and the levels of pro-inflammatory factors in BALF and remarkably improving lung lesions. All the results demonstrate that corilagin may be a novel strategy to cope with S. pneumoniae infection by inhibiting PLY oligomerization.
Collapse
Affiliation(s)
- Qiushuang Sheng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoning Hou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Minda Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haoyu Zhu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoying Liang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Gefu Chi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, China
| |
Collapse
|
10
|
Zhang C, Deng Y, Wang X, Shi L, Zhan B, Hou N, Liu S, Bao M, Chi G, Fang T. Alnustone inhibits Streptococcus pneumoniae virulence by targeting pneumolysin and sortase A. Fitoterapia 2022; 162:105261. [DOI: 10.1016/j.fitote.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
|
11
|
Xiao Y, Ren Q, Wu L. The pharmacokinetic property and pharmacological activity of acteoside: A review. Biomed Pharmacother 2022; 153:113296. [PMID: 35724511 PMCID: PMC9212779 DOI: 10.1016/j.biopha.2022.113296] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Acteoside (AC), a phenylpropanoid glycoside isolated from many dicotyledonous plants, has been demonstrated various pharmacological activities, including anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, hepatoprotection, and anti-microorganism. However, AC has a poor bioavailability, which can be potentially improved by different strategies. The health-promoting characteristics of AC can be attributed to its mediation in many signaling pathways, such as MAPK, NF-κB, PI3K/AKT, TGFβ/Smad, and AMPK/mTOR. Interestingly, docking simulation study indicates that AC can be an effective candidate to inhibit the activity of SARS-CoV2 main protease and protect against COVID-19. Many clinical trials for AC have been investigated, and it shows great potentials in drug development.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
12
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Guo Y, Yang Y, Xu X, Li L, Zhou Y, Jia G, Wei L, Yu Q, Wang J. Metallo-β-lactamases inhibitor fisetin attenuates meropenem resistance in NDM-1-producing Escherichia coli. Eur J Med Chem 2022; 231:114108. [DOI: 10.1016/j.ejmech.2022.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
|
15
|
Xie S, Zhang Y, Xu L, Li S, Shen X, Li L, Deng X, Zhou Y. Acacetin attenuates Streptococcus suis virulence by simultaneously targeting suilysin and inflammation. Microb Pathog 2021; 162:105354. [PMID: 34896203 DOI: 10.1016/j.micpath.2021.105354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022]
Abstract
Streptococcus suis (S. suis), an important zoonotic pathogenic bacterium, can cause multiple diseases and fatal infections in both humans and animals. The emergence of highly virulent and extensively drug-resistant strains of S. suis has raised questions about the efficacy of available therapeutic agents, thereby necessitating novel therapeutic strategies. Suilysin (SLY) is one of the most essential determinants of virulence for the pathogenicity of S. suis capsular type 2 (SS2). In addition, inhibiting the excessive inflammatory response is a strategy to reduce the damage caused by SS2 infection. In this study, we identified acacetin as an effective inhibitor of SLY, which inhibited the oligomerisation of SLY without affecting bacterial growth. Furthermore, the addition of 4-16 μg/ml acacetin to the co-infection system of the cells reduced S. suis-induced inflammation by downregulating the activation of the MAPK signalling pathway, thereby alleviating the S. suis-mediated cell injury. Thus, in addition to the conventional antibiotic therapy, acacetin represent a potential drug candidate and strategy for the treatment of S. suis infections as it simultaneously inhibited the haemolytic activity of SLY and downregulated the inflammatory response.
Collapse
Affiliation(s)
- Shengnan Xie
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lei Xu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shufang Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Shen
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Yang D, Li J, Liang C, Tian L, Shi C, Hui N, Liu Y, Ling M, Xin L, Wan M, Li H, Zhao Q, Ren X, Liu H, Cao W. Syringa microphylla Diels: A comprehensive review of its phytochemical, pharmacological, pharmacokinetic, and toxicological characteristics and an investigation into its potential health benefits. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153770. [PMID: 34678528 DOI: 10.1016/j.phymed.2021.153770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Syringa microphylla Diels is a plant in the family Syringa Linn. For hundreds of years, its flowers and leaves have been used as a folk medicine for the treatment of cough, inflammation, colds, sore throat, acute hepatitis, chronic hepatitis, early liver cirrhosis, fatty liver, and oesophageal cancer. PURPOSE For the first time, we have comprehensively reviewed information on Syringa microphylla Diels that is not included in the Pharmacopoeia, clarified the pharmacological mechanisms of Syringa microphylla Diels and its active ingredients from a molecular biology perspective, compiled in vivo and in vitro animal experimental data and clinical data, and summarized the toxicology and pharmacokinetics of Syringa microphylla Diels. The progress in toxicology research is expected to provide a theoretical basis for the development of new drugs from Syringa microphylla Diels, a natural source of compounds that are potentially beneficial to human health. METHODS The PubMed, Google Scholar, China National Knowledge Infrastructure, Web of Science, SciFinder Scholar and Thomson Reuters databases were utilized to conduct a comprehensive search of published literature as of July 2021 to find original literature related to Syringa microphylla Diels and its active ingredients. RESULTS To date, 72 compounds have been isolated and identified from Syringa microphylla Diels, and oleuropein, verbascoside, isoacteoside, echinacoside, forsythoside B, and eleutheroside B are the main active components. These compounds have antioxidant, antibacterial, anti-inflammatory, and neuroprotective effects, and their safety and effectiveness have been demonstrated in long-term traditional applications. Molecular pharmacology experiments have indicated that the active ingredients of Syringa microphylla Diels exert their pharmacological effects in various ways, primarily by reducing oxidative stress damage via Nrf2/ARE pathway regulation, regulating inflammatory factors and inducing apoptosis through the MAPK and NF-κB pathways. CONCLUSION This comprehensive review of Syringa microphylla Diels provides new insights into the correlations among molecular mechanisms, the importance of toxicology and pharmacokinetics, and potential ways to address the limitations of current research. As Syringa microphylla Diels is a natural low-toxicity botanical medicine, it is worthy of development and utilization and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Dan Yang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jingyi Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chunyang Shi
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuan Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Mei Ling
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Liang Xin
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an 712046, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| |
Collapse
|
17
|
Rui D, Yan Z, Xiangzhu X, Yunfeng H, Jing N, Xuming D, Qiu J, Lv Q. Inhibitory effect of hederagenin on Streptococcus pneumoniae pneumolysin in vitro. Microbes Infect 2021; 24:104888. [PMID: 34547436 DOI: 10.1016/j.micinf.2021.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Streptococcus pneumoniae is an important pathogen that causes otitis media, pneumonia, meningitis and bacteremia. As an important virulence factors of S. pneumoniae, pneumolysin (PLY) can penetrate cell membranes and lead to cell lysis and inflammation, which is one of the main causes of infection and damage of S. pneumoniae. Therefore, using pneumolysin as a target to study its inhibitors can provide a new treatment strategy for pneumococcal disease. This study analyzed the inhibitory effect of the natural compound hederagenin on PLY in vitro. The results show that hederagenin has great potential as a new strategy for the treatment of pneumococcal diseases.
Collapse
Affiliation(s)
- Ding Rui
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhang Yan
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xu Xiangzhu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hou Yunfeng
- Shandong Jinzhuji Pharmaceuticals CO.,Ltd., Jinan 271100, Shandong, China
| | - Nie Jing
- Shandong Jinzhuji Pharmaceuticals CO.,Ltd., Jinan 271100, Shandong, China
| | - Deng Xuming
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
18
|
Yang Y, Wang X, Gao Y, Wang H, Niu X. Insight into the Dual inhibitory Mechanism of verbascoside targeting serine/threonine phosphatase Stp1 against Staphylococcus aureus. Eur J Pharm Sci 2021; 157:105628. [PMID: 33115673 DOI: 10.1016/j.ejps.2020.105628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
The eukaryotic-like serine/threonine phosphatase (Stp1) is an enzyme-dependent protein phosphatase involved in regulating various virulence factors of Staphylococcus aureus. Owing to its role in S. aureus infections, Stp1 has become a potential target for antibiotic development. Unfortunately, there are very few reports describing Stp1 inhibitors. Using virtual screening, we have identified a potent and effective Stp1 inhibitor, verbascoside (VBS). Interestingly, the kinetics of the enzymatic reaction revealed that this natural inhibitor acts via both competitive and allosteric mechanisms. To explore the mechanism of interaction between VBS and Stp1, standard molecular dynamics (MD) simulations were performed for the Stp1-VBS complex. Consistent with the experimental results, competitive and allosteric binding sites for VBS were identified in Stp1. Met39, Gly41, His42, Arg161, and Asn162 residues were involved in the competitive binding of VBS, while Arg122, Ser136, Asp137, Asn142, and Val145 residues were associated with the allosteric binding of VBS. The contributions of these residues were confirmed by amino acid site-directed mutagenesis and fluorescence quenching experiments. This work demonstrates that VBS is a potent anti-virulence compound against S. aureus infection, laying the foundation for the further development of novel anti-virulence agents.
Collapse
Affiliation(s)
- Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
19
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
20
|
Maatsola S, Kurkinen S, Engström MT, Nyholm TKM, Pentikäinen O, Salminen JP, Haataja S. Inhibition of Pneumolysin Cytotoxicity by Hydrolysable Tannins. Antibiotics (Basel) 2020; 9:E930. [PMID: 33371182 PMCID: PMC7766327 DOI: 10.3390/antibiotics9120930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae causes invasive infections such as otitis media, pneumonia and meningitis. It produces the pneumolysin (Ply) toxin, which forms a pore onto the host cell membrane and has multiple functions in the pathogenesis of S. pneumoniae. The Ply C-terminal domain 4 mediates binding to membrane cholesterol and induces the formation of pores composed of up to 40 Ply monomers. Ply has a key role in the establishment of nasal colonization, pneumococcal transmission from host to host and pathogenicity. Altogether, 27 hydrolysable tannins were tested for Ply inhibition in a hemolysis assay and a tannin-protein precipitation assay. Pentagalloylglucose (PGG) and gemin A showed nanomolar inhibitory activity. Ply oligomerization on the erythrocyte surface was inhibited with PGG. PGG also inhibited Ply cytotoxicity to A549 human lung epithelial cells. Molecular modelling of Ply interaction with PGG suggests that it binds to the pocket formed by domains 2, 3 and 4. In this study, we reveal the structural features of hydrolysable tannins that are required for interaction with Ply. Monomeric hydrolysable tannins containing three to four flexible galloyl groups have the highest inhibitory power to Ply cytotoxicity and are followed by oligomers. Of the oligomers, macrocyclic and C-glycosidic structures were weaker in their inhibition than the glucopyranose-based oligomers. Accordingly, PGG-type monomers and oligomers might have therapeutic value in the targeting of S. pneumoniae infections.
Collapse
Affiliation(s)
- Santeri Maatsola
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, 20014 Turku, Finland;
| | - Sami Kurkinen
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland; (S.K.); (O.P.)
| | - Marica T. Engström
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20500 Turku, Finland; (M.T.E.); (J.-P.S.)
- Institute of Biomedicine, Bioanalytical Laboratory, University of Turku, 20014 Turku, Finland
| | - Thomas K. M. Nyholm
- Biochemistry Faculty of Science and Engineering, Abo Akademi University, 20500 Turku, Finland;
| | - Olli Pentikäinen
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland; (S.K.); (O.P.)
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20500 Turku, Finland; (M.T.E.); (J.-P.S.)
| | - Sauli Haataja
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, 20014 Turku, Finland;
| |
Collapse
|
21
|
Lv H, Fang T, Kong F, Wang J, Deng X, Yu Q, Sun M, Liang X. Dryocrassin ABBA ameliorates Streptococcus pneumoniae-induced infection in vitro through inhibiting Streptococcus pneumoniae growth and neutralizing pneumolysin activity. Microb Pathog 2020; 150:104683. [PMID: 33309685 DOI: 10.1016/j.micpath.2020.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
To explore the role of dryocrassin ABBA (ABBA) in the prevention and treatment of Streptococcus pneumoniae (S. pneumoniae) infections in vitro, a minimal inhibitory concentration test, growth curve assay, hemolysis assay, BacLight LIVE/DEAD staining experiments, oligomerization inhibition assay, time-killing test, LDH release detection assay and cytotoxicity test were performed to evaluate the efficacy of ABBA against S. pneumoniae infections in vitro. The results indicated that ABBA treatment exists bactericidal effect on S. pneumoniae at a concentration of less than 8 μg/ml. Furthermore, ABBA was effective at inhibiting the oligomerization of pneumolysin (PLY) from reducing its hemolytic activity. Meanwhile, ABBA could ameliorate cell injury by neutralizing the biological activity of PLY without cytotoxicity. In summary, ABBA was a leading compound against S. pneumoniae infections through bactericidal effect and neutralizing PLY activity.
Collapse
Affiliation(s)
- Hongfa Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Tianqi Fang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Fanrong Kong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Meiyang Sun
- Department of Breast Surgery, Jilin Provincial Cancer Hospital, Changchun, China.
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Biological effects of verbascoside and its anti-inflammatory activity on oral mucositis: a review of the literature. Anticancer Drugs 2020; 31:1-5. [PMID: 31609769 DOI: 10.1097/cad.0000000000000818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oral mucositis is among the most common tissue toxicities associated with both cytotoxic cancer regimens and head and neck radiotherapy. Current management of oral mucositis might comprise growth factors and cytokines, anti-inflammatory agents, anesthetics, analgesics, antimicrobial and coating agents, cryotherapy and mucosal protectants. Despite its long history and its impact on patients, there are currently no effective options for the prevention or treatment of mucositis. In recent years, more attention has been focused on the role of natural drugs. Verbascoside belongs to the phenylpropanoid glycosides family. Several biological properties have been described, such as anti-inflammatory, antimicrobial, antitumor and antioxidant. Verbascoside, particularly when in solution with polyvinylpyrrolidone and sodium hyaluronate, thanks to barrier effect, is useful in re-epithelialization and in reducing pain, oral mucositis score, burning and erythema.
Collapse
|
23
|
Qi Z, Guo Y, Zhang H, Yu Q, Zhang P. Betulin attenuates pneumolysin-induced cell injury and DNA damage. J Appl Microbiol 2020; 130:843-851. [PMID: 32621771 DOI: 10.1111/jam.14769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
AIMS Pneumolysin, a pore-forming toxin, is an important virulence factor of Streptococcus pneumoniae with multiple biological activity, such as cell lysis and DNA damage. Thus, targeting this toxin is alternative strategy for the treatment of S. pneumoniae infection. METHODS AND RESULTS Haemolysin assay was performed to identify the potential PLY inhibitor. The mechanism by which betulin, a natural compound from birch bark, against PLY was determined via MICs determination, western blot analysis and oligomerization analysis. Cytotoxicity and Immunofluorescence assays were further used to evaluate the protection of betulin against PLY-induced cell injury and DNA damage. Here, betulin, a natural compound from birch bark, was indentified as an effective inhibitor of PLY. Importantly, at the concentrations required for such inhibition, betulin has no influence on S. pneumoniae viability or PLY production. The interaction of betulin with PLY restrict the olgomerizaiton of this toxin and, thus, directly neutralizing the activity of PLY. Additionally, betulin treatment alleviate PLY induced cells injury and DNA damage in the co-culture system of PLY and A549 cells. CONCLUSIONS Betulin could be used as a promising leading compound against S. pneumoniae virulence by directly targeting PLY without antibacterial activity. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented in this work provided a novel strategy and candidate for S. pneumoniae infection.
Collapse
Affiliation(s)
- Z Qi
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Y Guo
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - H Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Q Yu
- Jilin Provincial Animal Disease Control Center, Changchun, China
| | - P Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Tian XY, Li MX, Lin T, Qiu Y, Zhu YT, Li XL, Tao WD, Wang P, Ren XX, Chen LP. A review on the structure and pharmacological activity of phenylethanoid glycosides. Eur J Med Chem 2020; 209:112563. [PMID: 33038797 DOI: 10.1016/j.ejmech.2020.112563] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Phenylethanoid glycosides (PhGs) are compounds made of phenylethyl alcohol, caffeic acid and glycosyl moieties. The first published references about phenylethanoid glycosides concerned the isolation of echinacoside from Echinaceu ungustifolia (Asteraceae) in 1950 and verbascoside from Verbascum sinuatum (Scrophulariaceae) in 1963. Over the past 60 years, many compounds with these structural characteristics have been isolated from natural sources, and most of these compounds possess significant bioactivities, including antibacterial, antitumor, antiviral, anti-inflammatory, neuro-protective, antioxidant, hepatoprotective, and immunomodulatory activities, among others. In this review, we will summarize the phenylethanoid glycosides described in recent papers and list all the compounds that have been isolated over the past few decades. We will also attempt to present and assess recent studies about the separation, extraction, determination, and pharmacological activity of the excellent natural components, phenylethanoid glycosides.
Collapse
Affiliation(s)
- Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China.
| | - Tong Lin
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Yan Qiu
- Department of Pharmacy, Pudong New Area People's Hospital Affiliated to Shanghai Health University, Shanghai, 201299, PR China
| | - Yu-Ting Zhu
- Department of Pharmacy, 3201 Hospital, Hanzhong, 723000, Shaanxi, PR China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China
| | - Wen-Di Tao
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China
| | - Xiao-Xia Ren
- Northwest Normal University, Lanzhou, 730000, PR China
| | - Li-Ping Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| |
Collapse
|
25
|
Cools F, Triki D, Geerts N, Delputte P, Fourches D, Cos P. In vitro and in vivo Evaluation of in silico Predicted Pneumococcal UDPG:PP Inhibitors. Front Microbiol 2020; 11:1596. [PMID: 32760374 PMCID: PMC7373766 DOI: 10.3389/fmicb.2020.01596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022] Open
Abstract
Pneumonia, of which Streptococcus pneumoniae is the most common causative agent, is considered one of the three top leading causes of death worldwide. As seen in other bacterial species, antimicrobial resistance is on the rise for this pathogen. Therefore, there is a pressing need for novel antimicrobial strategies to combat these infections. Recently, uridine diphosphate glucose pyrophosphorylase (UDPG:PP) has been put forward as a potential drug target worth investigating. Moreover, earlier research demonstrated that streptococci lacking a functional galU gene (encoding for UDPG:PP) were characterized by significantly reduced in vitro and in vivo virulence. Therefore, in this study we evaluated the anti-virulence activity of potential UDPG:PP inhibitors. They were selected in silico using a tailor-made streptococcal homology model, based on earlier listerial research. While the compounds didn’t affect bacterial growth, nor affected in vitro adhesion to and phagocytosis in macrophages, the amount of polysaccharide capsule was significantly reduced after co-incubation with these inhibitors. Moreover, co-incubation proved to have a positive effect on survival in an in vivo Galleria mellonella larval infection model. Therefore, rather than targeting bacterial survival directly, these compounds proved to have an effect on streptococcal virulence by lowering the amount of polysaccharide and thereby probably boosting recognition of this pathogen by the innate immune system. While the compounds need adaptation to broaden their activity to more streptococcal strains rather than being strain-specific, this study consolidates UDPG:PP as a potential novel drug target.
Collapse
Affiliation(s)
- Freya Cools
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Dhoha Triki
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Nele Geerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
26
|
Zhang J, Liu S, Xia L, Wen Z, Hu N, Wang T, Deng X, He J, Wang J. Verbascoside Protects Mice From Clostridial Gas Gangrene by Inhibiting the Activity of Alpha Toxin and Perfringolysin O. Front Microbiol 2020; 11:1504. [PMID: 32760362 PMCID: PMC7371946 DOI: 10.3389/fmicb.2020.01504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gas gangrene, caused mainly by the anaerobic bacterium Clostridium perfringens (C. perfringens), causes death within 48 h of onset. Limited therapeutic strategies are available, and it is associated with extremely high mortality. Both C. perfringens alpha toxin (CPA) and perfringolysin O (PFO) are important virulence factors in the development of gas gangrene, suggesting that they are therapeutic targets. Here, we found that verbascoside, a phenylpropanoid glycoside widely distributed in Chinese herbal medicines, could effectively inhibit the biological activity of both CPA and PFO in hemolytic assays. The oligomerization of PFO was remarkably inhibited by verbascoside. Although no antibacterial activity was observed, verbascoside treatment protected Caco-2 cells from the damage caused by CPA and PFO. Additionally, infected mice treated with verbascoside showed significantly alleviated damage, reduced bacterial burden, and decreased mortality. In summary, verbascoside has an effective therapeutic effect against C. perfringens virulence both in vitro and in vivo by simultaneously targeting CPA and PFO. Our results provide a promising strategy and a potential lead compound for C. perfringens infections, especially gas gangrene.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shui Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Naiyu Hu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Tingting Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiakang He
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
27
|
Cortex Cercis chinensis Granules Attenuate Streptococcus pneumoniae Virulence by Targeting Pneumolysin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8537026. [PMID: 32617112 PMCID: PMC7315261 DOI: 10.1155/2020/8537026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022]
Abstract
Pore-forming toxins produced by bacteria are some of the most important molecular weapons for bacterial virulence. Pneumolysin (PLY) is a pore-forming toxin secreted by Streptococcus pneumoniae (S. pneumoniae) and plays a vital role in the spread, colonization, and invasion of this bacterium in the host, indicating that PLY is a promising target for developing treatments against S. pneumoniae infection. In this study, Cortex Cercis chinensis granules (CCCGs), a prescription drug on the market, were shown to inhibit the pore-forming activity of PLY and protect against PLY-mediated cell hemolysis and A549 cell death without antibacterial activity or inhibition of PLY production. In addition, CCCG treatment inhibited the oligomerization of PLY. Animal experiments showed that CCCGs can reduce the death of mice infected with S. pneumoniae, the degree of pathological damage to the lungs, and the levels of TNF-α and IL-6 in the lungs. In summary, our results demonstrated that CCCGs, a marketed Chinese medicine, inhibit PLY activity and subsequently attenuate S. pneumoniae virulence, which would offer a novel strategy for fighting S. pneumoniae infection and a new use for CCCGs.
Collapse
|
28
|
Zhou Y, Guo Y, Sun X, Ding R, Wang Y, Niu X, Wang J, Deng X. Application of Oleanolic Acid and Its Analogues in Combating Pathogenic Bacteria In Vitro/ Vivo by a Two-Pronged Strategy of β-Lactamases and Hemolysins. ACS OMEGA 2020; 5:11424-11438. [PMID: 32478231 PMCID: PMC7254530 DOI: 10.1021/acsomega.0c00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 05/06/2023]
Abstract
The rapid spread of β-lactamase-producing bacteria in clinical practice has increasingly deteriorated the performance of β-lactam antibiotics against such resistant strains. Thus, novel agents or strategies for the war against β-lactamase-producing bacteria, especially hypervirulent resistant bacteria (such as toxin-secreting Staphylococcus aureus) carrying complex β-lactamases, are urgently needed. In this study, we found that the natural compound oleanolic acid (OA) and its analogues (especially corosolic acid (CA)) significantly inhibited the activity of important β-lactamases (NDM-1, KPC-2, and VIM-1) in Enterobacteriaceae and β-lactamases (β-lactamase N1) in S. aureus. The results showed significant synergy with β-lactams against β-lactamase-positive bacteria (fractional inhibitory concentration (FIC) index <0.5). Additionally, OA treatment significantly inhibited the activity of hemolysin from various bacteria. In the mouse infection models, the combined therapy with OA and β-lactams exhibited a significant synergistic effect in the treatment of β-lactamase-producing bacteria, as evidenced by the survival rate of S. aureus- or Escherichia coli-infected mice, which increased from 25.0 to 75.0% or from 44.4 to 61.1% (CA increased to 77.8%), respectively, compared to treatment with individual β-lactams. Although OA treatment alone led to systemic protection against S. aureus-infected mice by directly targeting α-hemolysin (Hla), a relatively better therapeutic effect was observed for the combined therapy. To the best of our knowledge, this study is the first to find effective inhibitors against resistant bacterial infections with a two-pronged strategy by simultaneously targeting resistance enzymes and toxins, which may provide a promising therapeutic strategy for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yonglin Zhou
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Yan Guo
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Xiaodi Sun
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Ding
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanling Wang
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Qingdao
Vland Biological Limited Co., LTD, Qingdao 266102, Shandong, China
| | - Xiaodi Niu
- Department
of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Jianfeng Wang
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Xuming Deng
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
29
|
Li S, Lv Q, Sun X, Tang T, Deng X, Yin Y, Li L. Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin. ACTA ACUST UNITED AC 2020; 72:1092-1100. [PMID: 32390150 DOI: 10.1111/jphp.13279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/04/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Streptococcus pneumoniae (S. pneumoniae) is an important commensal and pathogenic bacterium responsible for pneumonia, meningitis and other invasive diseases. Pneumolysin (PLY) is the major virulence factor that contributes significantly to the interaction between S. pneumoniae and the host. KEY FINDINGS In this study, the results of antibacterial analysis, the haemolysis test and the Western blotting assay showed that acacetin inhibited PLY-mediated pore-forming activity caused by S. pneumoniae culture precipitates and purified PLY without anti-S. pneumoniae activity. In addition, acacetin treatment inhibited PLY oligomerization without affecting the expression of PLY in S. pneumoniae culture supernatants. Live/dead cells and cytotoxicity assays suggested that acacetin significantly enhanced the survival rate of injured cells by inhibiting the biological toxicity of PLY without cytotoxicity in the coculture system. The in vivo mouse model of S. pneumoniae infection further demonstrated that acacetin treatment could significantly reduce the levels of inflammatory factors (INF-γ and IL-β) in bronchoalveolar lavage fluid (BALF) and alleviate the pathological damage of lung injury. CONCLUSIONS Taken together, the results presented in this study indicated that acacetin inhibited the pore-forming activity of PLY and reduced the virulence of S. pneumoniae in vivo and in vitro, which may provide a leading compound for the treatment of S. pneumoniae infection.
Collapse
Affiliation(s)
- Shufang Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianzhong Tang
- Hubei Wudang Animal Pharmaceutical Co., Ltd, Shiyan, Hubei, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhou Yin
- School of Communication, GuizhouMinzu University, Guiyang, China
| | - Li Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Study on the Antibreast Cancer Mechanism and Bioactive Components of Si-Wu-Tang by Cell Type-Specific Molecular Network. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2345970. [PMID: 32256636 PMCID: PMC7091537 DOI: 10.1155/2020/2345970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/13/2020] [Indexed: 01/14/2023]
Abstract
Si-Wu-Tang (SWT), a traditional Chinese herbal formula, has shown an effect on antibreast cancer. However, the mechanisms and bioactive components of SWT are still unclear. Fortunately, cell type-specific molecular network has provided an effective method. This study integrated the data of formula components, all types of biomolecules in the human body, and nonexpressed protein in breast cancer cells and constructed the breast cancer cell network and the biological network that SWT acted on the breast cancer-related targets by Entity Grammar System (EGS). Biological network showed 59 bioactive components acting on 15 breast cancer-related targets. The antibreast cancer mechanisms were summarized by enrichment analysis: regulation of cell death, response to hormone stimulation, response to organic substance, regulation of phosphorylation of amino acids, regulation of cell proliferation, regulation of signal transmission, and affection of gland development. In addition, we discovered that verbascoside played the role of antibreast cancer by inhibiting cell proliferation, but there was not a report on this effect. The results of CCK8 and western blot were consistent with the antibreast cancer effect of verbascoside based on biological network. Biological network modeling by EGS and network analysis provide an effective way for uncovering the mechanism and identifying the bioactive components of SWT.
Collapse
|
31
|
Guo Y, Lv X, Wang Y, Zhou Y, Lu N, Deng X, Wang J. Honokiol Restores Polymyxin Susceptibility to MCR-1-Positive Pathogens both In Vitro and In Vivo. Appl Environ Microbiol 2020; 86:e02346-19. [PMID: 31862719 PMCID: PMC7028959 DOI: 10.1128/aem.02346-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/17/2019] [Indexed: 01/15/2023] Open
Abstract
The emergence of the plasmid-mediated colistin resistance gene mcr-1 has led to serious multidrug-resistant (MDR) Enterobacteriaceae infections, which are a great threat to the clinic. This study aims to find an inhibitor of MCR-1 to reestablish the use of polymyxins against MDR Enterobacteriaceae infections. Here, we determined that the natural compound honokiol could enhance the efficacy of polymyxins against MDR Enterobacteriaceae infections by a checkerboard MIC assay, a time-kill assay, a combined disk test, Western blotting, molecular simulation dynamics, and mouse infection models. The MIC results indicated that honokiol can recover the sensitivity of polymyxins against MCR-1-positive Klebsiella pneumoniae and Escherichia coli (with a fractional inhibitory concentration index ranging from 0.09 ± 0.00 to 0.27 ± 0.06). Based on time-kill curve analysis, all of the tested bacteria were killed within 1 h following the combined therapy with honokiol and polymyxins. Molecular simulation dynamics results suggested that honokiol directly binds to the MCR-1 active region, reducing the biological activity of MCR-1. The combination of honokiol and polymyxins could increase the 40% protection rate and reduce the bacterial load on the thigh muscles of mice. Our study indicates that honokiol is a predominant natural compound whose combination therapy with polymyxins is very promising in future treatment options for MCR-1-positive Enterobacteriaceae infections.IMPORTANCE In the present study, honokiol could effectively inhibit the activity of MCR-1 and showed almost no cytotoxicity to MH-S cells. According to our results, the combination of honokiol and polymyxin had a clear synergistic effect against MCR-1-positive Enterobacteriaceae in vitro Combination therapy also showed a powerful therapeutic effect in vivo, which can significantly improve mouse livability, reduced the load of bacteria, and reduced pathological change. This combined therapy of small molecule compounds and antibiotics may not continue to induce new bacterial resistance, due to the fact that MCR-1 targeted by honokiol is not indispensable for the bacterial viability; on the other hand, it can reduce the dosage of combined antibiotics, and it is also a promising alternative therapy for the treatment of drug-resistant infections in the future.
Collapse
Affiliation(s)
- Yan Guo
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaohong Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yanling Wang
- Qingdao Vland Biological Limited Co., Ltd., Qingdao, China
| | - Yonglin Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Lu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
32
|
Lv Q, Zhang P, Quan P, Cui M, Liu T, Yin Y, Chi G. Quercetin, a pneumolysin inhibitor, protects mice against Streptococcus pneumoniae infection. Microb Pathog 2019; 140:103934. [PMID: 31862394 DOI: 10.1016/j.micpath.2019.103934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Pneumolysin (PLY), a pore-forming cytotoxin and a major virulence determinant, is a member of the cholesterol-dependent cytolysin (CDC) family and essential for promoting Streptococcus pneumoniae (S.pneumoniae) infection. Due to the action characteristics of hemolysin itself, the pneumolysin released after killing bacteria with conventional antibiotics still has the ability to damage host cells; therefore, drug treatments directly inhibiting hemolysin activity are the most effective. Hemolysis assays were used to confirm that quercetin can inhibit the activity of PLY, protecting cells in vitro, and an oligomerization assay was used to determine the mechanism of quercetin to suppress PLY activity. Live/Dead testing, lactate dehydrogenase (LDH) release analysis and a murine model of endonasal pulmonary infection were used to explore the capability of quercetin to protect cells and mice from S. pneumoniae-mediated damage in vivo and in vitro. The results indicated that quercetin significantly reduced PLY-induced hemolytic activity and cytotoxicity via repressing the formation of oligomers. In addition, treatment with quercetin can reduce PLY-mediated cell injury, improve the survival rate of mice infected with a lethal dose of S. pneumoniae, alleviate the pathological damage of lung tissue and inhibit the release of cytokines (IL-1β and TNF-α) in bronchoalveolar lavage fluid. Considering the importance of these events in antimicrobial resistant S. pneumoniae pathogenesis, our results indicated that quercetin may be a novel potential drug candidate for the treatment of clinical pneumococcal infections.
Collapse
Affiliation(s)
- Qianghua Lv
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China; Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Pusheng Quan
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Mengyao Cui
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Tianjiao Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Yunhou Yin
- School of Communication, Guizhou Minzu University, Guiyang, China
| | - Gefu Chi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
33
|
Omersa N, Podobnik M, Anderluh G. Inhibition of Pore-Forming Proteins. Toxins (Basel) 2019; 11:E545. [PMID: 31546810 PMCID: PMC6784129 DOI: 10.3390/toxins11090545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Perforation of cellular membranes by pore-forming proteins can affect cell physiology, tissue integrity, or immune response. Since many pore-forming proteins are toxins or highly potent virulence factors, they represent an attractive target for the development of molecules that neutralize their actions with high efficacy. There has been an assortment of inhibitors developed to specifically obstruct the activity of pore-forming proteins, in addition to vaccination and antibiotics that serve as a plausible treatment for the majority of diseases caused by bacterial infections. Here we review a wide range of potential inhibitors that can specifically and effectively block the activity of pore-forming proteins, from small molecules to more specific macromolecular systems, such as synthetic nanoparticles, antibodies, antibody mimetics, polyvalent inhibitors, and dominant negative mutants. We discuss their mechanism of inhibition, as well as advantages and disadvantages.
Collapse
Affiliation(s)
- Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
34
|
Lu G, Xu L, Zhang T, Deng X, Wang J. A potential bio-control agent from baical skullcap root against listeriosis via the inhibition of sortase A and listeriolysin O. J Cell Mol Med 2019; 23:2042-2051. [PMID: 30585434 PMCID: PMC6378236 DOI: 10.1111/jcmm.14110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a classical model intracellular pathogen and the leading cause of listeriosis, which has long been a global public health issue. The successful infection of LM is related to a series of virulence factors, such as the transpeptidase enzyme sortase A (SrtA) and listeriolysin O (LLO), which are crucial for bacterial internalization and escape from phagosomes respectively. It is speculated that targeting multiple virulence factors may be due to a synergistic effect on listeriosis therapy. In this study, an active flavonoids component of Scutellaria baicalensis Georgi, baicalein, was found to potently block both listerial SrtA catalyzed activity and LLO hemolytic activity within 16 μg/mL. After pretreatment with baicalein, 86.30 (±11.35) % of LM failed to associate with Caco-2 cells compared to the LM without preincubation (regarded as 100% internalization). Furthermore, baicalein addition may aid in bacterial degradation and clearance in macrophagocytes. During a 5 h observation, LM in cells incubated with baicalein showed significantly decreased vacuole escapes and sluggish endocellular growth. In addition, baicalein directly prevented LM-induced cells injury and mice fatality (survival rate from 10.00% to 54.55% in 4 days post-intraperitoneal injection). Taken together, as an antagonist against SrtA and LLO, baicalein can be further developed into a biotherapeutic agent for listeriosis.
Collapse
Affiliation(s)
- Gejin Lu
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Lei Xu
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Tong Zhang
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Xuming Deng
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Jianfeng Wang
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| |
Collapse
|
35
|
Tang F, Li L, Meng XM, Li B, Wang CQ, Wang SQ, Wang TL, Tian YM. Inhibition of alpha-hemolysin expression by resveratrol attenuates Staphylococcus aureus virulence. Microb Pathog 2019; 127:85-90. [DOI: 10.1016/j.micpath.2018.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
|
36
|
Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel) 2018; 10:toxins10120542. [PMID: 30562923 PMCID: PMC6316385 DOI: 10.3390/toxins10120542] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
For many of the most important human bacterial infections, invasive disease severity is fueled by the cell damaging and pro-inflammatory effects of secreted pore-forming toxins (PFTs). Isogenic PFT-knockout mutants, e.g., Staphylococcus aureus lacking α-toxin or Streptococcus pneumoniae deficient in pneumolysin, show attenuation in animal infection models. This knowledge has inspired multi-model investigations of strategies to neutralize PFTs or counteract their toxicity as a novel pharmacological approach to ameliorate disease pathogenesis in clinical disease. Promising examples of small molecule, antibody or nanotherapeutic drug candidates that directly bind and neutralize PFTs, block their oligomerization or membrane receptor interactions, plug establishment membrane pores, or boost host cell resiliency to withstand PFT action have emerged. The present review highlights these new concepts, with a special focus on β-PFTs produced by leading invasive human Gram-positive bacterial pathogens. Such anti-virulence therapies could be applied as an adjunctive therapy to antibiotic-sensitive and -resistant strains alike, and further could be free of deleterious effects that deplete the normal microflora.
Collapse
|
37
|
Anderson R, Nel JG, Feldman C. Multifaceted Role of Pneumolysin in the Pathogenesis of Myocardial Injury in Community-Acquired Pneumonia. Int J Mol Sci 2018; 19:E1147. [PMID: 29641429 PMCID: PMC5979279 DOI: 10.3390/ijms19041147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Pneumolysin (PLY), a member of the family of Gram-positive bacterial, cholesterol-dependent, β-barrel pore-forming cytolysins, is the major protein virulence factor of the dangerous respiratory pathogen, Streptococcus pneumoniae (pneumococcus). PLY plays a major role in the pathogenesis of community-acquired pneumonia (CAP), promoting colonization and invasion of the upper and lower respiratory tracts respectively, as well as extra-pulmonary dissemination of the pneumococcus. Notwithstanding its role in causing acute lung injury in severe CAP, PLY has also been implicated in the development of potentially fatal acute and delayed-onset cardiovascular events, which are now recognized as being fairly common complications of this condition. This review is focused firstly on updating mechanisms involved in the immunopathogenesis of PLY-mediated myocardial damage, specifically the direct cardiotoxic and immunosuppressive activities, as well as the indirect pro-inflammatory/pro-thrombotic activities of the toxin. Secondly, on PLY-targeted therapeutic strategies including, among others, macrolide antibiotics, natural product antagonists, cholesterol-containing liposomes, and fully humanized monoclonal antibodies, as well as on vaccine-based preventive strategies. These sections are preceded by overviews of CAP in general, the role of the pneumococcus as the causative pathogen, the occurrence and types of CAP-associated cardiac complication, and the structure and biological activities of PLY.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria 0001, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 0002, South Africa.
| |
Collapse
|
38
|
Insight into the novel inhibition mechanism of apigenin to Pneumolysin by molecular modeling. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Zhao X, Zhou Y, Wang G, Shi D, Zha Y, Yi P, Wang J. Morin Moderates the Biotoxicity of Pneumococcal Pneumolysin by Weakening the Oligomers' Formation. Chem Pharm Bull (Tokyo) 2017; 65:538-544. [PMID: 28566646 DOI: 10.1248/cpb.c16-00999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is an important causative agent of acute invasive and non-invasive infections. Pneumolysin is one of a considerable number of virulence traits produced by pneumococcus that exhibits a variety of biological activities, thus making it a target of small molecule drug development. In this study, we aimed to evaluate the effect of morin, a natural compound that has no antimicrobial activity against S. pneumonia, is a potent neutralizer of pneumolysin-mediated cytotoxicity and genotoxicity by impairing oligomer formation, and possesses the capability of mitigating tissue damage caused by pneumococcus. These findings indicate that morin could be a potent candidate for a novel therapeutic or auxiliary substance to treat infections for which there are inadequate vaccines and that are resistant to traditional antibiotics.
Collapse
Affiliation(s)
- Xiaoran Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University
| | - Yonglin Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University
| | - Guizhen Wang
- Department of Food Quality and Safety, Jilin University
| | - Dongxue Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University
| | - Yonghong Zha
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University
| | - Pengfei Yi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University
| |
Collapse
|
40
|
Bai D, Cong S, Zhu LP. Attenuation of Focal Adhesion Kinase Reduces Lipopolysaccharide-Induced Inflammation Injury through Inactivation of the Wnt and NF-κB Pathways in A549 Cells. BIOCHEMISTRY (MOSCOW) 2017; 82:446-453. [PMID: 28371601 DOI: 10.1134/s0006297917040058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overall analysis and understanding of mechanisms are of great importance for treatment of infantile pneumonia due to its high morbidity and mortality worldwide. In this study, we preliminarily explored the function and mechanism of focal adhesion kinase (FAK) in regulation of inflammatory response induced by lipopolysaccharides in A549 cells. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis were used to explore the correlation of FAK expression with cell apoptosis, viability, and the inflammatory cytokine activity in A549 cells. The results showed that knockdown of FAK enhanced cell viability, suppressed apoptosis, and decreased inflammatory cytokine activity. In addition, downregulation of FAK could activate the Wnt and nuclear factor κB signaling pathways. These findings suggest that FAK might be involved in progression of infantile pneumonia and could be a new therapeutic target for this disease.
Collapse
Affiliation(s)
- D Bai
- Jining No. 1 People's Hospital, Department of Pediatrics, Jining, 272011, China.
| | | | | |
Collapse
|
41
|
Shikonin alleviates the biotoxicity produced by pneumococcal pneumolysin. Life Sci 2017; 177:1-7. [DOI: 10.1016/j.lfs.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 11/19/2022]
|
42
|
Song M, Lu G, Li M, Deng X, Wang J. Juglone alleviates pneumolysin-induced human alveolar epithelial cell injury via inhibiting the hemolytic activity of pneumolysin. Antonie van Leeuwenhoek 2017; 110:1069-1075. [PMID: 28451868 DOI: 10.1007/s10482-017-0880-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/22/2017] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is an opportunistic pathogen responsible for several human diseases, including acute otitis media, pneumonia, sepsis and bacterial meningitis, and possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. With the capacity to form pores in cholesterol-rich membranes, pneumolysin (PLY) is a key virulence factor of S. pneumoniae and causes severe tissue damage during pneumococcal infection. Juglone (JG), a natural 1,4-naphthoquinone widely found in the roots, leaves, woods and fruits of Juglandaceae walnut trees, inhibits PLY-induced hemolysis via inhibition of the oligomerization of PLY and exhibits minimal anti-S. pneumoniae activity. In addition, when human alveolar epithelial (A549) cells were co-cultured with PLY and JG, PLY-mediated cell injury was significantly alleviated. These results indicate that JG directly interacts with PLY to reduce the cytotoxicity of the toxin in human alveolar epithelial cells. Hence, JG is an effective inhibitor of PLY and protects lung cells from PLY-mediated cell injury. This study also provides the basis for the development of anti-virulence drugs for the treatment of S. pneumoniae infections.
Collapse
Affiliation(s)
- Meng Song
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi'an Rd 5333, Changchun, 130062, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi'an Rd 5333, Changchun, 130062, China
| | - Meng Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi'an Rd 5333, Changchun, 130062, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi'an Rd 5333, Changchun, 130062, China. .,Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.
| |
Collapse
|
43
|
Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017; 21:2586-2598. [PMID: 28402019 PMCID: PMC5618700 DOI: 10.1111/jcmm.13179] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol-dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence-associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY-mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Meng Song
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China
| |
Collapse
|
44
|
Anderson R, Feldman C. Pneumolysin as a potential therapeutic target in severe pneumococcal disease. J Infect 2017; 74:527-544. [PMID: 28322888 DOI: 10.1016/j.jinf.2017.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Abstract
Acute pulmonary and cardiac injury remain significant causes of morbidity and mortality in those afflicted with severe pneumococcal disease, with the risk for early mortality often persisting several years beyond clinical recovery. Although remaining to be firmly established in the clinical setting, a considerable body of evidence, mostly derived from murine models of experimental infection, has implicated the pneumococcal, cholesterol-binding, pore-forming toxin, pneumolysin (Ply), in the pathogenesis of lung and myocardial dysfunction. Topics covered in this review include the burden of pneumococcal disease, risk factors, virulence determinants of the pneumococcus, complications of severe disease, antibiotic and adjuvant therapies, as well as the structure of Ply and the role of the toxin in disease pathogenesis. Given the increasing recognition of the clinical potential of Ply-neutralisation strategies, the remaining sections of the review are focused on updates of the types, benefits and limitations of currently available therapies which may attenuate, directly and/or indirectly, the injurious actions of Ply. These include recently described experimental therapies such as various phytochemicals and lipids, and a second group of more conventional agents the members of which remain the subject of ongoing clinical evaluation. This latter group, which is covered more extensively, encompasses macrolides, statins, corticosteroids, and platelet-targeted therapies, particularly aspirin.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
45
|
Zhao X, Liu B, Liu S, Wang L, Wang J. Anticytotoxin Effects of Amentoflavone to Pneumolysin. Biol Pharm Bull 2017; 40:61-67. [PMID: 28049950 DOI: 10.1248/bpb.b16-00598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pneumolysin (PLY) is a devastating bacterial protein toxin of Streptococcus pneumoniae that punctures the cytomembrane, leading to pathological reactions, such as cell disruption and inflammation. Drugs capable of closely impacting the toxin are considered advantageous in the treatment of bacterial infections. Amentoflavone (AMF) is a chemical substance extracted from traditional Chinese herbs. Previous studies have demonstrated that AMF has multiple pharmacological effects and mentioned without attenuating pneumolysin-mediated cytotoxicity. This work focuses on the influence of AMF on inhibitory hemolytic mechanisms. AMF interacts with the toxin at Ser254, Glu277, Arg359, and effectively weakens the oligomerization of wild-type PLY and provides considerable protection against pneumolysin-mediated human alveolar epithelial (A549) cell damage. The results of our study demonstrate that AMF could be a candidate against pneumolysin-related injury.
Collapse
Affiliation(s)
- Xiaoran Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University
| | | | | | | | | |
Collapse
|
46
|
Song M, Li L, Li M, Cha Y, Deng X, Wang J. Apigenin protects mice from pneumococcal pneumonia by inhibiting the cytolytic activity of pneumolysin. Fitoterapia 2016; 115:31-36. [DOI: 10.1016/j.fitote.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022]
|
47
|
Liu B, Teng Z, Wang J, Lu G, Deng X, Li L. Inhibition of listeriolysin O oligomerization by lutein prevents Listeria monocytogenes infection. Fitoterapia 2016; 116:45-50. [PMID: 27884571 DOI: 10.1016/j.fitote.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 12/18/2022]
Abstract
The foodborne pathogenic bacterial species Listeria monocytogenes (L. monocytogenes) has caused incalculable damages to public health, and its successful infection requires various virulence factors, including Listeriolysin O (LLO). By forming pores in phagosomal membranes and even in some organelles, LLO plays an indispensable role in the ability of L. monocytogenes to escape from host immune attacks. Because of its critical role, LLO offers an appropriate therapeutic target against L. monocytogenes infection. Here, lutein, a natural small molecule existing widely in fruits and vegetables, is demonstrated as an effective inhibitor of LLO that works by blocking its oligomerization during invasion without showing significant bacteriostatic activity. Further assays applying lutein in cell culture models of invasion and in animal models showed that lutein could effectively inhibit L. monocytogenes infection. Overall, our results indicate that lutein may represent a promising and novel therapeutic agent against L. monocytogenes infection.
Collapse
Affiliation(s)
- Bowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Li Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|