1
|
Hong X, Huang S, Jiang H, Ma Q, Qiu J, Luo Q, Cao C, Xu Y, Chen F, Chen Y, Sun C, Fu H, Liu Y, Li C, Chen F, Qiu P. Alcohol-related liver disease (ALD): current perspectives on pathogenesis, therapeutic strategies, and animal models. Front Pharmacol 2024; 15:1432480. [PMID: 39669199 PMCID: PMC11635172 DOI: 10.3389/fphar.2024.1432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Alcohol-related liver disease (ALD) is a major cause of morbidity and mortality worldwide. It encompasses conditions such as fatty liver, alcoholic hepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. Numerous recent studies have demonstrated the critical role of oxidative stress, abnormal lipid metabolism, endoplasmic reticulum stress, various forms of cell death (including apoptosis, necroptosis, and ferroptosis), intestinal microbiota dysbiosis, liver immune response, cell autophagy, and epigenetic abnormalities in the pathogenesis of ALD. Currently, abstinence, corticosteroids, and nutritional therapy are the traditional therapeutic interventions for ALD. Emerging therapies for ALD mainly include the blockade of inflammatory pathways, the promotion of liver regeneration, and the restoration of normal microbiota. Summarizing the advances in animal models of ALD will facilitate a more systematic investigation of the pathogenesis of ALD and the exploration of therapeutic targets. This review summarizes the latest insight into the pathogenesis and molecular mechanisms of ALD, as well as the pros and cons of ALD rodent models, providing a basis for further research on therapeutic strategies for ALD.
Collapse
Affiliation(s)
- Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunlu Cao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyang Xu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuzhe Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufan Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunfeng Sun
- The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Haozhe Fu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Qiu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Pan X, Heacock ML, Abdulaziz EN, Violante S, Zuckerman AL, Shrestha N, Yao C, Goodman RP, Cross JR, Cracan V. A genetically encoded tool to increase cellular NADH/NAD + ratio in living cells. Nat Chem Biol 2024; 20:594-604. [PMID: 37884806 PMCID: PMC11045668 DOI: 10.1038/s41589-023-01460-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Impaired redox metabolism is a key contributor to the etiology of many diseases, including primary mitochondrial disorders, cancer, neurodegeneration and aging. However, mechanistic studies of redox imbalance remain challenging due to limited strategies that can perturb redox metabolism in various cellular or organismal backgrounds. Most studies involving impaired redox metabolism have focused on oxidative stress; consequently, less is known about the settings where there is an overabundance of NADH reducing equivalents, termed reductive stress. Here we introduce a soluble transhydrogenase from Escherichia coli (EcSTH) as a novel genetically encoded tool to promote reductive stress in living cells. When expressed in mammalian cells, EcSTH, and a mitochondrially targeted version (mitoEcSTH), robustly elevated the NADH/NAD+ ratio in a compartment-specific manner. Using this tool, we determined that metabolic and transcriptomic signatures of the NADH reductive stress are cellular background specific. Collectively, our novel genetically encoded tool represents an orthogonal strategy to promote reductive stress.
Collapse
Affiliation(s)
- Xingxiu Pan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
| | - Mina L Heacock
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Calibr, The Scripps Research Institute, La Jolla, CA, USA
| | - Evana N Abdulaziz
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Process Development Associate, Amgen, Thousand Oaks, CA, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Austin L Zuckerman
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Program in Mathematics and Science Education, University of California San Diego, San Diego, CA, USA
- Program in Mathematics and Science Education, San Diego State University, San Diego, USA
| | - Nirajan Shrestha
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Canglin Yao
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
| | - Russell P Goodman
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Yang B, Li X. Unveiling the hub genes associated with aflatoxin B 1-induced hepatotoxicity in chicken. ENVIRONMENTAL RESEARCH 2023; 239:117294. [PMID: 37832762 DOI: 10.1016/j.envres.2023.117294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Aflatoxin B1 (AFB1), a ubiquitous and toxic mycotoxin in human food and animal feedstuff, can impair the function and health of some organs, especially the liver. However, the knowledge about the potential mechanisms of AFB1-induced hepatotoxicity in chickens is limited. Therefore, we analyzed the gene expression data of chicken embryo primary hepatocytes (CEPHs) treated with and without AFB1 at the dose of 0.1 μg/mL which were cultured at 37 °C in Medium 199 (Life Technologies, Shanghai, China) with 5.0% CO2 for 48 h. Totally 1,711 differentially expressed genes (DEGs) were identified, in which 1,170 and 541 genes were up- and down-regulated in AFB1-administrated CEPHs compared to the control, respectively. Biological process analysis suggested that these DEGs might take part in angiogenesis, cell adhesion, immune response, cell differentiation, inflammatory response, cell migration regulation, and blood coagulation. Signaling pathways analysis revealed that these DEGs were mainly linked to metabolic pathways, MAPK, TLR2, and actin cytoskeleton regulation pathways. Moreover, the hub genes, including GYS2, NR1H4, ALDH8A1, and ANGPTL3, might participate in AFB1-induced hepatotoxicity. Taken together, our study offers a new insight into the mechanisms of the AFB1-induced hepatotoxicity.
Collapse
Affiliation(s)
- Bing Yang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Xiaofeng Li
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, Anhui Science and Technology University, Chuzhou, 233100, China.
| |
Collapse
|
4
|
Song Y, Wang J, Xu J, Gao Y, Xu Z. Circ_0018909 knockdown inhibits the development of pancreatic cancer via the miR‐545‐3p/FASN axis and reduces macrophage polarization to M2. J Biochem Mol Toxicol 2022; 37:e23293. [PMID: 36541402 DOI: 10.1002/jbt.23293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Multiple circular RNAs (circRNAs) were proven to regulate the development of pancreatic cancer. However, the action of circ_0018909 in pancreatic cancer was still unclear. The expression of circ_0018909, microRNA-545-3p (miR-545-3p), and fatty acid synthase (FASN) was measured using quantitative reverse-transcriptase PCR (qRT-PCR). Cell growth, cell cycle arrest, apoptotic cells, metastasis, and epithelial to mesenchymal transition (EMT) were determined using EdU assay, flow cytometry, wound-healing assay, transwell invasion, and western blotting, respectively. The expression of the macrophage markers, including CD80, MCP-1, iNOS, and IL-6 (M1 markers), as well as CD206 and CD163 (M2 markers), was analyzed using qRT-PCR. Circ_0018909 knockdown dramatically depressed cell growth, migration, invasion, EMT, and elevated the number of apoptotic cells in pancreatic cancer cells, and repressed tumor growth in mice. Moreover, we proved that the absence of miR-545-3p rescued the action of circ_0018909 downregulation on cell growth, metastasis, apoptosis, and EMT in pancreatic cancer cells. MiR-545-3p bound to FASN and FASN overexpression hindered the impacts of miR-545-3p on the progression of pancreatic cancer. Besides this, our data demonstrated that circ_0018909 induced polarization from M0 macrophages to M2 macrophages. Circ_0018909 knockdown retarded the development of pancreatic cancer by modulating miR-545-3p to regulate FASN expression.
Collapse
Affiliation(s)
- Yinxue Song
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jun Wang
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jing Xu
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Ye Gao
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Zhichao Xu
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
5
|
Zhang H, Li X, Jia M, Ji J, Wu Z, Chen X, Yu D, Zheng Y, Zhao Y. Roles of H19/miR-29a-3p/COL1A1 axis in COE-induced lung cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120194. [PMID: 36150622 DOI: 10.1016/j.envpol.2022.120194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Occupational lung cancer caused by coke oven emissions (COE) has attracted increasing attention, but the mechanism is not clear. Many evidences show ceRNA (competing endogenous RNA) networks play important regulatory roles in cancers. In this study, we aimed to construct and verify the ceRNA regulatory network in the occurrence of COE-induced lung squamous cell carcinoma (LUSC). We performed RNA sequencing with lung bronchial epithelial cell (16HBE) and COE induced malignant transformed cell (Rf). Furthermore, we analyzed RNA sequencing data of LUSC and adjacent tissues in the cancer genome atlas (TCGA) database. Combined our data and TCGA data to determine the differentially expressed lncRNAs, miRNAs, mRNAs. lncBASE, miRDB and miRTarBase were used to predict the binding relationship between lncRNA and miRNA, miRNA and mRNA. Based on these, we construct the ceRNA network. FREMSA, dual-luciferase reporter assay, quantitative real-time PCR (qRT-PCR), western-blot were used to verify the regulatory axis. CCK8 assay, phalloidin staining, p53 detection were used to explore the roles of this axis in the COE induced malignant transformation. Results showed 7 lncRNAs, 7 miRNAs and 146 mRNAs were identified. Among these, we constructed a ceRNA network including 1 lncRNA, 2 miRNAs and 9 mRNAs. Further verification confirmed the trend of lncRNA H19, miR-29a-3p and COL1A1 were consistent with sequencing results. H19 and COL1A1 were significantly higher in Rf than in 16HBE and miR-29a-3p was reverse. Regulatory investigation revealed H19 increased COL1A1 expression by sponging miR-29a-3p. Knockdown of H19, COL1A1 or overexpression of miR-29a-3p in Rf cells could inhibit cell proliferation, increased cell adhesion and p53 level. However, knockdown of H19 while suppressing the miR-29a-3p partially rescue the malignant phenotype of Rf caused by H19. In conclusion, all these indicated H19 functioned as a ceRNA to increase COL1A1 by sponging miR-29a-3p and promoted COE-induced cell malignant transformation.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinmei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Mengmeng Jia
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhaoxu Wu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Gong X, Liu Y, Zheng C, Tian P, Peng M, Pan Y, Li X. Establishment of a 4-miRNA Prognostic Model for Risk Stratification of Patients With Pancreatic Adenocarcinoma. Front Oncol 2022; 12:827259. [PMID: 35186758 PMCID: PMC8851918 DOI: 10.3389/fonc.2022.827259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinomas (PAADs) often remain undiagnosed until later stages, limiting treatment options and leading to poor survival. The lack of robust biomarkers complicates PAAD prognosis, and patient risk stratification remains a major challenge. To address this issue, we established a panel constructed by four miRNAs (miR-4444-2, miR-934, miR-1301 and miR-3655) based on The Cancer Genome Atlas (TCGA) and Human Cancer Metastasis Database (HCMDB) to predicted the prognosis of PAAD patients. Then, a risk prediction model of these four miRNAs was constructed by using Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) regression analysis. This model stratified TCGA PAAD cohort into the low-risk and high-risk groups based on the panel-based risk score, which was significantly associated with 1-, 2-, 3-year OS (AUC=0.836, AUC=0.844, AUC=0.952, respectively). The nomogram was then established with a robust performance signature for predicting prognosis compared to clinical characteristics of pancreatic cancer (PC) patients, including age, gender and clinical stage. Moreover, two GSE data were validated the expressions of 4 miRNAs with prognosis/survival outcome in PC. In the external clinical sample validation, the high-risk group with the upregulated expressions of miR-934/miR-4444-2 and downregulated expressions of miR-1301/miR-3655 were indicated a poor prognosis. Furthermore, the cell counting kit-8 (CCK-8) assay, clone formation, transwell and wound healing assay also confirmed the promoting effect of miR-934/miR-4444-2 and the inhibiting effect of miR-1301/miR-3655 in PC cell proliferation and migration. Taken together, we identified a new 4-miRNA risk stratification model could be used in predicting prognosis in PAAD.
Collapse
Affiliation(s)
- Xun Gong
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China.,College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenglong Zheng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Peikai Tian
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Minjie Peng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Li D, Chen M, Hong H, Tong W, Ning B. Integrative approaches for studying the role of noncoding RNAs in influencing drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2022; 18:151-163. [PMID: 35296201 PMCID: PMC9117541 DOI: 10.1080/17425255.2022.2054802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Drug efficacy and toxicity are important factors for evaluation in drug development. Drug metabolizing enzymes and transporters (DMETs) play an essential role in drug efficacy and toxicity. Noncoding RNAs (ncRNAs) have been implicated to influence inter-individual variations in drug efficacy and safety by regulating DMETs. An efficient strategy is urgently needed to identify and functionally characterize ncRNAs that mediate drug efficacy and toxicity through regulating DMETs. AREAS COVERED We outline an integrative strategy to identify ncRNAs that modulate DMETs. We include reliable tools and databases for computational prediction of ncRNA targets with regard to their advantages and limitations. Various biochemical, molecular, and cellular assays are discussed for in vitro experimental verification of the regulatory function of ncRNAs. In vivo approaches for association of ncRNAs with drug treatment and toxicity are also reviewed. EXPERT OPINION A streamlined integration of computational prediction and wet-lab validation is important to elucidate mechanisms of ncRNAs in the regulation of DMETs related to drug efficacy and safety. Bioinformatic analyses using open-access tools and databases serve as a powerful booster for ncRNA Research in toxicology. Further refinement of computational algorithms and experimental technologies is needed to improve accuracy and efficiency in ncRNA target identification and characterization.
Collapse
Affiliation(s)
- Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Minjun Chen
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Huixiao Hong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Weida Tong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| |
Collapse
|
8
|
Li X, Zhang H, Xu L, Jin Y, Luo J, Li C, Zhao K, Zheng Y, Yu D, Zhao Y. miR-15a-3p Protects Against Isoniazid-Induced Liver Injury via Suppressing N-Acetyltransferase 2 Expression. Front Mol Biosci 2021; 8:752072. [PMID: 34888351 PMCID: PMC8651391 DOI: 10.3389/fmolb.2021.752072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 01/20/2023] Open
Abstract
Isoniazid (INH), an effective first-line drug for tuberculosis treatment, has been reported to be associated with hepatotoxicity for decades, but the underlying mechanisms are poorly understood. N-acetyltransferase 2 (NAT2) is a Phase II enzyme that specifically catalyzes the acetylation of INH, and NAT2 expression/activity play pivotal roles in INH metabolism, drug efficacy, and toxicity. In this study, we systematically investigated the regulatory roles of microRNA (miRNA) in NAT2 expression and INH-induced liver injury via a series of in silico, in vitro, and in vivo analyses. Four mature miRNAs, including hsa-miR-15a-3p, hsa-miR-628-5p, hsa-miR-1262, and hsa-miR-3132, were predicted to target the NAT2 transcript, and a negative correlation was observed between hsa-miR-15a-3p and NAT2 transcripts in liver samples. Further experiments serially revealed that hsa-miR-15a-3p was able to interact with the 3′-untranslated region (UTR) of NAT2 directly, suppressed the endogenous NAT2 expression, and then inhibited INH-induced NAT2 overexpression as well as INH-induced liver injury, both in liver cells and mouse model. In summary, our results identified hsa-miR-15a-3p as a novel epigenetic factor modulating NAT2 expression and as a protective module against INH-induced liver injury, and provided new clues to elucidate the epigenetic regulatory mechanisms concerning drug-induced liver injury (DILI).
Collapse
Affiliation(s)
- Xinmei Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Heng Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Ethnic Differences in Serum Levels of microRNAs Potentially Regulating Alcohol Dehydrogenase 1B and Aldehyde Dehydrogenase 2. J Clin Med 2021; 10:jcm10163678. [PMID: 34441974 PMCID: PMC8397147 DOI: 10.3390/jcm10163678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
Ethnic difference is known in genetic polymorphisms of aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B), which cause Asian flushing by blood vessel dilation due to accumulation of acetaldehyde. We investigated ethnic differences in microRNAs (miRNAs) related to ALDH2 and ADH1B. miRNA levels in serum were totally analyzed by using miRNA oligo chip arrays and compared in Austrian and Japanese middle-aged men. There were no ALDH2- and ADH1B-related miRNAs that had previously been reported in humans and that showed significantly different serum levels between Austrian and Japanese men. With the use of miRNA prediction tools, we identified four and five miRNAs that were predicted to target ALDH2 and ADH1B, respectively, and they had expression levels high enough for comparison. Among the ADH1B-related miRNAs, miR-150-3p, -3127-5p and -4314 were significantly higher and miR-3151-5p was significantly lower in Austrian compared with Japanese men, while no significant difference was found for miR-449b-3p. miR-150-3p and miR-4314 showed relatively high fold changes (1.5 or higher). The levels of ALDH2-related miRNAs (miR-30d-5p, -6127, -6130 and -6133) were not significantly different between the countries. miR-150-3p and miR-4314 are candidates of miRNAs that may be involved in the ethnic difference in sensitivity to alcohol through modifying the expression of ADH1B.
Collapse
|