1
|
Sharma A, Sanz-Rodriguez CE, Pollastri MP, Purmal A, Mensa-Wilmot K. Multiparameter ranking of carbazoles for anti-trypanosome lead discovery. FRONTIERS IN DRUG DISCOVERY 2024; 4:1430927. [PMID: 40125275 PMCID: PMC11927960 DOI: 10.3389/fddsv.2024.1430927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The criteria for the progression of hits in the discovery of leads for human African trypanosomiasis (HAT), a neglected disease caused by the microbial eukaryote Trypanosoma brucei, are not standardized. Hits are advanced upon meeting thresholds for drug-like molecules. Following those principles, pharmacokinetics (Cmax and AUC0-6h) and anti-trypanosome characteristics predicted the arrest of T. brucei proliferation in mice by three curaxins. Unexpectedly, while CBL0137 cured HAT in a mouse model, CBL0174 and CBL0187-structural analogs of CBL0137 with similar drug-like properties-failed to control T. brucei division. We here propose an alternative strategy that integrates physicochemical, metabolic, pharmacokinetic, pharmacodynamic, tissue distribution, and trypanocidality parameters into calculating a score for ranking compounds in hit-to-lead campaigns. Data from our studies of curaxins support the feasibility of this goal. Serum dropped the anti-trypanosome potency of CBL0174 and CBL0187 considerably. Delayed trypanocidal concentrations (DTC25 and DTC90) were used to study modes of curaxin actions in trypanosomes. Efficacy of CBL0137 in mice correlated with (i) a high AUC0-6h: DTC90 ratio, (ii) blocking of transferrin endocytosis, and (iii) the inhibition of protein synthesis. Hydroxylation of the carbazole prevented CBL0137 from inhibiting endocytosis of transferrin. The multiparametric score "Curaxin HAT lead efficacy (CHLE)" score was calculated using pharmacokinetic, physicochemical, metabolic, brain exposure, and pharmacodynamic data; CBL0137 was the highest scoring hit. Complementing these observations and predictive of performance of curaxins in mice, CBL0137, but not CBL0174 or CBL0187, was trypanocidal after the exposure of trypanosomes to AUC0-6h amounts of the hits for 6 hours in vitro. We discuss a role for CHLE scores in ranking curaxins for anti-HAT lead discovery. The principles used to develop CHLE scores may be used to calculate new ones for other scaffolds during the discovery of leads for HAT or other infectious diseases.
Collapse
Affiliation(s)
- Amrita Sharma
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Carlos E. Sanz-Rodriguez
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Michael P. Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | | | - Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Pseudokinase NRP1 facilitates endocytosis of transferrin in the African trypanosome. Sci Rep 2022; 12:18572. [PMID: 36329148 PMCID: PMC9633767 DOI: 10.1038/s41598-022-22054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis (HAT) and nagana in cattle. During infection of a vertebrate, endocytosis of host transferrin (Tf) is important for viability of the parasite. The majority of proteins involved in trypanosome endocytosis of Tf are unknown. Here we identify pseudokinase NRP1 (Tb427tmp.160.4770) as a regulator of Tf endocytosis. Genetic knockdown of NRP1 inhibited endocytosis of Tf without blocking uptake of bovine serum albumin. Binding of Tf to the flagellar pocket was not affected by knockdown of NRP1. However the quantity of Tf per endosome dropped significantly, consistent with NRP1 promoting robust capture and/or retention of Tf in vesicles. NRP1 is involved in motility of Tf-laden vesicles since distances between endosomes and the kinetoplast were reduced after knockdown of the gene. In search of possible mediators of NRP1 modulation of Tf endocytosis, the gene was knocked down and the phosphoproteome analyzed. Phosphorylation of protein kinases forkhead, NEK6, and MAPK10 was altered, in addition to EpsinR, synaptobrevin and other vesicle-associated proteins predicted to be involved in endocytosis. These candidate proteins may link NRP1 functionally either to protein kinases or to vesicle-associated proteins.
Collapse
|
3
|
Sharma A, Cipriano M, Ferrins L, Hajduk SL, Mensa-Wilmot K. Hypothesis-generating proteome perturbation to identify NEU-4438 and acoziborole modes of action in the African Trypanosome. iScience 2022; 25:105302. [PMID: 36304107 PMCID: PMC9593816 DOI: 10.1016/j.isci.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
NEU-4438 is a lead for the development of drugs against Trypanosoma brucei, which causes human African trypanosomiasis. Optimized with phenotypic screening, targets of NEU-4438 are unknown. Herein, we present a cell perturbome workflow that compares NEU-4438's molecular modes of action to those of SCYX-7158 (acoziborole). Following a 6 h perturbation of trypanosomes, NEU-4438 and acoziborole reduced steady-state amounts of 68 and 92 unique proteins, respectively. After analysis of proteomes, hypotheses formulated for modes of action were tested: Acoziborole and NEU-4438 have different modes of action. Whereas NEU-4438 prevented DNA biosynthesis and basal body maturation, acoziborole destabilized CPSF3 and other proteins, inhibited polypeptide translation, and reduced endocytosis of haptoglobin-hemoglobin. These data point to CPSF3-independent modes of action for acoziborole. In case of polypharmacology, the cell-perturbome workflow elucidates modes of action because it is target-agnostic. Finally, the workflow can be used in any cell that is amenable to proteomic and molecular biology experiments.
Collapse
Affiliation(s)
- Amrita Sharma
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Michael Cipriano
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Stephen L. Hajduk
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA,Corresponding author
| |
Collapse
|
4
|
Sanz-Rodríguez CE, Hoffman B, Guyett PJ, Purmal A, Singh B, Pollastri MP, Mensa-Wilmot K. Physiologic Targets and Modes of Action for CBL0137, a Lead for Human African Trypanosomiasis Drug Development. Mol Pharmacol 2022; 102:1-16. [PMID: 35605992 PMCID: PMC9341264 DOI: 10.1124/molpharm.121.000430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/20/2022] [Indexed: 08/15/2023] Open
Abstract
CBL0137 is a lead drug for human African trypanosomiasis, caused by Trypanosoma brucei Herein, we use a four-step strategy to 1) identify physiologic targets and 2) determine modes of molecular action of CBL0137 in the trypanosome. First, we identified fourteen CBL0137-binding proteins using affinity chromatography. Second, we developed hypotheses of molecular modes of action, using predicted functions of CBL0137-binding proteins as guides. Third, we documented effects of CBL0137 on molecular pathways in the trypanosome. Fourth, we identified physiologic targets of the drug by knocking down genes encoding CBL0137-binding proteins and comparing their molecular effects to those obtained when trypanosomes were treated with CBL0137. CBL0137-binding proteins included glycolysis enzymes (aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, phosphoglycerate kinase) and DNA-binding proteins [universal minicircle sequence binding protein 2, replication protein A1 (RPA1), replication protein A2 (RPA2)]. In chemical biology studies, CBL0137 did not reduce ATP level in the trypanosome, ruling out glycolysis enzymes as crucial targets for the drug. Thus, many CBL0137-binding proteins are not physiologic targets of the drug. CBL0137 inhibited 1) nucleus mitosis, 2) nuclear DNA replication, and 3) polypeptide synthesis as the first carbazole inhibitor of eukaryote translation. RNA interference (RNAi) against RPA1 inhibited both DNA synthesis and mitosis, whereas RPA2 knockdown inhibited mitosis, consistent with both proteins being physiologic targets of CBL0137. Principles used here to distinguish drug-binding proteins from physiologic targets of CBL0137 can be deployed with different drugs in other biologic systems. SIGNIFICANCE STATEMENT: To distinguish drug-binding proteins from physiologic targets in the African trypanosome, we devised and executed a multidisciplinary approach involving biochemical, genetic, cell, and chemical biology experiments. The strategy we employed can be used for drugs in other biological systems.
Collapse
Affiliation(s)
- Carlos E Sanz-Rodríguez
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Benjamin Hoffman
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Paul J Guyett
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Andrei Purmal
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Baljinder Singh
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Michael P Pollastri
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| |
Collapse
|
5
|
Casein kinase TbCK1.2 regulates division of kinetoplast DNA, and movement of basal bodies in the African trypanosome. PLoS One 2021; 16:e0249908. [PMID: 33861760 PMCID: PMC8051774 DOI: 10.1371/journal.pone.0249908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The single mitochondrial nucleoid (kinetoplast) of Trypanosoma brucei is found proximal to a basal body (mature (mBB)/probasal body (pBB) pair). Kinetoplast inheritance requires synthesis of, and scission of kinetoplast DNA (kDNA) generating two kinetoplasts that segregate with basal bodies into daughter cells. Molecular details of kinetoplast scission and the extent to which basal body separation influences the process are unavailable. To address this topic, we followed basal body movements in bloodstream trypanosomes following depletion of protein kinase TbCK1.2 which promotes kinetoplast division. In control cells we found that pBBs are positioned 0.4 um from mBBs in G1, and they mature after separating from mBBs by at least 0.8 um: mBB separation reaches ~2.2 um. These data indicate that current models of basal body biogenesis in which pBBs mature in close proximity to mBBs may need to be revisited. Knockdown of TbCK1.2 produced trypanosomes containing one kinetoplast and two nuclei (1K2N), increased the percentage of cells with uncleaved kDNA 400%, decreased mBB spacing by 15%, and inhibited cytokinesis 300%. We conclude that (a) separation of mBBs beyond a threshold of 1.8 um correlates with division of kDNA, and (b) TbCK1.2 regulates kDNA scission. We propose a Kinetoplast Division Factor hypothesis that integrates these data into a pathway for biogenesis of two daughter mitochondrial nucleoids.
Collapse
|
6
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
7
|
Abstract
Trypanosomes have complex life cycles within which there are both proliferative and differentiation cell divisions. The coordination of the cell cycle to achieve these different divisions is critical for the parasite to infect both host and vector. From studying the regulation of the proliferative cell cycle of the Trypanosoma brucei procyclic life cycle stage, three subcycles emerge that control the duplication and segregation of (a) the nucleus, (b) the kinetoplast, and (c) a set of cytoskeletal structures. We discuss how the clear dependency relationships within these subcycles, and the potential for cross talk between them, are likely required for overall cell cycle coordination. Finally, we look at the implications this interdependence has for proliferative and differentiation divisions through the T. brucei life cycle and in related parasitic trypanosomatid species.
Collapse
Affiliation(s)
- Richard J Wheeler
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom;
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
8
|
Mensa-Wilmot K, Hoffman B, Wiedeman J, Sullenberger C, Sharma A. Kinetoplast Division Factors in a Trypanosome. Trends Parasitol 2019; 35:119-128. [PMID: 30638954 DOI: 10.1016/j.pt.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Inheritance of the single mitochondrial nucleoid (kinetoplast) in the trypanosome requires numerous proteins, many of whose precise roles are unclear. By considering kinetoplast DNA (kDNA) as a template for cleavage into two equal-size networks, we predicted sets of mutant kinetoplasts associated with defects in each of the five steps in the kinetoplast cycle. Comparison of these kinetoplasts with those obtained after gene knockdowns enabled assignment of proteins to five classes - kDNA synthesis, site of scission selection, scission, separation, and partitioning. These studies highlight how analysis of mutant kinetoplast phenotypes may be used to predict functional categories of proteins involved in the biogenesis of kinetoplasts.
Collapse
Affiliation(s)
- Kojo Mensa-Wilmot
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.
| | - Benjamin Hoffman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Justin Wiedeman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Catherine Sullenberger
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | - Amrita Sharma
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
9
|
Woodring J, Behera R, Sharma A, Wiedeman J, Patel G, Singh B, Guyett P, Amata E, Erath J, Roncal N, Penn E, Leed SE, Rodriguez A, Sciotti RJ, Mensa-Wilmot K, Pollastri MP. Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation. ACS Med Chem Lett 2018; 9:996-1001. [PMID: 30344906 PMCID: PMC6187419 DOI: 10.1021/acsmedchemlett.8b00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
Discovery of new chemotherapeutic lead agents can be accelerated by optimizing chemotypes proven to be effective in other diseases to act against parasites. One such medicinal chemistry campaign has focused on optimizing the anilinoquinazoline drug lapatinib (1) and the alkynyl thieno[3,2-d]pyrimidine hit GW837016X (NEU-391, 3) into leads for antitrypanosome drugs. We now report the structure-activity relationship studies of 3 and its analogs against Trypanosoma brucei, which causes human African trypanosomiasis (HAT). The series was also tested against Trypanosoma cruzi, Leishmania major, and Plasmodium falciparum. In each case, potent antiparasitic hits with acceptable toxicity margins over mammalian HepG2 and NIH3T3 cell lines were identified. In a mouse model of HAT, 3 extended life of treated mice by 50%, compared to untreated controls. At the cellular level, 3 inhibited mitosis and cytokinesis in T. brucei. Thus, the alkynylthieno[3,2-d]pyrimidine chemotype is an advanced hit worthy of further optimization as a potential chemotherapeutic agent for HAT.
Collapse
Affiliation(s)
- Jennifer
L. Woodring
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ranjan Behera
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Amrita Sharma
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Justin Wiedeman
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Gautam Patel
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Baljinder Singh
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul Guyett
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Emanuele Amata
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jessey Erath
- Department
of Microbiology, New York University School
of Medicine, 430 E. 29th Street New York, New York 10010, United
States
- Anti-Infectives
Screening Core, New York University School
of Medicine, New York, New York 10010, United
States
| | - Norma Roncal
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Erica Penn
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Susan E. Leed
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Ana Rodriguez
- Department
of Microbiology, New York University School
of Medicine, 430 E. 29th Street New York, New York 10010, United
States
- Anti-Infectives
Screening Core, New York University School
of Medicine, New York, New York 10010, United
States
| | - Richard J. Sciotti
- Experimental
Therapeutics, Walter Reed Army Institute
of Research, 2460 Linden Lane, Silver Spring, Maryland 20910, United
States
| | - Kojo Mensa-Wilmot
- Department
of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Michael P. Pollastri
- Department
of Chemistry & Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Wiedeman J, Mensa-Wilmot K. A fixable probe for visualizing flagella and plasma membranes of the African trypanosome. PLoS One 2018; 13:e0197541. [PMID: 29768499 PMCID: PMC5955550 DOI: 10.1371/journal.pone.0197541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
The protozoan Trypanosoma brucei sp. cause diseases in humans and animals. Studies of T. brucei cell biology have revealed unique features, such as major endocytic events being limited to a single region, and mitochondrial genome segregation mediated via basal bodies. Further understanding of trypanosome cell biology can be facilitated with super-resolution fluorescence microscopy. Lack of a plasma membrane probe for fixed trypanosomes remains a persistent problem in need of a working solution. Herein, we report protocols developed using mCLING in super-resolution structured illumination fluorescence microscopy (SR-SIM). mCLING comprehensively labels flagellar membranes, including nascent intracellular stages. To extend its usefulness for trypanosome biology we optimized mCLING in combination with organelle-specific antibodies for immunofluorescence of basal bodies or mitochondria. Then in work with live trypanosomes, we demonstrated internalization of mCLING into endocytic stations that overlap with LysoTracker in acidic organelles. Greater detail of the intracellular location of mCLING was obtained with SR-SIM after pulsing trypanosomes with the probe, and allowing continuous uptake of fluorescent concanavalin A (ConA) destined for lysosomes. In most cases, ConA and mCLING vesicles were juxtaposed but not coincident. A video of the complete image stack at the 15 min time point shows zones of mCLING staining surrounding patches of ConA, consistent with persistence of mCLING in membranes of compartments that contain luminal ConA. In summary, these studies establish mCLING as a versatile trypanosome membrane probe compatible with super-resolution microscopy that can be used for detailed analysis of flagellar membrane biogenesis. In addition, mCLING can be used for immunofluorescence in fixed, permeabilized trypanosomes. Its robust staining of the plasma membrane eliminates a need to overlay transmitted light images on fluorescence pictures obtained from widefield, confocal, or super-resolution microscopy.
Collapse
Affiliation(s)
- Justin Wiedeman
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Dichiara M, Marrazzo A, Prezzavento O, Collina S, Rescifina A, Amata E. Repurposing of Human Kinase Inhibitors in Neglected Protozoan Diseases. ChemMedChem 2017; 12:1235-1253. [PMID: 28590590 DOI: 10.1002/cmdc.201700259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Indexed: 12/11/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis belong to a group of infectious diseases known as neglected tropical diseases and are induced by infection with protozoan parasites named trypanosomatids. Drugs in current use have several limitations, and therefore new candidate drugs are required. The majority of current therapeutic trypanosomatid targets are enzymes or cell-surface receptors. Among these, eukaryotic protein kinases are a major group of protein targets whose modulation may be beneficial for the treatment of neglected tropical protozoan diseases. This review summarizes the finding of new hit compounds for neglected tropical protozoan diseases, by repurposing known human kinase inhibitors on trypanosomatids. Kinase inhibitors are grouped by human kinase family and discussed according to the screening (target-based or phenotypic) reported for these compounds on trypanosomatids. This collection aims to provide insight into repurposed human kinase inhibitors and their importance in the development of new chemical entities with potential beneficial effects on the diseases caused by trypanosomatids.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100, Pavia, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6, 95100, Catania, Italy
| |
Collapse
|