1
|
Shnayder NA, Pekarets NA, Pekarets NI, Dmitrenko DV, Grechkina VV, Petrova MM, Al-Zamil M, Nasyrova RF. MicroRNAs as Epigenetic Biomarkers of Pathogenetic Mechanisms of the Metabolic Syndrome Induced by Antiseizure Medications: Systematic Review. J Clin Med 2025; 14:2432. [PMID: 40217882 PMCID: PMC11989458 DOI: 10.3390/jcm14072432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Antiseizure medication (ASM) induced metabolic syndrome (AIMetS) is a common adverse drug reaction (ADR) of pharmacotherapy for epilepsy and psychiatric disorders. However, the sensitivity and specificity of blood biomarkers may be insufficient due to the influence of combined pathology, concomitant diseases, and the peculiarities of the metabolism of ASMs in patients with epilepsy. Methods: The presented results of experimental and clinical studies of microRNAs (miRs) as epigenetic biomarkers of MetS and AIMetS, which were entered into the different databases, were analyzed for the last decade (2014-2024). Results: A systematic review demonstrated that miRs can act as promising epigenetic biomarkers of key AIMetS domains. However, the results of the review demonstrated the variable role of various miRs and their paralogs in the pathogenesis of AIMetS. Therefore, as part of this study, an miRs signature was proposed that allows us to assess the risk of developing and the severity of AIMetS as low risk, medium risk, and high risk. Conclusions: The mechanisms of development and biomarkers of AIMetS are an actual problem of epileptology, which is still far from being resolved. The development of panels (signatures) of epigenetic biomarkers of this widespread ADR may help to increase the safety of pharmacotherapy of epilepsy. However, to increase the sensitivity and specificity of circulating miRs in the blood as biomarkers of AIMetS, it is necessary to conduct "bridge" studies in order to replicate the results of preclinical and clinical studies into real clinical practice.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Nikolai A. Pekarets
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
| | - Natalia I. Pekarets
- Department of Psychiatry and Clinical Psychology, Irkutsk State Medical University, 1 Krasny Vosstaniya St., 664003 Irkutsk, Russia;
| | - Diana V. Dmitrenko
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
- Department of Psychiatry, General and Clinical Psychology, Tula State University, 92 Lenin Ave., 300012 Tula, Russia
| |
Collapse
|
2
|
Dinh LV, Dangerfield J, DeBono A, Keller AN, Josephs TM, Gregory KJ, Leach K, Capuano B. Next-Generation Analogues of AC265347 as Positive Allosteric Modulators of the Calcium-Sensing Receptor: Pharmacological Investigation of Structural Modifications at the Stereogenic Centre. Int J Mol Sci 2025; 26:2580. [PMID: 40141226 PMCID: PMC11942566 DOI: 10.3390/ijms26062580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The calcium-sensing receptor (CaSR) is a validated therapeutic target in the treatment of hyperparathyroidism and related diseases. The CaSR ago-positive allosteric modulator (PAM), AC265347 (1), exhibits a chemically and pharmacologically unique profile compared to current approved CaSR PAM therapeutics. Herein, we report a series of 'next-generation' analogues of AC265347, investigating the impact of structural modifications at the stereogenic centre on CaSR PAM activity. Compounds 5 and 7b featuring the alcohol functional group showed ago-PAM profiles comparable to 1, whilst compounds 6, 7 and 9 devoid of this functionality were 'pure' PAMs with no intrinsic agonism. These novel chemical tools provide an opportunity to explore the therapeutic potential of AC265347-like PAMs as a function of affinity, cooperativity and intrinsic agonism.
Collapse
Affiliation(s)
- Le Vi Dinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (L.V.D.); (J.D.); (A.D.)
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (A.N.K.); (T.M.J.); (K.J.G.)
| | - Jesse Dangerfield
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (L.V.D.); (J.D.); (A.D.)
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (A.N.K.); (T.M.J.); (K.J.G.)
| | - Aaron DeBono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (L.V.D.); (J.D.); (A.D.)
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (A.N.K.); (T.M.J.); (K.J.G.)
| | - Andrew N. Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (A.N.K.); (T.M.J.); (K.J.G.)
| | - Tracy M. Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (A.N.K.); (T.M.J.); (K.J.G.)
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (A.N.K.); (T.M.J.); (K.J.G.)
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (A.N.K.); (T.M.J.); (K.J.G.)
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (L.V.D.); (J.D.); (A.D.)
| |
Collapse
|
3
|
Liu F, Wu CG, Tu CL, Glenn I, Meyerowitz J, Kaplan AL, Lyu J, Cheng Z, Tarkhanova OO, Moroz YS, Irwin JJ, Chang W, Shoichet BK, Skiniotis G. Large library docking identifies positive allosteric modulators of the calcium-sensing receptor. Science 2024; 385:eado1868. [PMID: 39298584 PMCID: PMC11629082 DOI: 10.1126/science.ado1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024]
Abstract
Positive allosteric modulator (PAM) drugs enhance the activation of the calcium-sensing receptor (CaSR) and suppress parathyroid hormone (PTH) secretion. Unfortunately, these hyperparathyroidism-treating drugs can induce hypocalcemia and arrhythmias. Seeking improved modulators, we docked libraries of 2.7 million and 1.2 billion molecules against the CaSR structure. The billion-molecule docking found PAMs with a 2.7-fold higher hit rate than the million-molecule library, with hits up to 37-fold more potent. Structure-based optimization led to nanomolar leads. In ex vivo organ assays, one of these PAMs was 100-fold more potent than the standard of care, cinacalcet, and reduced serum PTH levels in mice without the hypocalcemia typical of CaSR drugs. As determined from cryo-electron microscopy structures, the PAMs identified here promote CaSR conformations that more closely resemble the activated state than those induced by the established drugs.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cheng-Guo Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chia-Ling Tu
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabella Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiqiang Cheng
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Yurii S. Moroz
- Chemspace LLC, 02094 Kyiv, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
- Enamine Ltd., 02094 Kyiv, Ukraine
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wenhan Chang
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Ma S, Yin X, Pin JP, Rondard P, Yi P, Liu J. Absence of calcium-sensing receptor basal activity due to inter-subunit disulfide bridges. Commun Biol 2024; 7:501. [PMID: 38664468 PMCID: PMC11045811 DOI: 10.1038/s42003-024-06189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
G protein-coupled receptors naturally oscillate between inactive and active states, often resulting in receptor constitutive activity with important physiological consequences. Among the class C G protein-coupled receptors that typically sense amino-acids and their derivatives, the calcium sensing receptor (CaSR) tightly controls blood calcium levels. Its constitutive activity has not yet been studied. Here, we demonstrate the importance of the inter-subunit disulfide bridges in maintaining the inactive state of CaSR, resulting in undetectable constitutive activity, unlike the other class C receptors. Deletion of these disulfide bridges results in strong constitutive activity that is abolished by mutations preventing amino acid binding. It shows that this inter-subunit disulfide link is necessary to limit the agonist effect of amino acids on CaSR. Furthermore, human genetic mutations deleting these bridges and associated with hypocalcemia result in elevated CaSR constitutive activity. These results highlight the physiological importance of fine tuning the constitutive activity of G protein-coupled receptors.
Collapse
Affiliation(s)
- Shumin Ma
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueliang Yin
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, Cedex 5, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, Cedex 5, France.
| | - Ping Yi
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Liu F, Wu CG, Tu CL, Glenn I, Meyerowitz J, Levit Kaplan A, Lyu J, Cheng Z, Tarkhanova OO, Moroz YS, Irwin JJ, Chang W, Shoichet BK, Skiniotis G. Small vs. Large Library Docking for Positive Allosteric Modulators of the Calcium Sensing Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573448. [PMID: 38234749 PMCID: PMC10793424 DOI: 10.1101/2023.12.27.573448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Drugs acting as positive allosteric modulators (PAMs) to enhance the activation of the calcium sensing receptor (CaSR) and to suppress parathyroid hormone (PTH) secretion can treat hyperparathyroidism but suffer from side effects including hypocalcemia and arrhythmias. Seeking new CaSR modulators, we docked libraries of 2.7 million and 1.2 billion molecules against transforming pockets in the active-state receptor dimer structure. Consistent with simulations suggesting that docking improves with library size, billion-molecule docking found new PAMs with a hit rate that was 2.7-fold higher than the million-molecule library and with hits up to 37-fold more potent. Structure-based optimization of ligands from both campaigns led to nanomolar leads, one of which was advanced to animal testing. This PAM displays 100-fold the potency of the standard of care, cinacalcet, in ex vivo organ assays, and reduces serum PTH levels in mice by up to 80% without the hypocalcemia typical of CaSR drugs. Cryo-EM structures with the new PAMs show that they induce residue rearrangements in the binding pockets and promote CaSR dimer conformations that are closer to the G-protein coupled state compared to established drugs. These findings highlight the promise of large library docking for therapeutic leads, especially when combined with experimental structure determination and mechanism.
Collapse
Affiliation(s)
- Fangyu Liu
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Cheng-Guo Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chia-Ling Tu
- San Francisco VA Medical Center, Dept. of Medicine, University of California, San Francisco, San Francisco CA 94158, USA
| | - Isabella Glenn
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anat Levit Kaplan
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Jiankun Lyu
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
- Current address: The Rockefeller University, New York, NY, 10065
| | - Zhiqiang Cheng
- San Francisco VA Medical Center, Dept. of Medicine, University of California, San Francisco, San Francisco CA 94158, USA
| | | | - Yurii S. Moroz
- Chemspace LLC, Kyiv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
- Enamine Ltd., Kyiv, 02094, Ukraine
| | - John J. Irwin
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Wenhan Chang
- San Francisco VA Medical Center, Dept. of Medicine, University of California, San Francisco, San Francisco CA 94158, USA
| | - Brian K. Shoichet
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Qi L, Zhang H, Guo Y, Zhang C, Xu Y. Novel Calcium-Binding Peptide from Bovine Bone Collagen Hydrolysates and Its Potential Pro-Osteogenic Activity via Calcium-Sensing Receptor (CaSR). Mol Nutr Food Res 2024; 68:e2200726. [PMID: 38161238 DOI: 10.1002/mnfr.202200726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/25/2023] [Indexed: 01/03/2024]
Abstract
SCOPE This paper aims to explore the osteogenic activity and potential mechanism of the peptide-calcium chelate, and provides a theoretical basis for peptide-calcium chelates as functional foods to prevent or improve osteoporosis. METHODS AND RESULTS In this research, a novel peptide (Phe-Gly-Leu, FGL) with a high calcium-binding capacity is screened from bovine bone collagen hydrolysates (CPs), calcium binding sites of which mainly included carbonyl, amino and carboxyl groups. The FGL-Ca significantly enhances the osteogenic activity of MC3T3-E1 cells (survival rate, differentiation, and mineralization). The results of calcium fluorescence labeling and molecular docking show that FGL-Ca may activate calcium-sensing receptor (CaSR), leading to an increase in intracellular calcium concentration, then enhancing osteogenic activity of MC3T3-E1 cells. Further research found that FGL-Ca significantly promotes the mRNA and protein expression levels of CaSR, transforming growth factor β (TGF-β1), TGF-β-type II receptor (TβRII), Smad2, Smad3, osteocalcin (OCN), alkaline phosphatase (ALP), osteoprotegrin (OPG), and collagen type I (COLI). Subsequently, in the signal pathway intervention experiment, the expression levels of genes and proteins related to the TGF-β1/Smad2/3 signaling pathway that are promoted by FGL-Ca are found to decrease. CONCLUSIONS These results suggest that FGL-Ca may activate CaSR, increase intracellular calcium concentration, and activate TGF-β1/Smad2/3 signaling pathway, which may be one of the potential mechanisms for enhancing osteogenic activity.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des déportés 2, B-5030, Gembloux, Belgium
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yang Xu
- Inner Mongolia Mengtai Biological Engineering Co., Ltd., Shengle Economic Park, Helinger County, Hohhot, Inner Mongolia, 010000, China
| |
Collapse
|
7
|
Lazrak A, Song W, Yu Z, Zhang S, Nellore A, Hoopes CW, Woodworth BA, Matalon S. Low molecular weight hyaluronan inhibits lung epithelial ion channels by activating the calcium-sensing receptor. Matrix Biol 2023; 116:67-84. [PMID: 36758905 PMCID: PMC10012407 DOI: 10.1016/j.matbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (Po) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h. The Cl- current through cystic fibrosis transmembrane conductance regulator (CFTR) and the activity of Na,K-ATPase were both inhibited by more than 66% at 24 h. The inhibitory effects of LMW-HA on ion channels were reversed by 1 µM NPS-2143, or 150 µg/ml high molecular weight hyaluronan (HMW-HA). In HEK-293 cells expressing the calcium-sensitive Cl- channel TMEM16-A, CaSR was required for the activation of the Cl- current by LMW-HA. This is the first demonstration of lung ions and water transport inhibition by LMW-HA, and its mediation through the activation of CaSR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA.
| | - Weifeng Song
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Shaoyan Zhang
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Anoma Nellore
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Charles W Hoopes
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, AL 35295, USA
| | - Bradford A Woodworth
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| |
Collapse
|
8
|
Symmetric activation and modulation of the human calcium-sensing receptor. Proc Natl Acad Sci U S A 2021; 118:2115849118. [PMID: 34916296 DOI: 10.1073/pnas.2115849118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/14/2023] Open
Abstract
The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.
Collapse
|
9
|
Dinh LV, DeBono A, Keller AN, Josephs TM, Gregory KJ, Leach K, Capuano B. Development of AC265347-Inspired Calcium-Sensing Receptor Ago-Positive Allosteric Modulators. ChemMedChem 2021; 16:3451-3462. [PMID: 34216111 DOI: 10.1002/cmdc.202100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/07/2022]
Abstract
The calcium-sensing receptor (CaSR) is a clinical target in the treatment of hyperparathyroidism and related diseases. However, clinical use of approved CaSR-targeting drugs such as cinacalcet is limited due to adverse side effects including hypocalcaemia, nausea and vomiting, and in some instances, a lack of efficacy. The CaSR agonist and positive allosteric modulator (ago-PAM), AC265347, is chemically distinct from clinically-approved CaSR PAMs. AC265347 potently suppressed parathyroid hormone (PTH) release in rats with a lower propensity to cause hypocalcaemia compared to cinacalcet and may therefore offer benefits over current CaSR PAMs. Here we report a structure activity relationship (SAR) study seeking to optimise AC265347 as a drug candidate and disclose the discovery of AC265347-like compounds with diverse pharmacology and improved physicochemical and drug-like properties.
Collapse
Affiliation(s)
- Le Vi Dinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca 2+ ions and L-tryptophan. Cell Res 2021; 31:383-394. [PMID: 33603117 PMCID: PMC8115157 DOI: 10.1038/s41422-021-00474-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The human calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) responsible for maintaining Ca2+ homeostasis in the blood. The general consensus is that extracellular Ca2+ is the principal agonist of CaSR. Aliphatic and aromatic L-amino acids, such as L-Phe and L-Trp, increase the sensitivity of CaSR towards Ca2+ and are considered allosteric activators. Crystal structures of the extracellular domain (ECD) of CaSR dimer have demonstrated Ca2+ and L-Trp binding sites and conformational changes of the ECD upon Ca2+/L-Trp binding. However, it remains to be understood at the structural level how Ca2+/L-Trp binding to the ECD leads to conformational changes in transmembrane domains (TMDs) and consequent CaSR activation. Here, we determined the structures of full-length human CaSR in the inactive state, Ca2+- or L-Trp-bound states, and Ca2+/L-Trp-bound active state using single-particle cryo-electron microscopy. Structural studies demonstrate that L-Trp binding induces the closure of the Venus flytrap (VFT) domain of CaSR, bringing the receptor into an intermediate active state. Ca2+ binding relays the conformational changes from the VFT domains to the TMDs, consequently inducing close contact between the two TMDs of dimeric CaSR, activating the receptor. Importantly, our structural and functional studies reveal that Ca2+ ions and L-Trp activate CaSR cooperatively. Amino acids are not able to activate CaSR alone, but can promote the receptor activation in the presence of Ca2+. Our data provide complementary insights into the activation of class C GPCRs and may aid in the development of novel drugs targeting CaSR.
Collapse
|
11
|
Diao J, DeBono A, Josephs TM, Bourke JE, Capuano B, Gregory KJ, Leach K. Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor. ACS Pharmacol Transl Sci 2021; 4:666-679. [PMID: 33860192 DOI: 10.1021/acsptsci.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/24/2023]
Abstract
The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.
Collapse
Affiliation(s)
- Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Trends Biochem Sci 2020; 45:1049-1064. [PMID: 32861513 PMCID: PMC7642020 DOI: 10.1016/j.tibs.2020.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the β2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Diomedes A Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, College of Science and Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
13
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
14
|
Structural Mechanism of Cooperative Regulation of Calcium-Sensing Receptor-Mediated Cellular Signaling. CURRENT OPINION IN PHYSIOLOGY 2020; 17:269-277. [PMID: 33709045 DOI: 10.1016/j.cophys.2020.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calcaium sensing receptors (CaSRs) play a central role in regulating extracellular calcium (Ca2+) homeostasis and many (patho)physiological processes. This regulation is primarily orchestrated in response to extracellular stimuli via the extracellular domain (ECD). This paper first reviews the modeled structure of the CaSR ECD and the prediction and investigation of the Ca2+ and amino acid binding sites. Several recently solved X-ray structures are then compared to support a proposed CaSR activation model involving functional cooperativity. The review also discusses recent implications for drug development. These studies provide new insights into the molecular basis of diseases and the design of therapeutic agents that target CaSR and other family C G protein-coupled receptors (cGPCRs).
Collapse
|
15
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
16
|
Josephs TM, Keller AN, Khajehali E, DeBono A, Langmead CJ, Conigrave AD, Capuano B, Kufareva I, Gregory KJ, Leach K. Negative allosteric modulators of the human calcium-sensing receptor bind to overlapping and distinct sites within the 7-transmembrane domain. Br J Pharmacol 2020; 177:1917-1930. [PMID: 31881094 PMCID: PMC7070164 DOI: 10.1111/bph.14961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Negative allosteric modulators (NAMs) that target the calcium-sensing receptor (CaS receptor) were originally developed for the treatment of osteoporosis by stimulating the release of endogenous parathyroid hormone, but failed in human clinical trials. Several chemically and structurally distinct NAM scaffolds have been described, but it is not known how these different scaffolds interact with the CaS receptor to inhibit receptor signalling in response to agonists. EXPERIMENTAL APPROACH In the present study, we used a mutagenesis approach combined with analytical pharmacology and computational modelling to probe the binding sites of four distinct NAM scaffolds. KEY RESULTS Although all four scaffolds bind to the 7-transmembrane and/or extracellular or intracellular loops, they occupy distinct regions, as previously shown for positive allosteric modulators of the CaS receptor. Furthermore, different NAM scaffolds mediate negative allosteric modulation via distinct amino acid networks. CONCLUSION AND IMPLICATIONS These findings aid our understanding of how different NAMs bind to and inhibit the CaS receptor. Elucidation of allosteric binding sites in the CaS receptor has implications for the discovery of novel allosteric modulators.
Collapse
Affiliation(s)
- Tracy M. Josephs
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Andrew N. Keller
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Elham Khajehali
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Aaron DeBono
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Christopher J. Langmead
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Arthur D. Conigrave
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| | - Ben Capuano
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Irina Kufareva
- Skaggs School of Pharmacy & Pharmaceutical SciencesUniversity of CaliforniaSan DiegoCAUSA
| | - Karen J. Gregory
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Katie Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| |
Collapse
|
17
|
Gregory KJ, Giraldo J, Diao J, Christopoulos A, Leach K. Evaluation of Operational Models of Agonism and Allosterism at Receptors with Multiple Orthosteric Binding Sites. Mol Pharmacol 2020; 97:35-45. [PMID: 31704718 DOI: 10.1124/mol.119.118091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 02/14/2025] Open
Abstract
Current operational models of agonism and allosterism quantify ligand actions at receptors where agonist concentration-response relationships are nonhyperbolic by introduction of a transducer slope that relates receptor occupancy to response. However, for some receptors nonhyperbolic concentration-response relationships arise from multiple endogenous agonist molecules binding to a receptor in a cooperative manner. Thus, we developed operational models of agonism in systems with cooperative agonist binding and evaluated the models by simulating data describing agonist effects. The models were validated by analyzing experimental data demonstrating the effects of agonists and allosteric modulators at receptors where agonist binding follows hyperbolic (M4 muscarinic acetylcholine receptors) or nonhyperbolic relationships (metabotropic glutamate receptor 5 and calcium-sensing receptor). For hyperbolic agonist concentration-response relationships, no differences in estimates of ligand affinity, efficacy, or cooperativity were observed when the slope was assigned to either a transducer slope or agonist binding slope. In contrast, for receptors with nonhyperbolic agonist concentration-response relationships, estimates of ligand affinity, efficacy, or cooperativity varied depending on the assignment of the slope. The extent of this variation depended on the magnitude of the slope value and agonist efficacy, and for allosteric modulators on the magnitude of cooperativity. The modified operational models described herein are well suited to analyzing agonist and modulator interactions at receptors that bind multiple orthosteric agonists in a cooperative manner. Accounting for cooperative agonist binding is essential to accurately quantify agonist and drug actions. SIGNIFICANCE STATEMENT: Some orthosteric agonists bind to multiple sites on a receptor, but current analytical methods to characterize such interactions are limited. Herein, we develop and validate operational models of agonism and allosterism for receptors with multiple orthosteric binding sites, and demonstrate that such models are essential to accurately quantify agonist and drug actions. These findings have important implications for the discovery and development of drugs targeting receptors such as the calcium-sensing receptor, which binds at least five calcium ions.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Binding Sites/drug effects
- Calcium/metabolism
- Calcium Ionophores/pharmacology
- Computer Simulation
- Dose-Response Relationship, Drug
- Drug Agonism
- Drug Synergism
- HEK293 Cells
- Humans
- Ligands
- Models, Biological
- Receptor, Metabotropic Glutamate 5/agonists
- Receptor, Metabotropic Glutamate 5/chemistry
- Receptor, Metabotropic Glutamate 5/metabolism
- Receptor, Muscarinic M4/agonists
- Receptor, Muscarinic M4/chemistry
- Receptor, Muscarinic M4/metabolism
- Receptors, Calcium-Sensing/agonists
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/metabolism
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Jesús Giraldo
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Jiayin Diao
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Katie Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| |
Collapse
|
18
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
19
|
Gregory K, Kufareva I, Keller AN, Khajehali E, Mun HC, Goolam MA, Mason RS, Capuano B, Conigrave AD, Christopoulos A, Leach K. Dual Action Calcium-Sensing Receptor Modulator Unmasks Novel Mode-Switching Mechanism. ACS Pharmacol Transl Sci 2018; 1:96-109. [PMID: 32219206 PMCID: PMC7089027 DOI: 10.1021/acsptsci.8b00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 12/17/2022]
Abstract
Negative allosteric modulators (NAMs) of the human calcium-sensing receptor (CaSR) have previously failed to show efficacy in human osteoporosis clinical trials, but there is now significant interest in repurposing these drugs for hypocalcemic disorders and inflammatory lung diseases. However, little is known about how CaSR NAMs inhibit the response to endogenous activators. An improved understanding of CaSR negative allosteric modulation may afford the opportunity to develop therapeutically superior CaSR-targeting drugs. In an attempt to elucidate the mechanistic and structural basis of allosteric modulation mediated by the previously reported NAM, calhex231, we herein demonstrate that calhex231 actually potentiates or inhibits the activity of multiple CaSR agonists depending on whether it occupies one or both protomers in a CaSR dimer. These findings reveal a novel mechanism of mode-switching at a Class C G protein-coupled receptor that has implications for drug discovery and potential clinical utility.
Collapse
Affiliation(s)
- Karen
J. Gregory
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Irina Kufareva
- Skaggs
School of Pharmacy & Pharmaceutical Sciences, University of California, 9500 Gilman Drive, La Jolla, San Diego, California MC 0747, United States
| | - Andrew N. Keller
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Elham Khajehali
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Hee-Chang Mun
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Mahvash A. Goolam
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Rebecca S. Mason
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Ben Capuano
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur D. Conigrave
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Arthur Christopoulos
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Katie Leach
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|