1
|
Hakim S, Jain A, Woolf CJ. Immune drivers of pain resolution and protection. Nat Immunol 2024; 25:2200-2208. [PMID: 39528810 DOI: 10.1038/s41590-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Immune cells are involved in the pathogenesis of pain by directly activating or sensitizing nociceptor sensory neurons. However, because the immune system also has the capacity to self-regulate through anti-inflammatory mechanisms that drive the resolution of inflammation, it might promote pain resolution and prevention. Here, we describe how immune cell-derived cytokines can act directly on sensory neurons to inhibit pain hypersensitivity and how immune-derived endogenous opioids promote analgesia. We also discuss how immune cells support healthy tissue innervation by clearing debris after nerve injury, protecting against axon retraction from target tissues and enhancing regeneration, preventing the development of chronic neuropathic pain. Finally, we review the accumulating evidence that manipulating immune activity positively alters somatosensation, albeit with currently unclear molecular and cellular mechanisms. Exploration of immune-mediated analgesia and pain prevention could, therefore, be important for the development of novel immune therapies for the treatment of clinical pain states.
Collapse
Affiliation(s)
- Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
3
|
Go EJ, Hwang SM, Jo H, Rahman MM, Park J, Lee JY, Jo YY, Lee BG, Jung Y, Berta T, Kim YH, Park CK. GLP-1 and its derived peptides mediate pain relief through direct TRPV1 inhibition without affecting thermoregulation. Exp Mol Med 2024; 56:2449-2464. [PMID: 39482537 PMCID: PMC11612315 DOI: 10.1038/s12276-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 11/03/2024] Open
Abstract
Hormonal regulation during food ingestion and its association with pain prompted the investigation of the impact of glucagon-like peptide-1 (GLP-1) on transient receptor potential vanilloid 1 (TRPV1). Both endogenous and synthetic GLP-1, as well as a GLP-1R antagonist, exendin 9-39, reduced heat sensitivity in naïve mice. GLP-1-derived peptides (liraglutide, exendin-4, and exendin 9-39) effectively inhibited capsaicin (CAP)-induced currents and calcium responses in cultured sensory neurons and TRPV1-expressing cell lines. Notably, exendin 9-39 alleviated CAP-induced acute pain, as well as chronic pain induced by complete Freund's adjuvant (CFA) and spared nerve injury (SNI), in mice without causing hyperthermia associated with other TRPV1 inhibitors. Electrophysiological analyses revealed that exendin 9-39 binds to the extracellular side of TRPV1, functioning as a noncompetitive inhibitor of CAP. Exendin 9-39 did not affect proton-induced TRPV1 activation, suggesting its selective antagonism. Among the exendin 9-39 fragments, exendin 20-29 specifically binds to TRPV1, alleviating pain in both acute and chronic pain models without interfering with GLP-1R function. Our study revealed a novel role for GLP-1 and its derivatives in pain relief, suggesting exendin 20-29 as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Hyunjung Jo
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Jaeik Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Byung-Gil Lee
- Lee Gil Ya Cancer and Diabetes Institute Gachon University, Incheon, 21999, Republic of Korea
| | - YunJae Jung
- Lee Gil Ya Cancer and Diabetes Institute Gachon University, Incheon, 21999, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
4
|
Deng MY, Cheng J, Gao N, Li XY, Liu H, Wang YX. Dexamethasone attenuates neuropathic pain through spinal microglial expression of dynorphin A via the cAMP/PKA/p38 MAPK/CREB signaling pathway. Brain Behav Immun 2024; 119:36-50. [PMID: 38555991 DOI: 10.1016/j.bbi.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
This study aimed to elucidate the opioid mechanisms underlying dexamethasone-induced pain antihypersensitive effects in neuropathic rats. Dexamethasone (subcutaneous and intrathecal) and membrane-impermeable Dex-BSA (intrathecal) administration dose-dependently inhibited mechanical allodynia and thermal hyperalgesia in neuropathic rats. Dexamethasone and Dex-BSA treatments increased expression of dynorphin A in the spinal cords and primary cultured microglia. Dexamethasone specifically enhanced dynorphin A expression in microglia but not astrocytes or neurons. Intrathecal injection of the microglial metabolic inhibitor minocycline blocked dexamethasone-stimulated spinal dynorphin A expression; intrathecal minocycline, the glucocorticoid receptor antagonist Dex-21-mesylate, dynorphin A antiserum, and κ-opioid receptor antagonist GNTI completely blocked dexamethasone-induced mechanical antiallodynia and thermal antihyperalgesia. Additionally, dexamethasone elevated spinal intracellular cAMP levels, leading to enhanced phosphorylation of PKA, p38 MAPK and CREB. The specific adenylate cyclase inhibitor DDA, PKA inhibitor H89, p38 MAPK inhibitor SB203580 and CREB inhibitor KG-501 completely blocked dexamethasone-induced anti-neuropathic pain and increased microglial dynorphin A exprression. In conclusion, this study reveal that dexamethasone mitigateds neuropathic pain through upregulation of dynorphin A in spinal microglia, likely involving the membrane glucocorticoid receptor/cAMP/PKA/p38 MAPK/CREB signaling pathway.
Collapse
Affiliation(s)
- Meng-Yan Deng
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China; King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Jing Cheng
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- School of Basic Medical Science, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
5
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
6
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
8
|
Busa P, Kuthati Y, Huang N, Wong CS. New Advances on Pathophysiology of Diabetes Neuropathy and Pain Management: Potential Role of Melatonin and DPP-4 Inhibitors. Front Pharmacol 2022; 13:864088. [PMID: 35496279 PMCID: PMC9039240 DOI: 10.3389/fphar.2022.864088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Pre-diabetes and diabetes are growing threats to the modern world. Diabetes mellitus (DM) is associated with comorbidities such as hypertension (83.40%), obesity (90.49%), and dyslipidemia (93.43%), creating a substantial burden on patients and society. Reductive and oxidative (Redox) stress level imbalance and inflammation play an important role in DM progression. Various therapeutics have been investigated to treat these neuronal complications. Melatonin and dipeptidyl peptidase IV inhibitors (DPP-4i) are known to possess powerful antioxidant and anti-inflammatory properties and have garnered significant attention in the recent years. In this present review article, we have reviewed the recently published reports on the therapeutic efficiency of melatonin and DPP-4i in the treatment of DM. We summarized the efficacy of melatonin and DPP-4i in DM and associated complications of diabetic neuropathy (DNP) and neuropathic pain. Furthermore, we discussed the mechanisms of action and their efficacy in the alleviation of oxidative stress in DM.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Liu H, Ou MX, Han QQ. Microglial M2 Polarization Mediated the Neuroprotective Effect of Morroniside in Transient MCAO-Induced Mice. Front Pharmacol 2021; 12:784329. [PMID: 34867417 PMCID: PMC8640454 DOI: 10.3389/fphar.2021.784329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
Morroniside, a secoiridoid glycoside from Cornus officinalis, is a class of small molecule non-peptide glucagon-like peptide-1 receptor (GLP-1R) agonists and possess many important biomedical functions. Our previous studies reported that GLP-1R agonist exenatide promoted M2 polarization and the expression of cell-specific anti-inflammatory factor interleukin-10 in neuropathological pain model. In this study, we proved that morroniside not only induced M2 polarization and stimulated interleukin-10 expression specifically in cortical primary microglia by p38β mitogen-activated protein kinases pathway but also protected nerve cells against H2O2-induced cell oxidative damage and prohibited ischemic injury by reducing infarct size, which is at least in part mediated by enhanced expression of microglial interleukin-10. In the cortical penumbra area in middle cerebral artery occlusion (MCAO) mice. In general, our results indicated that GLP-1R agonist morroniside might play a neuroprotective effect by inducing M2 polarization, and cyclic-AMP/protein kinase A/p38β pathway might mediate morroniside-induced expression of interleukin-10 protein in M2 microglia.
Collapse
Affiliation(s)
- Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Mei-Xian Ou
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs & Central Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Qiao-Qiao Han
- Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
11
|
Microglial Activation of GLP-1R Signaling in Neuropathic Pain Promotes Gene Expression Adaption Involved in Inflammatory Responses. Neural Plast 2021; 2021:9923537. [PMID: 34512747 PMCID: PMC8426070 DOI: 10.1155/2021/9923537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023] Open
Abstract
Background Neuropathic pain is a common chronic pain, which is related to hypersensitivity to stimulus and greatly affects the quality of life of patients. Maladaptive gene changes and molecular signaling underlie the sensitization of nociceptive pathways. We previously found that the activation of microglial glucagon-like peptide 1 receptor (GLP-1R) could potently relieve formalin-, bone cancer-, peripheral nerve injury-, and diabetes-induced pain hypersensitivity. So far, little is known about how the gene profile changes upon the activation of GLP-1R signaling in the pathophysiology of neuropathic pain. Methods Spinal nerve ligation (SNL) was performed to induce neuropathic pain in rats. Mechanical allodynia was assessed using von Frey filaments. The expression of IL-10, β-endorphin, and μ-opioid receptor (MOR) was examined by real-time quantitative polymerase chain reaction (qPCR) and whole-cell recording. Measurements of cellular excitability of the substantia gelatinosa (SG) neurons by whole-cell recording were carried out. R packages of differential gene expression analysis based on the negative binomial distribution (DESeq2) and weighted correlation network analysis (WGCNA) were used to analyze differential gene expression and the correlated modules among GLP-1R clusters in neuropathic pain. Results The GLP-1R agonist, exenatide, has an antiallodynic effect on neuropathic pain, which could be reversed by intrathecal injections of the microglial inhibitor minocycline. Furthermore, differential gene expression analysis (WGCNA) indicated that intrathecal injections of exenatide could reverse the abnormal expression of 591 genes in the spinal dorsal horn induced by nerve injury. WGCNA revealed 58 modules with a close relationship between the microglial GLP-1R pathway and features of nerve injuries, including pain, ligation, paw withdrawal latency (PWL), and anxiety. The brown module was identified as the highest correlated module, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that inflammatory responses were most correlated with PWL. To further unravel the changes of hyperalgesia-related neuronal electrophysiological activity mediated by microglia GLP-1 receptors, whole-cell recording identified that MOR agonism stimulated a robust outward current in the sham groups compared with the spinal nerve ligation (SNL) groups. This inhibitory effect on the SNL group was more sensitive than that of the sham group after bath application of β-endorphin. Conclusions Our results further confirmed that the GLP-1R pathway is involved in alleviating pain hypersensitivity mediated by spinal microglia activation, and inflammatory responses were the most correlated pathway associated with PWL changes in response to exenatide treatment. We found that the identification of gene regulation in response to GLP-1R activation is an effective strategy for identifying new therapeutic targets for neuropathic pain. Investigation for the activation of spinal microglial GLP-1R which might ameliorate inflammatory responses through gene expression and structural changes is providing a potential biomarker in pain management.
Collapse
|
12
|
Ahmad KA, Shoaib RM, Ahsan MZ, Deng MY, Ma L, Apryani E, Li XY, Wang YX. Microglial IL-10 and β-endorphin expression mediates gabapentinoids antineuropathic pain. Brain Behav Immun 2021; 95:344-361. [PMID: 33862171 DOI: 10.1016/j.bbi.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gabapentinoids are recommended first-line treatments for neuropathic pain. They are neuronal voltage-dependent calcium channel α2δ-1 subunit ligands and have been suggested to attenuate neuropathic pain via interaction with neuronal α2δ-1 subunit. However, the current study revealed their microglial mechanisms underlying antineuropathic pain. Intrathecal injection of gabapentin, pregabalin and mirogabalin rapidly inhibited mechanical allodynia and thermal hyperalgesia, with projected ED50 values of 30.3, 6.2 and 1.5 µg (or 176.9, 38.9 and 7.2 nmol) and Emax values of 66%, 61% and 65% MPE respectively for mechanical allodynia. Intrathecal gabapentinoids stimulated spinal mRNA and protein expression of IL-10 and β-endorphin (but not dynorphin A) in neuropathic rats with the time point parallel to their inhibition of allodynia, which was observed in microglia but not astrocytes or neurons in spinal dorsal horns by using double immunofluorescence staining. Intrathecal gabapentin alleviated pain hypersensitivity in male/female neuropathic but not male sham rats, whereas it increased expression of spinal IL-10 and β-endorphin in male/female neuropathic and male sham rats. Treatment with gabapentin, pregabalin and mirogabalin specifically upregulated IL-10 and β-endorphin mRNA and protein expression in primary spinal microglial but not astrocytic or neuronal cells, with EC50 values of 41.3, 11.5 and 2.5 µM and 34.7, 13.3 and 2.8 µM respectively. Pretreatment with intrathecal microglial metabolic inhibitor minocycline, IL-10 antibody, β-endorphin antiserum or μ-opioid receptor antagonist CTAP (but not κ- or δ-opioid receptor antagonists) suppressed spinal gabapentinoids-inhibited mechanical allodynia. Immunofluorescence staining exhibited specific α2δ-1 expression in neurons but not microglia or astrocytes in the spinal dorsal horns or cultured primary spinal cells. Thus the results illustrate that gabapentinoids alleviate neuropathic pain through stimulating expression of spinal microglial IL-10 and consequent β-endorphin.
Collapse
Affiliation(s)
- Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Rana Muhammad Shoaib
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Zaeem Ahsan
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng-Yan Deng
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Evhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
13
|
Ma L, Peng S, Wei J, Zhao M, Ahmad KA, Chen J, Wang YX. Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther 2021; 27:1157-1172. [PMID: 34111331 PMCID: PMC8446220 DOI: 10.1111/cns.13694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
AIM This study aimed to investigate the regulation of pain hypersensitivity induced by the spinal synaptic transmission mechanisms underlying interleukin (IL)-10 and glucagon-like peptide 1 receptor (GLP-1R) agonist exenatide-induced pain anti-hypersensitivity in neuropathic rats through spinal nerve ligations. METHODS Neuropathic pain model was established by spinal nerve ligation of L5/L6 and verified by electrophysiological recording and immunofluorescence staining. Microglial expression of β-endorphin through autocrine IL-10- and exenatide-induced inhibition of glutamatergic transmission were performed by behavioral tests coupled with whole-cell recording of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) through application of endogenous and exogenous IL-10 and β-endorphin. RESULTS Intrathecal injections of IL-10, exenatide, and the μ-opioid receptor (MOR) agonists β-endorphin and DAMGO inhibited thermal hyperalgesia and mechanical allodynia in neuropathic rats. Whole-cell recordings of bath application of exenatide, IL-10, and β-endorphin showed similarly suppressed enhanced frequency and amplitude of the mEPSCs in the spinal dorsal horn neurons of laminae II, but did not reduce the frequency and amplitude of mIPSCs in neuropathic rats. The inhibitory effects of IL-10 and exenatide on pain hypersensitive behaviors and spinal synaptic plasticity were totally blocked by pretreatment of IL-10 antibody, β-endorphin antiserum, and MOR antagonist CTAP. In addition, the microglial metabolic inhibitor minocycline blocked the inhibitory effects of IL-10 and exenatide but not β-endorphin on spinal synaptic plasticity. CONCLUSION This suggests that spinal microglial expression of β-endorphin mediates IL-10- and exenatide-induced inhibition of glutamatergic transmission and pain hypersensitivity via presynaptic and postsynaptic MORs in spinal dorsal horn.
Collapse
Affiliation(s)
- Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Shiyu Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China.,School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Jinbao Wei
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mengjing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Jinghong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
14
|
Shoaib RM, Ahmad KA, Wang YX. Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. Br J Pharmacol 2021; 178:2976-2997. [PMID: 33786848 DOI: 10.1111/bph.15471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of neuropathic pain due to insufficient efficacy of available therapies. This study provides a novel approach to develop painkillers for chronic pain treatment. EXPERIMENTAL APPROACH The rat formalin pain test and spinal nerve ligation model of neuropathic pain were used to evaluate antinociception of protopanaxadiol. Primary cell cultures, immunofluorescence staining, and gene and protein expression were also performed for mechanism studies. KEY RESULTS Gavage protopanaxadiol remarkably produces pain antihypersensitive effects in neuropathic pain, bone cancer pain and inflammatory pain, with efficacy comparable with gabapentin. Long-term PPD administration does not induce antihypersensitive tolerance, but prevents and reverses the development and expression of morphine analgesic tolerance. Oral protopanaxadiol specifically stimulates spinal expression of dynorphin A in microglia but not in astrocytes or neurons. Protopanaxadiol gavage-related pain antihypersensitivity is abolished by the intrathecal pretreatment with the microglial metabolic inhibitor minocycline, dynorphin antiserum or specific κ-opioid receptor antagonist GNTI. Intrathecal pretreatment with glucocorticoid receptor)antagonists RU486 and dexamethasone-21-mesylate, but not GPR-30 antagonist G15 or mineralocorticoid receptor antagonist eplerenone, completely attenuates protopanaxadiol-induced spinal dynorphin A expression and pain antihypersensitivity in neuropathic pain. Treatment with protopanaxadiol, the glucocorticoid receptor agonist dexamethasone and membrane-impermeable glucocorticoid receptor agonist dexamethasone-BSA in cultured microglia induces remarkable dynorphin A expression, which is totally blocked by pretreatment with dexamthasone-21-mesylate. CONCLUSION AND IMPLICATIONS All the results, for the first time, indicate that protopanaxadiol produces pain antihypersensitivity in neuropathic pain probably through spinal microglial dynorphin A expression after glucocorticoid receptor activation and hypothesize that microglial membrane glucocorticoid receptor/dynorphin A pathway is a potential target to discover and develop novel painkillers in chronic pain.
Collapse
Affiliation(s)
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
15
|
Han QQ, Yin M, Wang ZY, Liu H, Ao JP, Wang YX. Cynandione A Alleviates Neuropathic Pain Through α7-nAChR-Dependent IL-10/β-Endorphin Signaling Complexes. Front Pharmacol 2021; 11:614450. [PMID: 33584292 PMCID: PMC7873367 DOI: 10.3389/fphar.2020.614450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cynandione A, an acetophenone isolated from Cynanchum Wilfordii Radix, exhibits antineuropathic pain effect. This study further explored the target molecule and signaling mechanisms underlying cynandione-A-induced antineuropathic pain. Intrathecal injection of cynandione A significantly attenuated mechanical allodynia in neuropathic rats and substantially increased spinal expression of IL-10 and β-endorphin but not dynorphin A. Cynandione A treatment also enhanced expression of IL-10 and β-endorphin but not α7 nicotinic acetylcholine receptors (nAChRs) in cultured microglia. The IL-10 antibody attenuated cynandione-A-induced spinal or microglial gene expression of β-endorphin and mechanical allodynia, whereas the β-endorphin antiserum blocked cynandione-A-induced mechanical antiallodynia but not spinal or microglial IL-10 gene expression. The α7 nAChR antagonist methyllycaconitine significantly reduced cynandione-A-induced mechanical antiallodynia and spinal or microglial expression of IL-10 and β-endorphin. Furthermore, cynandione A stimulated microglial phosphorylation of PKA, p38, and CREB in an α7-nAChR-dependent manner, and treatment with their inhibitors attenuated cynandione-A-induced mechanical antiallodynia and spinal or microglial expression of IL-10 and β-endorphin. In addition, cynandione A stimulated spinal phosphorylation of the transcription factor STAT3, which was inhibited by methyllycaconitine, the PKA activation inhibitor or IL-10 antibody. The STAT3 inhibitor NSC74859 also abolished cynandione-A-induced mechanical antiallodynia and spinal expression of β-endorphin. These findings suggest that cynandione A suppresses neuropathic pain through α7-nAChR-dependent IL-10/β-endorphin signaling pathway in spinal microglia.
Collapse
Affiliation(s)
- Qiao-Qiao Han
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plants Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zi-Ying Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
16
|
Zhao X, Wang M, Wen Z, Lu Z, Cui L, Fu C, Xue H, Liu Y, Zhang Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne) 2021; 12:721135. [PMID: 34497589 PMCID: PMC8419463 DOI: 10.3389/fendo.2021.721135] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) is an incretin secretory molecule. GLP-1 receptor agonists (GLP-1RAs) are widely used in the treatment of type 2 diabetes (T2DM) due to their attributes such as body weight loss, protection of islet β cells, promotion of islet β cell proliferation and minimal side effects. Studies have found that GLP-1R is widely distributed on pancreatic and other tissues and has multiple biological effects, such as reducing neuroinflammation, promoting nerve growth, improving heart function, suppressing appetite, delaying gastric emptying, regulating blood lipid metabolism and reducing fat deposition. Moreover, GLP-1RAs have neuroprotective, anti-infectious, cardiovascular protective, and metabolic regulatory effects, exhibiting good application prospects. Growing attention has been paid to the relationship between GLP-1RAs and tumorigenesis, development and prognosis in patient with T2DM. Here, we reviewed the therapeutic effects and possible mechanisms of action of GLP-1RAs in the nervous, cardiovascular, and endocrine systems and their correlation with metabolism, tumours and other diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Minghe Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
17
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
18
|
Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/β-endorphin pathway. Biomed Pharmacother 2020; 125:109898. [DOI: 10.1016/j.biopha.2020.109898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
|
19
|
Wang ZY, Han QQ, Deng MY, Zhao MJ, Apryani E, Shoaib RM, Wei DQ, Wang YX. Lemairamin, isolated from the Zanthoxylum plants, alleviates pain hypersensitivity via spinal α7 nicotinic acetylcholine receptors. Biochem Biophys Res Commun 2020; 525:1087-1094. [DOI: 10.1016/j.bbrc.2020.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
|
20
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
21
|
Mao XF, Wu HY, Tang XQ, Ali U, Liu H, Wang YX. Activation of GPR40 produces mechanical antiallodynia via the spinal glial interleukin-10/β-endorphin pathway. J Neuroinflammation 2019; 16:84. [PMID: 30981281 PMCID: PMC6461825 DOI: 10.1186/s12974-019-1457-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Background The G protein-coupled receptor 40 (GPR40), broadly expressed in various tissues such as the spinal cord, exerts multiple physiological functions including pain regulation. This study aimed to elucidate the mechanisms underlying GPR40 activation-induced antinociception in neuropathic pain, particularly related to the spinal glial expression of IL-10 and subsequent β-endorphin. Methods Spinal nerve ligation-induced neuropathic pain model was used in this study. β-Endorphin and IL-10 levels were measured in the spinal cord and cultured primary microglia, astrocytes, and neurons. Double immunofluorescence staining of β-endorphin with glial and neuronal cellular biomarkers was also detected in the spinal cord and cultured primary microglia, astrocytes, and neurons. Results GPR40 was expressed on microglia, astrocytes, and neurons in the spinal cords and upregulated by spinal nerve ligation. Intrathecal injection of the GPR40 agonist GW9508 dose-dependently attenuated mechanical allodynia and thermal hyperalgesia in neuropathic rats, with Emax values of 80% and 100% MPE and ED50 values of 6.7 and 5.4 μg, respectively. Its mechanical antiallodynia was blocked by the selective GPR40 antagonist GW1100 but not GPR120 antagonist AH7614. Intrathecal GW9508 significantly enhanced IL-10 and β-endorphin immunostaining in spinal microglia and astrocytes but not in neurons. GW9508 also markedly stimulated gene and protein expression of IL-10 and β-endorphin in cultured primary spinal microglia and astrocytes but not in neurons, originated from 1-day-old neonatal rats. The IL-10 antibody inhibited GW9508-stimulated gene expression of the β-endorphin precursor proopiomelanocortin (POMC) but not IL-10, whereas the β-endorphin antibody did not affect GW9508-stimulated IL-10 or POMC gene expression. GW9508 increased phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and its stimulatory effects on IL-10 and POMC expression were blocked by each MAPK isoform inhibitor. Spinal GW9508-induced mechanical antiallodynia was completely blocked by intrathecal minocycline, IL-10 neutralizing antibody, β-endorphin antiserum, and μ-opioid receptor-preferred antagonist naloxone. Conclusions Our results illustrate that GPR40 activation produces antinociception via the spinal glial IL-10/β-endorphin antinociceptive pathway. Electronic supplementary material The online version of this article (10.1186/s12974-019-1457-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
22
|
Neubrand VE, Forte-Lago I, Caro M, Delgado M. The atypical RhoGTPase RhoE/Rnd3 is a key molecule to acquire a neuroprotective phenotype in microglia. J Neuroinflammation 2018; 15:343. [PMID: 30553270 PMCID: PMC6295018 DOI: 10.1186/s12974-018-1386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Over-activated microglia play a central role during neuroinflammation, leading to neuronal cell death and neurodegeneration. Reversion of over-activated to neuroprotective microglia phenotype could regenerate a healthy CNS-supporting microglia environment. Our aim was to identify a dataset of intracellular molecules in primary microglia that play a role in the transition of microglia to a ramified, neuroprotective phenotype. METHODS We exploited the anti-inflammatory and neuroprotective properties of conditioned medium of adipose-derived mesenchymal stem cells (CM) as a tool to generate the neuroprotective phenotype of microglia in vitro, and we set up a microscopy-based siRNA screen to identify its hits by cell morphology. RESULTS We initially assayed an array of 157 siRNAs against genes that codify proteins and factors of cytoskeleton and activation/inflammatory pathways in microglia. From them, 45 siRNAs significantly inhibited the CM-induced transition from a neurotoxic to a neuroprotective phenotype of microglia, and 50 siRNAs had the opposite effect. As a proof-of-concept, ten of these targets were validated with individual siRNAs and by downregulation of protein expression. This validation step resulted essential, because three of the potential targets were false positives. The seven validated targets were assayed in a functional screen that revealed that the atypical RhoGTPase RhoE/Rnd3 is necessary for BDNF expression and plays an essential role in controlling microglial migration. CONCLUSIONS Besides the identification of RhoE/Rnd3 as a novel inducer of a potential neuroprotective phenotype in microglia, we propose a list of potential targets to be further confirmed with selective activators or inhibitors.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain.
| | - Irene Forte-Lago
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain
| | - Marta Caro
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain.
| |
Collapse
|
23
|
Wu HY, Mao XF, Tang XQ, Ali U, Apryani E, Liu H, Li XY, Wang YX. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav Immun 2018; 73:504-519. [PMID: 29928964 DOI: 10.1016/j.bbi.2018.06.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin 10 (IL-10) is antinociceptive in various animal models of pain without induction of tolerance, and its mechanism of action was generally believed to be mediated by inhibition of neuroinflammation. Here we reported that intrathecal IL-10 injection dose dependently attenuated mechanical allodynia and thermal hyperalgesiain male and female neuropathic rats, with ED50 values of 40.8 ng and 24 ng, and Emax values of 61.5% MPE and 100% MPE in male rats. Treatment with IL-10 specifically increased expression of the β-endorphin (but not prodynorphin) gene and protein in primary cultures of spinal microglia but not in astrocytes or neurons. Intrathecal injection of IL-10 stimulated β-endorphin expression from microglia but not neurons or astrocytes in both contralateral and ipsilateral spinal cords of neuropathic rats. However, intrathecal injection of the β-endorphin neutralizing antibody, opioid receptor antagonist naloxone, or μ-opioid receptor antagonist CTAP completely blocked spinal IL-10-induced mechanical antiallodynia, while the microglial inhibitor minocycline and specific microglia depletor reversed spinal IL-10-induced β-endorphin overexpression and mechanical antiallodynia. IL-10 treatment increased spinal microglial STAT3 phosphorylation, and the STAT3 inhibitor NSC74859 completely reversed IL-10-increased spinal expression of β-endorphin and neuroinflammatory cytokines and mechanical antiallodynia. Silence of the Bcl3 and Socs3 genes nearly fully reversed IL-10-induced suppression of neuroinflammatory cytokines (but not expression of β-endorphin), although it had no effect on mechanical allodynia. In contrast, disruption of the POMC gene completely blocked IL-10-stimulated β-endorphin expression and mechanical antiallodynia, but had no effect on IL-10 inhibited expression of neuroinflammatory cytokines. Thus this study revealed that IL-10 produced antinociception through spinal microglial β-endorphin expression, but not inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Evhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
24
|
Sun ML, Ao JP, Wang YR, Huang Q, Li TF, Li XY, Wang YX. Lappaconitine, a C18-diterpenoid alkaloid, exhibits antihypersensitivity in chronic pain through stimulation of spinal dynorphin A expression. Psychopharmacology (Berl) 2018; 235:2559-2571. [PMID: 29926144 DOI: 10.1007/s00213-018-4948-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Lappaconitine is a representative C18-diterpenoid alkaloid extracted from Aconitum sinomontanum Nakai and has been prescribed as a pain relief medicine in China for more than 30 years. This study evaluated its antihypersensitivity activity in the rat models of neuropathic and cancer pains and explored its underlying mechanisms. Subcutaneous injection of cumulative doses of lappaconitine produced dose-dependent mechanical antiallodynia and thermal antihyperalgesia in spinal nerve ligation-induced neuropathic rats. The cumulative dose-response analysis exhibited their Emax values of 53.3 and 58.3% MPE, and ED50 values of 1.1 and 1.6 mg/kg. Single intrathecal lappaconitine dose in neuropathy also dose- and time-dependently blocked mechanical allodynia, with an Emax of 66.1% MPE and an ED50 of 0.8 μg. Its multiple twice-daily intrathecal administration over 7 days did not induce mechanical antiallodynic tolerance. Subcutaneous cumulative doses of lappaconitine also produced dose-dependent blockade of mechanical allodynia in the rat bone cancer pain model induced by tibia implantation of cancer cells, with the Emax of 57.9% MPE and ED50 of 2.0 mg/kg. Furthermore, lappaconitine treatment stimulated spinal dynorphin A expression in neuropathic rats, and in primary cultures of microglia but not neurons or astrocytes. Intrathecal pretreatment with the specific microglia depletor liposome-encapsulated clodronate, dynorphin A antibody, and κ-opioid receptor antagonist GNTI totally suppressed intrathecal and subcutaneous lappaconitine-induced mechanical antiallodynia. This study suggests that lappaconitine exhibits antinociception through directly stimulating spinal microglial dynorphin A expression. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ming-Li Sun
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yi-Rui Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Huang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
25
|
Wang YR, Mao XF, Wu HY, Wang YX. Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun 2018; 499:499-505. [PMID: 29596830 DOI: 10.1016/j.bbrc.2018.03.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Liposome-encapsulated clodronate (LEC) is a specific depletor of macrophages. Our study characterized the LEC depletory effects, given intrathecally, on spinal microglia and assessed its effects on initiation and maintenance of neuropathic pain. Measured by using the MTT assay, LEC treatment specifically inhibited cell viability of cultured primary microglia, but not astrocytes or neurons, from neonatal rats, with an IC50 of 43 μg/mL. In spinal nerve ligation-induced neuropathic rats, pretreatment (1 day but not 5 days earlier) with intrathecal LEC specifically depleted microglia (but not astrocytes or neurons) in both contralateral and ipsilateral dorsal horns by the same degree (63% vs. 71%). Intrathecal injection of LEC reversibly blocked the antinociceptive effects of the GLP-1 receptor agonist exenatide and dynorphin A stimulator bulleyaconitine, which have been claimed to be mediated by spinal microglia, whereas it failed to alter morphine- or the glycine receptor agonist gelsemine-induced mechanical antiallodynia which was mediated via the neuronal mechanisms. Furthermore, intrathecal LEC injection significantly attenuated initial (one day after nerve injury) but not existing (2 weeks after nerve injury) mechanical allodynia. Our study demonstrated that LEC, given intrathecally, is a specific spinal microglial inhibitor and significantly reduces initiation but not maintenance of neuropathic pain, highlighting an opposite role of spinal microglia in different stages of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Rui Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China.
| |
Collapse
|
26
|
Zhang D, Lv G. Therapeutic potential of spinal GLP-1 receptor signaling. Peptides 2018; 101:89-94. [PMID: 29329976 DOI: 10.1016/j.peptides.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
GLP-1 signaling pathway has been well studied for its role in regulating glucose homeostasis, as well as its beneficial effects in energy and nutrient metabolism. A number of drugs based on GLP-1 have been used to treat type 2 diabetes mellitus. GLP-1R is expressed in multiple organs and numerous experimental studies have demonstrated that GLP-1 signaling pathway exhibits pro-survival functions in various disorders. In the central nervous system, stimulation of GLP-1R produces neuroprotective effects in specific neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. The preproglucagon neurons located in the brainstem can also produce GLP-1. GLP-1 analogs have a long-acting effect and are able to pass the blood-brain barrier, which probably extends the therapeutic efficacy of GLP-1R activation. Neurodegenerative or traumatic conditions can damage the spinal cord and result in motor and sensory dysfunction. Evidence supports that GLP-1R activation in the spinal cord possesses beneficial effects and significant therapeutic potential. Herein, we review studies that have focused on GLP-1 and the spinal cord, and summarize the expression of GLP-1R and the innervation of PPG neurons in the spinal cord, as well as the potential therapeutic benefits of GLP-1R activation.
Collapse
Affiliation(s)
- Dongao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang Lv
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
27
|
Bomba M, Granzotto A, Castelli V, Massetti N, Silvestri E, Canzoniero LMT, Cimini A, Sensi SL. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging 2017; 64:33-43. [PMID: 29331730 DOI: 10.1016/j.neurobiolaging.2017.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
Modulation of insulin-dependent signaling is emerging as a valuable therapeutic tool to target neurodegeneration. In the brain, the activation of insulin receptors promotes cell growth, neuronal repair, and protection. Altered brain insulin signaling participates in the cognitive decline seen in Alzheimer's disease patients and the aging brain. Glucagon-like peptide-1 (GLP-1) regulates insulin secretion and, along with GLP-1 analogues, enhances neurotrophic signaling and counteracts cognitive deficits in preclinical models of neurodegeneration. Moreover, recent evidence indicates that GLP-1 modulates the activity of the brain-derived neurotrophic factor (BDNF). In this study, in adult wild-type mice, here employed as a model of mid-life brain aging, we evaluated the effects of a 2-month treatment with exenatide, a GLP-1 analogue. We found that exenatide promotes the enhancement of long-term memory performances. Biochemical and imaging analyses show that the drug promotes the activation of the BDNF-TrkB neurotrophic axis and inhibits apoptosis by decreasing p75NTR-mediated signaling. The study provides preclinical evidence for the use of exenatide to delay age-dependent cognitive decline.
Collapse
Affiliation(s)
- Manuela Bomba
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Noemi Massetti
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Elena Silvestri
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, USA; National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy; Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California - Irvine, Irvine, USA.
| |
Collapse
|
28
|
Wu HY, Tang XQ, Liu H, Mao XF, Wang YX. Both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB signal pathways mediate exenatide-stimulated expression of M2 microglial markers. J Neuroimmunol 2017; 316:17-22. [PMID: 29249556 DOI: 10.1016/j.jneuroim.2017.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
GLP-1 receptor agonists, exenatide and GLP-1, promoted M2 type polarization in monocytes/macrophages and microglial cells. This study explored the signal basis underlying exenatide-stimulated expression of M2 microglia-specific genes, including the cytoplasmic marker Arg 1, surface marker CD206, and secretion protein marker IL-4. Treatment with exenatide in cultured primary microglial cells concentration dependently stimulated the expression of Arg 1, CD206 and IL-4, but did not significantly alter LPS-stimulated expression of TNF-α, IL-1β and IL-6. The stimulatory effects of exenatide were completely prevented by the GLP-1 receptor antagonist exendin(9-39), but not altered by application of LPS. Furthermore, the adenylyl cyclase inhibitor DDA, PKA inhibitor H89 and CREB inhibitor KG501 completely blocked exenatide-induced overexpression of Arg 1, CD206 and IL-4. In addition, exenatide-stimulated expression of Arg 1 and CD206 was totally blocked by the p38 MAPK inhibitor SB203580 and gene silencer siRNA/p38β (but not siRNA/p38α), whereas the expressed IL-4 was not significantly altered by the p38 inhibitor or other MAPK subtype inhibitors. These findings revealed that both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB mediated GLP-1 receptor agonism-induced overexpression of M2 microglial biomarkers.
Collapse
Affiliation(s)
- Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
29
|
Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression. J Neurosci 2017; 37:11701-11714. [PMID: 29084866 DOI: 10.1523/jneurosci.1799-17.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Indexed: 01/03/2023] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1β, IL-6, or CD68. Intrathecal exenatide injection also significantly upregulated spinal microglial expression of IL-10, IL-4, Arg 1, and CD206, but not TNF-α, IL-1β, IL-6, or CD68. Intrathecal injection of exenatide stimulated spinal microglial expression of IL-10 and β-endorphin in neuropathic rats. Furthermore, treatment with IL-10 (but not IL-4) stimulated β-endorphin expression in cultured primary microglia, whereas treatment with β-endorphin failed to increase IL-10 expression. The IL-10-neutralizing antibody entirely blocked exenatide-induced spinal microglial expression of β-endorphin in vitro and in vivo and fully blocked exenatide mechanical antiallodynia in neuropathic rats. Moreover, specific cAMP/PKA/p38 signal inhibitors and siRNA/p38β, but not siRNA/p38α, completely blocked exenatide-induced IL-10 expression in cultured primary microglia. Knock-down of IL-10 receptor-α mRNA using siRNA fully inhibited exenatide-induced spinal microglial β-endorphin expression and mechanical antiallodynia in neuropathy. Exenatide also markedly stimulated phosphorylation of the transcription factor STAT3 in cultured primary microglia and β-endorphin stimulation was completely inhibited by the specific STAT3 activation inhibitor. These results revealed that IL-10 in microglia mediated β-endorphin expression after GLP-1 receptor activation through the autocrine cAMP/PKA/p38β/CREB and subsequent IL-10 receptor/STAT3 signal pathways.SIGNIFICANCE STATEMENT Activation of GLP-1 receptors specifically and simultaneously stimulates the expression of anti-inflammatory cytokines IL-10 and IL-4, as well as the neuroprotective factor β-endorphin from microglia. GLP-1 receptor agonism induces β-endorphin expression and antinociception through autocrine release of IL-10. Activation of GLP-1 receptors stimulates IL-10 and β-endorphin expression subsequently through the Gs-cAMP/PKA/p38β/CREB and IL-10/IL-10 receptor-α/STAT3 signal transduction pathways.
Collapse
|
30
|
Huang Q, Mao XF, Wu HY, Liu H, Sun ML, Wang X, Wang YX. Cynandione A attenuates neuropathic pain through p38β MAPK-mediated spinal microglial expression of β-endorphin. Brain Behav Immun 2017; 62:64-77. [PMID: 28189715 DOI: 10.1016/j.bbi.2017.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
Cynanchi Wilfordii Radix (baishouwu), a medicinal herb, has been widely used in Asia to treat a variety of diseases or illnesses. Cynandione A isolated from C. Wilfordii is the principle acetophenone and exhibits neuroprotective and anti-inflammatory activities. This study aims to evaluate the antihypersensitivity activities of cynandione A in neuropathy and explored its mechanisms of action. Intrathecal injection of cynandione A dose-dependently attenuated spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia, with maximal possible effects of 57% and 59%, ED50s of 14.9μg and 6.5μg, respectively. Intrathecal injection of cynandione A significantly increased β-endorphin levels in spinal cords of neuropathic rats and its treatment concentration-dependently induced β-endorphin expression in cultured primary microglia (but not in neurons or astrocytes), with EC50s of 38.8 and 20.0μM, respectively. Cynandione A also non-selectively upregulated phosphorylation of mitogen-activated protein kinases (MAPKs), including p38, extracellular signal regulated kinase (ERK1/2), and extracellular signal regulated kinase (JNK) in primary microglial culture; however, cynandione A-stimulated β-endorphin expression was completely inhibited by the specific p38 activation inhibitor SB203580, but not by the ERK1/2 or JNK activation inhibitors. Knockdown of spinal p38β but not p38α using siRNA also completely blocked cynandione A-induced β-endorphin expression in cultured microglial cells. Furthermore, cynandione A-induced antiallodynia in neuropathy was totally inhibited by the microglial inhibitor minocycline, SB203580, anti-β-endorphin antibody, and μ-opioid receptor antagonist CTAP (but not the κ- or δ-opioid receptor antagonist). These results suggest that cynandione A attenuates neuropathic pain through upregulation of spinal microglial expression β-endorphin via p38β MAPK activation.
Collapse
Affiliation(s)
- Qian Huang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ming-Li Sun
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiao Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan 250014, Shandong, China.
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|