1
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
2
|
Jha P, Ragnarsson L, Lewis RJ. Structure-Function of the High Affinity Substrate Binding Site (S1) of Human Norepinephrine Transporter. Front Pharmacol 2020; 11:217. [PMID: 32210813 PMCID: PMC7066499 DOI: 10.3389/fphar.2020.00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
The human norepinephrine transporter (hNET) is a member of the neurotransmitter/sodium symporter family, which also includes the neuronal monoamine transporters for serotonin (SERT) and dopamine (DAT). Its involvement in chronic pain and many neurological disorders underlies its pharmaceutical importance. Using the X-ray crystal structures of the human serotonin transporter (hSERT) (PDB 5I6X) and Drosophila melanogaster dopamine transporter (dDAT) (PDB 4M48 and PDB 4XPA) as templates, we developed molecular models for norepinephrine (NE) bound to its high affinity binding site (S1) in the hNET. Our model suggests that the S1 site for NE is deeply buried between transmembrane helices (TMHs) 1, 3, 6, and 8 and overlaps the binding site for leucine in the bacterial leucine transporter (LeuT) and dopamine (DA) in dDAT. Mutational studies identified the functional binding pocket for NE comprised residues A73, A77, N78, V148, N153, I156, G320, F329, N350, S420, G423, and M424, which all influenced NE affinity and/or transport. These effects support a NE-hNET docking model where A73, A77, G320, S420, G423, and M424 form H-bond interactions with NE, V148, I156, and F329 form hydrophobic interactions with NE, whereas N78 affects NE transport and N350 affects NE affinity and transport via an influence on the octahedral co-ordination of the Na1+ ion. Consistent with a conserved structure-function amongst sodium-dependent neurotransmitter transporters, S1 residues A73, A77 (G100 in hSERT), N78, V148 (I150 in hSERT), N153, G320, F329 (Y331 in d DAT), N350, and G423 are conserved in DAT and SERT, indicating they likely play conserved functional roles.
Collapse
Affiliation(s)
- Prerna Jha
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Sorkina T, Ma S, Larsen MB, Watkins SC, Sorkin A. Small molecule induced oligomerization, clustering and clathrin-independent endocytosis of the dopamine transporter. eLife 2018; 7:32293. [PMID: 29630493 PMCID: PMC5896956 DOI: 10.7554/elife.32293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Clathrin-independent endocytosis (CIE) mediates internalization of many transmembrane proteins but the mechanisms of cargo recruitment during CIE are poorly understood. We found that the cell-permeable furopyrimidine AIM-100 promotes dramatic oligomerization, clustering and CIE of human and mouse dopamine transporters (DAT), but not of their close homologues, norepinephrine and serotonin transporters. All effects of AIM-100 on DAT and the occupancy of substrate binding sites in the transporter were mutually exclusive, suggesting that AIM-100 may act by binding to DAT. Surprisingly, AIM-100-induced DAT endocytosis was independent of dynamin, cholesterol-rich microdomains and actin cytoskeleton, implying that a novel endocytic mechanism is involved. AIM-100 stimulated trafficking of internalized DAT was also unusual: DAT accumulated in early endosomes without significant recycling or degradation. We propose that AIM-100 augments DAT oligomerization through an allosteric mechanism associated with the DAT conformational state, and that oligomerization-triggered clustering leads to a coat-independent endocytosis and subsequent endosomal retention of DAT.
Collapse
Affiliation(s)
- Tatiana Sorkina
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Shiqi Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Mads Breum Larsen
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
4
|
Verma V. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:227-38. [PMID: 26598579 PMCID: PMC4662164 DOI: 10.9758/cpn.2015.13.3.227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today's ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today's work and tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Cheng MH, Bahar I. Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter. Structure 2015; 23:2171-81. [PMID: 26481814 DOI: 10.1016/j.str.2015.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 01/16/2023]
Abstract
Dopamine transporters (DATs) control neurotransmitter dopamine (DA) homeostasis by reuptake of excess DA, assisted by sodium and chloride ions. The recent resolution of DAT structure (dDAT) from Drosophila permits us for the first time to directly view the sequence of events involved in DA reuptake in human DAT (hDAT) using homology modeling and full-atomic microseconds accelerated simulations. Major observations are spontaneous closure of extracellular gates prompted by DA binding; stabilization of a holo-occluded intermediate; disruption of N82-N353 hydrogen bond and exposure to intracellular (IC) water triggered by Na2 dislocation; redistribution of a network of salt bridges at the IC surface in the inward-facing state; concerted tilting of IC-exposed helices to enable the release of Na(+) and Cl(-) ions; and DA release after protonation of D79. The observed time-resolved interactions confirm the conserved dynamics of LeuT-fold family, while providing insights into the mechanistic role of specific residues in hDAT.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Sakloth F, Kolanos R, Mosier PD, Bonano JS, Banks ML, Partilla JS, Baumann MH, Negus SS, Glennon RA. Steric parameters, molecular modeling and hydropathic interaction analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 2015; 172:2210-8. [PMID: 25522019 PMCID: PMC4403088 DOI: 10.1111/bph.13043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/24/2014] [Accepted: 11/30/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE There is growing concern over the abuse of certain psychostimulant methcathinone (MCAT) analogues. This study extends an initial quantitative structure-activity relationship (QSAR) investigation that demonstrated important steric considerations of seven 4- (or para-)substituted analogues of MCAT. Specifically, the steric character (Taft's steric ES ) of the 4-position substituent affected in vitro potency to induce monoamine release via dopamine and 5-HT transporters (DAT and SERT) and in vivo modulation of intracranial self-stimulation (ICSS). Here, we have assessed the effects of other steric properties of the 4-position substituents. EXPERIMENTAL APPROACH Definitive steric parameters that more explicitly focus on the volume, width and length of the MCAT 4-position substituents were assessed. In addition, homology models of human DAT and human SERT based upon the crystallized Drosophila DAT were constructed and docking studies were performed, followed by hydropathic interaction (HINT) analysis of the docking results. KEY RESULTS The potency of seven MCAT analogues at DAT was negatively correlated with the volume and maximal width of their 4-position substituents, whereas potency at SERT increased as substituent volume and length increased. SERT/DAT selectivity, as well as abuse-related drug effects in the ICSS procedure, also correlated with the same parameters. Docking solutions offered a means of visualizing these findings. CONCLUSIONS AND IMPLICATIONS These results suggest that steric aspects of the 4-position substituents of MCAT analogues are key determinants of their action and selectivity, and that the hydrophobic nature of these substituents is involved in their potency at SERT.
Collapse
Affiliation(s)
- F Sakloth
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth UniversityRichmond, VA, USA
| | - R Kolanos
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth UniversityRichmond, VA, USA
| | - P D Mosier
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth UniversityRichmond, VA, USA
| | - J S Bonano
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - M L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - J S Partilla
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of HealthBaltimore, MD, USA
| | - M H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of HealthBaltimore, MD, USA
| | - S S Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - R A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth UniversityRichmond, VA, USA
| |
Collapse
|
7
|
Dahal RA, Pramod AB, Sharma B, Krout D, Foster JD, Cha JH, Cao J, Newman AH, Lever JR, Vaughan RA, Henry LK. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site. J Biol Chem 2014; 289:29712-27. [PMID: 25179220 PMCID: PMC4207985 DOI: 10.1074/jbc.m114.571521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/09/2014] [Indexed: 12/20/2022] Open
Abstract
The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.
Collapse
Affiliation(s)
- Rejwi Acharya Dahal
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Akula Bala Pramod
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Babita Sharma
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Danielle Krout
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - James D Foster
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Joo Hwan Cha
- the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224
| | - Jianjing Cao
- the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224
| | - Amy Hauck Newman
- the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224
| | - John R Lever
- the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201, and the Department of Radiology, Radiopharmaceutical Sciences Institute, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211
| | - Roxanne A Vaughan
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203,
| | - L Keith Henry
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203,
| |
Collapse
|
8
|
Abstract
Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.
Collapse
|
9
|
Stockner T, Montgomery TR, Kudlacek O, Weissensteiner R, Ecker GF, Freissmuth M, Sitte HH. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model. PLoS Comput Biol 2013; 9:e1002909. [PMID: 23436987 PMCID: PMC3578762 DOI: 10.1371/journal.pcbi.1002909] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/16/2012] [Indexed: 11/24/2022] Open
Abstract
The high-resolution crystal structure of the leucine transporter (LeuT) is frequently used as a template for homology models of the dopamine transporter (DAT). Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i) when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii) LeuT and DAT share a rather low overall sequence identity (22%) and (iii) the extracellular loop 2 (EL2) of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter‚s movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle. The dopamine transporter (DAT) regulates dopaminergic neurotransmission in the brain and is implicated in numerous human disease states. DAT is unique among the monoamine neurotransmitter transporter family because its substrate transport is inhibited by extracellular zinc. DAT homology models rely upon the crystal structure of LeuT solved in 2005. LeuT and DAT share a relatively low overall sequence identity of 22%. In addition, the length of the second extracellular loop of DAT exceeds that of LeuT by 21 residues. The zinc binding site cannot be directly modeled from the LeuT template alone because of these differences. Current available homology models of DAT focused on substrate or inhibitor binding rather than on the second extracellular loop. We exploited the specificity of the zinc binding site to build and calibrate a DAT homology model of the complete transmembrane domain. Our model predicted that the zinc binding site in DAT consists of four zinc co-ordinating residues rather than three that had been previously identified. We verified this hypothesis by site-directed mutagenesis and uptake inhibition studies.
Collapse
Affiliation(s)
- Thomas Stockner
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Therese R. Montgomery
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Oliver Kudlacek
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | | | - Gerhard F. Ecker
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Harald H. Sitte
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
10
|
Jarończyk M, Wołosewicz K, Gabrielsen M, Nowak G, Kufareva I, Mazurek AP, Ravna AW, Abagyan R, Bojarski AJ, Sylte I, Chilmonczyk Z. Synthesis, in vitro binding studies and docking of long-chain arylpiperazine nitroquipazine analogues, as potential serotonin transporter inhibitors. Eur J Med Chem 2012; 49:200-10. [PMID: 22309909 DOI: 10.1016/j.ejmech.2012.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 11/28/2022]
Abstract
It is well known that 6-nitroquipazine exhibits about 150-fold higher affinity for the serotonin transporter (SERT) than quipazine and recently we showed quipazine buspirone analogues with high to moderate SERT affinity. Now we have designed and synthesized several 6-nitroquipazine buspirone derivatives. Unexpectedly, their SERT binding affinities were moderate, and much lower than that of the previously studied quipazine buspirone analogues. To explain these findings, docking studies of both groups of compounds into two different homology models of human SERT was performed using a flexible target-ligand docking approach (4D docking). The crystal structures of leucine transporter from Aquifex aeolicus in complex with leucine and with tryptophan were used as templates for the SERT models in closed and outward-facing conformations, respectively. We found that the latter conformation represents the most reliable model for binding of buspirone analogues. Docking into that model showed that the nitrated compounds acquire a rod like shape in the binding pocket with polar groups (nitro- and imido-) at the ends of the rod. 6-Nitro substituents gave steric clashes with amino acids located at the extracellular loop 4, which may explain their lower affinity than corresponding quipazine buspirone analogues. The results from the present study may suggest chemical design strategies to improve the SERT modulators.
Collapse
|
11
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 625] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin Z, Zhao Y, Chung CY, Zhou Y, Xiong N, Glatt CE, Isacson O. High regulatability favors genetic selection in SLC18A2, a vesicular monoamine transporter essential for life. FASEB J 2010; 24:2191-200. [PMID: 20181938 DOI: 10.1096/fj.09-140368] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SLC18A2 encodes the vesicular monoamine transporter 2 protein that regulates neurotransmission and reduces cytosolic toxicity of monoamines. Deletion of this gene causes lethality in mice, and DNA sequence variation in this gene is associated with alcoholism and Parkinson's disease, among other disorders. The Caucasian SLC18A2 promoter has at least 20 haplotypes (A-T), with A representing two-thirds of 1460 chromosomes. It is not known why A is selected in the human lineage. To understand the selection, here we took a functional approach by investigating the regulations of 4 representative haplotypes (A, C, G, and T) by 17 agents. We show that 76.5% of the agents were able to regulate A but only 11.8-23.5% of them regulated the 3 other infrequent ones, observing a positive correlation between haplotype frequency and regulatability. Pathway and molecular analyses revealed five signaling hubs that regulate the four haplotypes differentially, probably through targeting the polymorphic core promoter region. These findings suggest that greater diversity of transcriptional regulations is the driving force for the haplotype selection in SLC18A2.
Collapse
Affiliation(s)
- Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang CIA, Lewis RJ. Emerging structure-function relationships defining monoamine NSS transporter substrate and ligand affinity. Biochem Pharmacol 2009; 79:1083-91. [PMID: 19954741 DOI: 10.1016/j.bcp.2009.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/16/2009] [Accepted: 11/23/2009] [Indexed: 11/15/2022]
Abstract
Monoamine transporters are a group of transmembrane neurotransmitter sodium symporter (NSS) transporters that play a crucial role in regulating biogenic monoamine concentrations at peripheral and central synapses. Given the key role played by serotonin, dopamine and noradrenaline in addictive and disease states, structure-function studies have been conducted to help guide the development of improved central nervous system therapeutics. Extensive pharmacological, immunological and biochemical studies, in conjunction with three-dimensional homology modeling, have been performed to structurally and functionally characterise the monoamine transporter substrate permeation pathway, substrate selectivity, and binding sites for ions, substrates and inhibitors at the molecular level. However, only recently has it been possible to start to construct an accurate molecular interaction network for the monoamine transporters and their corresponding substrates and inhibitors. Crystal structures of Aquifex aeolicus leucine transporter (LeuT(Aa)), a homologous protein to monoamine transporters that has been experimentally demonstrated to share similar structural folds with monoamine transporters, have been determined in complex with amino acids and inhibitors. The molecular interactions of leucine and tricyclic antidepressants (TCA) has supported many of the predictions based on the mutational studies. Models constructed from LeuT(Aa) are now allowing a rational approach to further clarify the molecular determinants of NSS transporter-ligand complexes, and potentially the ability to better manipulate drug specificity and affinity. In this review, we compare the structure-function relationships of other SLC6 NSS family transporters with monoamine transporters, and discuss possible mechanisms involved in substrate binding and transport, and modes of inhibition by TCAs.
Collapse
Affiliation(s)
- Ching-I Anderson Wang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Australia
| | | |
Collapse
|
14
|
Structure and localisation of drug binding sites on neurotransmitter transporters. J Mol Model 2009; 15:1155-64. [PMID: 19238460 DOI: 10.1007/s00894-009-0478-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
Abstract
The dopamine (DAT), serotontin (SERT) and noradrenalin (NET) transporters are molecular targets for different classes of psychotropic drugs. The crystal structure of Aquifex aeolicus LeuT(Aa) was used as a template for molecular modeling of DAT, SERT and NET, and two putative drug binding sites (pocket 1 and 2) in each transporter were identified. Cocaine was docked into binding pocket 1 of DAT, corresponding to the leucine binding site in LeuT(Aa), which involved transmembrane helices (TMHs) 1, 3, 6 and 8. Clomipramine was docked into binding pocket 2 of DAT, involving TMHs 1, 3, 6, 10 and 11, and extracellular loops 4 and 6, corresponding to the clomipramine binding site in a crystal structure of a LeuT(Aa)-clomipramine complex. The structures of the proposed cocaine- and tricyclic antidepressant-binding sites may be of particular interest for the design of novel DAT interacting ligands.
Collapse
|
15
|
Schmitt KC, Zhen J, Kharkar P, Mishra M, Chen N, Dutta AK, Reith ME. Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wild-type and mutant human dopamine transporters: molecular features that differentially determine antagonist-binding properties. J Neurochem 2008; 107:928-940. [PMID: 18786172 PMCID: PMC2728472 DOI: 10.1111/j.1471-4159.2008.05667.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine's behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [(3)H]CFT binding to wild-type, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3alpha stereochemistry tended to exhibit benztropine-like binding, whereas those with 3beta stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features--most notably the presence of a diphenylmethoxy moiety--in determining a compound's binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility.
Collapse
Affiliation(s)
- Kyle C. Schmitt
- Dept. of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Juan Zhen
- Dept. of Psychiatry, New York University School of Medicine, Millhauser Labs MHL-518, 550 First Avenue, New York, NY 10016
| | - Prashant Kharkar
- Dept. of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202
| | - Manoj Mishra
- Dept. of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202
| | - Nianhang Chen
- Dept. of Psychiatry, New York University School of Medicine, Millhauser Labs MHL-518, 550 First Avenue, New York, NY 10016
| | - Aloke K. Dutta
- Dept. of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202
| | - Maarten E.A. Reith
- Dept. of Psychiatry, New York University School of Medicine, Millhauser Labs MHL-518, 550 First Avenue, New York, NY 10016
- Dept. of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
16
|
Jarończyk M, Chilmonczyk Z, Mazurek AP, Nowak G, Ravna AW, Kristiansen K, Sylte I. The molecular interactions of buspirone analogues with the serotonin transporter. Bioorg Med Chem 2008; 16:9283-94. [PMID: 18812261 DOI: 10.1016/j.bmc.2008.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 11/18/2022]
Abstract
A major problem with the selective serotonin reuptake inhibitors (SSRIs) is the delayed onset of action. A reason for that may be that the initial SSRI-induced increase in serotonin levels activates somatodendritic 5-HT(1A) autoreceptors, causing a decrease in serotonin release in major forebrain areas. It has been suggested that compounds combining inhibition of the serotonin transport protein with antagonistic effects on the 5-HT(1A) receptor will shorten the onset time. The anxiolytic drug buspirone is known as 5-HT(1A) partial agonist. In the present work, we are studying the inhibition of the serotonin transporter protein by a series of buspirone analogues by molecular modelling and by experimental affinity measurements. Models of the transporter protein were constructed using the crystal structure of the Escherichia coli major facilitator family transporter-LacY and the X-ray structure of the neurotransmitter symporter family (NSS) transporter-LeuT(Aa) as templates. The buspirone analogues were docked into both SERT models and the interactions with amino acids within the protein were analyzed. Two putative binding sites were identified on the LeuT(Aa) based model, one suggested to be a high-affinity site, and the other suggested to be a low-affinity binding site. Molecular dynamic simulations of the LacY based model in complex with ligands did not induce a helical architecture of the LacY based model into an arrangement more similar to that of the LeuT(Aa) based model.
Collapse
|
17
|
The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat Neurosci 2008; 11:780-9. [PMID: 18568020 DOI: 10.1038/nn.2146] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/23/2008] [Indexed: 11/08/2022]
Abstract
Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive inhibition of dopamine transport by cocaine.
Collapse
|
18
|
Xhaard H, Backström V, Denessiouk K, Johnson MS. Coordination of Na+ by Monoamine Ligands in Dopamine, Norepinephrine, and Serotonin Transporters. J Chem Inf Model 2008; 48:1423-37. [DOI: 10.1021/ci700255d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henri Xhaard
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Vera Backström
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Konstantin Denessiouk
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Mark S. Johnson
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| |
Collapse
|
19
|
Indarte M, Madura JD, Surratt CK. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template. Proteins 2008; 70:1033-46. [PMID: 17847094 DOI: 10.1002/prot.21598] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pharmacological and behavioral studies indicate that binding of cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for initiating the euphoria and addiction associated with these drugs. The lack of an X-ray crystal structure for the DAT or any other member of the neurotransmitter:sodium symporter (NSS) family has hindered understanding of psychostimulant recognition at the atomic level; structural information has been obtained largely from mutagenesis and biophysical studies. The recent publication of a crystal structure for the bacterial leucine transporter LeuT(Aa), a distantly related NSS family homolog, provides for the first time a template for three-dimensional comparative modeling of NSS proteins. A novel computational modeling approach using the capabilities of the Molecular Operating Environment program MOE 2005.06 in conjunction with other comparative modeling servers generated the LeuT(Aa)-directed DAT model. Probable dopamine and amphetamine binding sites were identified within the DAT model using multiple docking approaches. Binding sites for the substrate ligands (dopamine and amphetamine) overlapped substantially with the analogous region of the LeuT(Aa) crystal structure for the substrate leucine. The docking predictions implicated DAT side chains known to be critical for high affinity ligand binding and suggest novel mutagenesis targets in elucidating discrete substrate and inhibitor binding sites. The DAT model may guide DAT ligand QSAR studies, and rational design of novel DAT-binding therapeutics.
Collapse
Affiliation(s)
- Martín Indarte
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|
20
|
Parnas ML, Gaffaney JD, Zou MF, Lever JR, Newman AH, Vaughan RA. Labeling of dopamine transporter transmembrane domain 1 with the tropane ligand N-[4-(4-azido-3-[125I]iodophenyl)butyl]-2beta-carbomethoxy-3beta-(4-chlorophenyl)tropane implicates proximity of cocaine and substrate active sites. Mol Pharmacol 2008; 73:1141-50. [PMID: 18216182 DOI: 10.1124/mol.107.043679] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The novel photoaffinity ligand N-[4-(4-azido-3-(125)I-iodophenyl)-butyl]-2-beta-carbomethoxy-3beta-(4-chlorophenyl) tropane ([(125)I]MFZ 2-24) was used to investigate the site for cocaine binding on the dopamine transporter (DAT). [(125)I]MFZ 2-24 irreversibly labeled both rat striatal and expressed human DAT with high affinity and appropriate pharmacological specificity. Tryptic proteolysis of [(125)I]MFZ 2-24 labeled DAT followed by epitope-specific immunoprecipitation demonstrated that the ligand becomes adducted almost exclusively to transmembrane domains (TMs) 1-2. Further localization of [(125)I]MFZ 2-24 incorporation achieved by proteolyzing labeled wild-type and methionine mutant DATs with cyanogen bromide identified the sequence between residues 68 and 80 in TM1 as the ligand adduction site. This is in marked contrast to the previously identified attachment of the photoaffinity label [(125)I]RTI 82 in TM6. Because [(125)I]MFZ 2-24 and [(125)I]RTI 82 possess identical tropane pharmacophores and differ only in the placement of the reactive azido moieties, their distinct incorporation profiles identify the regions of the protein adjacent to different aspects of the cocaine molecule. These findings thus strongly support the direct interaction of cocaine on DAT with TM1 and TM6, both of which have been implicated by mutagenesis and homology to a bacterial leucine transporter as active sites for substrates. These results directly establish the proximity of TMs 1 and 6 in DAT and suggest that the mechanism of transport inhibition by cocaine involves close interactions with multiple regions of the substrate permeation pathway.
Collapse
Affiliation(s)
- M Laura Parnas
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | | | | | | | | | | |
Collapse
|
21
|
Le Strat Y, Ramoz N, Pickering P, Burger V, Boni C, Aubin HJ, Adès J, Batel P, Gorwood P. The 3' part of the dopamine transporter gene DAT1/SLC6A3 is associated with withdrawal seizures in patients with alcohol dependence. Alcohol Clin Exp Res 2007; 32:27-35. [PMID: 18070248 DOI: 10.1111/j.1530-0277.2007.00552.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Some studies have reported that the A9 allele of the variable nucleotide tandem repeat (VNTR) of the gene which encodes the dopamine transporter (DAT1/SLC6A3) is associated with alcoholism withdrawal symptoms such as alcohol withdrawal seizures (WSs), whereas others did not. We investigated whether polymorphisms within the DAT1 gene are associated with WS taking into account some of the confounding factors such as the severity of alcohol dependence. METHODS To further assess the role of this gene in WS, we genotyped the VNTR and 7 single nucleotide polymorphisms (SNPs) encompassing the DAT1 gene in a sample of 250 alcohol-dependent subjects (175 men and 75 women), of whom 24% exhibited WSs, taking into account the severity of alcohol dependence. RESULTS The VNTR is associated with an increased risk of WSs (odd ratio = 3.5; p = 0.019), even when controlling for confounding factors (p = 0.031). As 2 SNPs, in roughly the same location of the gene (namely rs27072 and rs27048), are also associated with WSs, it is possible that the initial association of the VNTR polymorphism was tagging a specific haplotype of this gene. Indeed, in our sample of alcohol-dependent patients, 2 haplotypes were associated with a significantly different risk of WSs. CONCLUSIONS The present study adds evidence for a significant role of the 3' part of the DAT1 gene in WS of alcohol-dependent patients, not only because it is in accordance with previous work, but also because of larger statistical power (as relying on a sample over sampled with the studied phenotype), as it gives a more precise analysis of different SNPs within the DAT1 gene, and as it confirms the association when major potentially confounding factors are taken into account in a logistical regression analysis.
Collapse
Affiliation(s)
- Yann Le Strat
- INSERM U675, IFR02, Faculté de Médecine Xavier Bichat/Université, Henri Huchard, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Livesay DR, Kidd PD, Eskandari S, Roshan U. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family. BMC Bioinformatics 2007; 8:397. [PMID: 17941992 PMCID: PMC2194793 DOI: 10.1186/1471-2105-8-397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/17/2007] [Indexed: 01/09/2023] Open
Abstract
Background Efforts to predict functional sites from globular proteins is increasingly common; however, the most successful of these methods generally require structural insight. Unfortunately, despite several recent technological advances, structural coverage of membrane integral proteins continues to be sparse. ConSequently, sequence-based methods represent an important alternative to illuminate functional roles. In this report, we critically examine the ability of several computational methods to provide functional insight within two specific areas. First, can phylogenomic methods accurately describe the functional diversity across a membrane integral protein family? And second, can sequence-based strategies accurately predict key functional sites? Due to the presence of a recently solved structure and a vast amount of experimental mutagenesis data, the neurotransmitter/Na+ symporter (NSS) family is an ideal model system to assess the quality of our predictions. Results The raw NSS sequence dataset contains 181 sequences, which have been aligned by various methods. The resultant phylogenetic trees always contain six major subfamilies are consistent with the functional diversity across the family. Moreover, in well-represented subfamilies, phylogenetic clustering recapitulates several nuanced functional distinctions. Functional sites are predicted using six different methods (phylogenetic motifs, two methods that identify subfamily-specific positions, and three different conservation scores). A canonical set of 34 functional sites identified by Yamashita et al. within the recently solved LeuTAa structure is used to assess the quality of the predictions, most of which are predicted by the bioinformatic methods. Remarkably, the importance of these sites is largely confirmed by experimental mutagenesis. Furthermore, the collective set of functional site predictions qualitatively clusters along the proposed transport pathway, further demonstrating their utility. Interestingly, the various prediction schemes provide results that are predominantly orthogonal to each other. However, when the methods do provide overlapping results, specificity is shown to increase dramatically (e.g., sites predicted by any three methods have both accuracy and coverage greater than 50%). Conclusion The results presented herein clearly establish the viability of sequence-based bioinformatic strategies to provide functional insight within the NSS family. As such, we expect similar bioinformatic investigations will streamline functional investigations within membrane integral families in the absence of structure.
Collapse
Affiliation(s)
- Dennis R Livesay
- Department of Computer Science and Bioinformatics Research Center, University of North Carolina at Charlotte, Charlotte, NC 28262, USA.
| | | | | | | |
Collapse
|
23
|
Vaughan RA, Sakrikar DS, Parnas ML, Adkins S, Foster JD, Duval RA, Lever JR, Kulkarni SS, Hauck-Newman A. Localization of cocaine analog [125I]RTI 82 irreversible binding to transmembrane domain 6 of the dopamine transporter. J Biol Chem 2007; 282:8915-25. [PMID: 17255098 DOI: 10.1074/jbc.m610633200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The site of cocaine binding on the dopamine transporter (DAT) was investigated using the photoactivatable irreversible cocaine analog [125I]3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([125I]RTI 82). The incorporation site of this compound was mapped to transmembrane domains (TMs) 4-6 using epitope-specific immunoprecipitation of trypsin fragments and further localized using cyanogen bromide (CNBr), which hydrolyzes proteins on the C-terminal side of methionine residues. CNBr hydrolysis of [125I]RTI 82-labeled rat striatal and expressed human DATs produced fragments of approximately 5-10 kDa consistent with labeling between Met(271/272) or Met(290) in TM5 to Met(370/371) in TM7. To further define the incorporation site, substitution mutations were made that removed endogenous methionines and inserted exogenous methionines in combinations that would generate labeled CNBr fragments of distinct masses depending on the labeling site. The results obtained were consistent with the presence of TM6 but not TMs 4, 5, or 7 in the labeled fragments, with additional support for these conclusions obtained by epitope-specific immunoprecipitation and secondary digestion of CNBr fragments with endoproteinase Lys-C. The final localization of [125I]RTI 82 incorporation to rat DAT Met(290)-Lys(336) and human DAT I291M to R344M provides positive evidence for the proximity of cocaine binding to TM6. Residues in and near DAT TM6 regulate transport and transport-dependent conformational states, and TM6 forms part of the substrate permeation pathway in the homologous Aquifex aeolicus leucine transporter. Cocaine binding near TM6 may thus overlap the dopamine translocation pathway and function to inhibit TM6 structural rearrangements necessary for transport.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203-9037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ravna AW. Three-dimensional models of neurotransmitter transporters and their interactions with cocaine and S-citalopram. World J Biol Psychiatry 2006; 7:99-109. [PMID: 16684682 DOI: 10.1080/15622970500402144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Drugs that act on the human serotonin transporter (hSERT), human dopamine transporter (hDAT) and human noradrenaline transporter (hNET) are important in antidepressant treatment and well known in drug abuse. The investigation of their molecular mechanisms of action is very useful for designing new ligands with a therapeutic potential. The detailed three-dimensional molecular structure of any monoamine transporter is not known, but the three-dimensional electron density projection map of Escherichia coli Na+/H+ antiporter (NhaA) has provided structural basis for constructing models of such transporters using molecular modelling techniques. Three-dimensional models of these drug targets give insight into their structure, mechanisms and drug interactions. In these molecular modelling studies, an Escherichia coli NhaA model was first constructed based on its three-dimensional electron density projection map and experimental studies on NhaA and the Escherichia coli lactose permease symporter (Lac permease). Then three-dimensional models of the neurotransmitter transporters hDAT, hSERT and hNET were constructed based on the NhaA model and studies of ligand binding to mutated dopamine transporter (DAT) and serotonin transporter (SERT). The structural properties of these neurotransmitter transporter models have been examined, and their interactions with cocaine and S-citalopram have been investigated.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
25
|
Ravna AW, Jaronczyk M, Sylte I. A homology model of SERT based on the LeuTAa template. Bioorg Med Chem Lett 2006; 16:5594-7. [PMID: 16919451 DOI: 10.1016/j.bmcl.2006.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/16/2022]
Abstract
A human serotonin transporter (SERT) model has been constructed based on the crystal structure of the bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters from Aquifex aeolicus (LeuT(Aa)). Amino acids in the ligand binding area predicted by ICM pocket finder included Tyr95, Ala96, Asp98, Gly100 (transmembrane helix (TMH) 1), Ala169, Ile172, Ala173, Tyr176 (TMH3), Phe335, Ser336, Gly338, Phe341, Val343 (TMH6), Thr439, Ala441, and Gly442 (TMH8). The present model is an updated working tool for experimental studies on SERT.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
26
|
Gu HH, Wu X, Han DD. Conserved serine residues in serotonin transporter contribute to high-affinity cocaine binding. Biochem Biophys Res Commun 2006; 343:1179-85. [PMID: 16580636 DOI: 10.1016/j.bbrc.2006.03.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Serotonin transporter (SERT) is one of the key protein targets of cocaine. Despite intensive studies, it is not clear where cocaine binds to its targets and what residues are involved in cocaine binding. We have cloned the serotonin transporter from silkworm (Bombyx mori, bmSERT). When expressed in cultured cells, bmSERT is over 20-fold less sensitive to cocaine than Drosophila melanogaster SERT (dmSERT). We performed species-scanning mutagenesis using bmSERT and dmSERT. There are two adjacent threonine residues in transmembrane domain 12 of bmSERT where the corresponding residues are two serines in dmSERT and in all known mammalian monoamine transporters. Replacing the serine residues with threonines in dmSERT reduces cocaine sensitivity; while switching the two threonine residues in bmSERT to serines increased cocaine sensitivity. Mutations at the corresponding residues in dopamine transporter also changed cocaine affinity. Our results suggest that the conserved serine residues in SERT contribute to high-affinity cocaine binding.
Collapse
Affiliation(s)
- Howard H Gu
- Department of Pharmacology, The Ohio State University College of Medicine, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
27
|
Dar DE, Metzger TG, Vandenbergh DJ, Uhl GR. Dopamine uptake and cocaine binding mechanisms: The involvement of charged amino acids from the transmembrane domains of the human dopamine transporter. Eur J Pharmacol 2006; 538:43-7. [PMID: 16674939 DOI: 10.1016/j.ejphar.2006.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/12/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The wild type human dopamine transporter (DAT) and five DAT mutants were transfected into COS-7 cells and their ability to uptake dopamine or to bind cocaine was examine three days later. In each mutant, a single charged amino acid, located in areas that initial hydrophobic analysis had indicated were DAT transmembrane domains was substituted by alanine. Mutants used in this study were lysines 257 and 525 (termed K257A and K525A), arginines 283 and 521 (termed R283A and R521A), and glutamate 491 (termed E491A). Dopamine affinity was significantly enhanced in the K257A and R283A mutants, and the IC(50) for displacement of the radioactive cocaine analog 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (CFT) by cocaine was significantly elevated in the E491A mutant. All mutants displayed a reduction or complete loss of the maximal velocity (V(m)) of dopamine transport.
Collapse
Affiliation(s)
- Dalit E Dar
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Biogenic amine neurotransmitters are released from nerve terminals and activate pre- and postsynaptic receptors. Released neurotransmitters are sequestered by transporters into presynaptic neurons, a major mode of their inactivation in the brain. Genetic studies of human biogenic amine transporter genes, including the dopamine transporter (hDAT; SLC6A3), the serotonin transporter (hSERT; SLC6A4), and the norepinephrine transporter (hNET; SLC6A2) have provided insight into how genomic variations in these transporter genes influence pharmacology and brain physiology. Genetic variants can influence transporter function by various mechanisms, including substrate affinities, transport velocity, transporter expression levels (density), extracellular membrane expression, trafficking and turnover, and neurotransmitter release. It is increasingly apparent that genetic variants of monoamine transporters also contribute to individual differences in behavior and neuropsychiatric disorders. This chapter summarizes current knowledge of transporters with a focus on genomic variations, expression variations, pharmacology of protein variants, and known association with human diseases.
Collapse
Affiliation(s)
- Z Lin
- Department of Psychiatry, Harvard Medical School, Division of Neurochemistry, New England Primate Research Center, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | |
Collapse
|
29
|
Mazei-Robinson MS, Blakely RD. ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol 2006:373-415. [PMID: 16722244 DOI: 10.1007/3-540-29784-7_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The catecholamine dopamine (DA) plays an important role as a neurotransmitter in the brain in circuits linked to motor function, reward, and cognition. The presynaptic DA transporter (DAT) inactivates DA following release and provides a route for non-exocytotic DA release (efflux) triggered by amphetamines. The synaptic role of DATs first established through antagonist studies and more recently validated through mouse gene-knockout experiments, raises questions as to whether altered DAT structure or regulation support clinical disorders linked to compromised DA signaling, including drug abuse, schizophrenia, and attention deficit hyperactivity disorder (ADHD). As ADHD appears to have highly heritable components and the most commonly prescribed therapeutics for ADHD target DAT, studies ranging from brain imaging to genomic and genetic analyses have begun to probe the DAT gene and its protein for possible contributions to the disorder and/or its treatment. In this review, after a brief overview of ADHD prevalence and diagnostic criteria, we examine the rationale and experimental findings surrounding a role for human DAT in ADHD. Based on the available evidence from our lab and labs of workers in the field, we suggest that although a common variant within the human DAT (hDAT) gene (SLC6A3) is unlikely to play a major role in the ADHD, contributions of hDAT to risk maybe most evident in phenotypic subgroups. The in vitro and in vivo validation of functional variants, pursued for contributions to endophenotypes in a within family approach, may help elucidate DAT and DA contributions to ADHD and its treatment.
Collapse
Affiliation(s)
- M S Mazei-Robinson
- Vanderbilt School of Medicine, Suite 7140, MRB III, Nashville, TN 37232-8548, USA
| | | |
Collapse
|
30
|
Surratt CK, Ukairo OT, Ramanujapuram S. Recognition of psychostimulants, antidepressants, and other inhibitors of synaptic neurotransmitter uptake by the plasma membrane monoamine transporters. AAPS JOURNAL 2005; 7:E739-51. [PMID: 16353950 PMCID: PMC2751276 DOI: 10.1208/aapsj070374] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plasma membrane monoamine transporters terminate neurotransmission by removing dopamine, norepinephrine, or serotonin from the synaptic cleft between neurons. Specific inhibitors for these transporters, including the abused psychostimulants cocaine and amphetamine and the tricyclic and SSRI classes of antidepressants, exert their physiological effects by interfering with synaptic uptake and thus prolonging the actions of the monoamine. Pharmacological, biochemical, and immunological characterization of the many site-directed, chimeric, and deletion mutants generated for the plasma membrane monoamine transporters have revealed much about the commonalities and dissimilarities between transporter substrate, ion, and inhibitor binding sites. Mutations that alter the binding affinity or substrate uptake inhibition potency of inhibitors by at least 3-fold are the focus of this review. These findings are clarifying the picture regarding substrate uptake inhibitor/transporter protein interactions at the level of the drug pharmacophore and the amino acid residue, information necessary for rational design of novel medications for substance abuse and a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Christopher K Surratt
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | | |
Collapse
|
31
|
Ravna AW, Sylte I, Kristiansen K, Dahl SG. Putative drug binding conformations of monoamine transporters. Bioorg Med Chem 2005; 14:666-75. [PMID: 16216517 DOI: 10.1016/j.bmc.2005.08.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 08/16/2005] [Accepted: 08/24/2005] [Indexed: 11/22/2022]
Abstract
Structural information about monoamine transporters and their interactions with psychotropic drugs is important for understanding their molecular mechanisms of action and for drug development. The crystal structure of a Major Facilitator Superfamily (MFS) transporter, the lactose permease symporter (lac permease), has provided insight into the three-dimensional structure and mechanisms of secondary transporters. Based on the hypothesis that the 12 transmembrane alpha-helix (TMH) secondary transporters belong to a common folding class, the lac permease structure was used for molecular modeling of the serotonin transporter (SERT), the dopamine transporter (DAT), and the noradrenaline transporter (NET). The molecular modeling methods used included amino acid sequence alignment, homology modeling, and molecular mechanical energy calculations. The lac permease crystal structure has an inward-facing conformation, and construction of outward-facing SERT, DAT, and NET conformations allowing ligand binding was the most challenging step of the modeling procedure. The psychomotor stimulants cocaine and S-amphetamine, and the selective serotonin reuptake inhibitor (SSRI) S-citalopram, were docked into putative binding sites on the transporters to examine their molecular binding mechanisms. In the inward-facing conformation of SERT the translocation pore was closed towards the extracellular side by hydrophobic interactions between the conserved amino acids Phe105, Pro106, Phe117, and Ala372. An unconserved amino acid, Asp499 in TMH10 in NET, may contribute to the low affinity of S-citalopram to NET.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
32
|
Sen N, Shi L, Beuming T, Weinstein H, Javitch JA. A pincer-like configuration of TM2 in the human dopamine transporter is responsible for indirect effects on cocaine binding. Neuropharmacology 2005; 49:780-90. [PMID: 16216288 DOI: 10.1016/j.neuropharm.2005.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 08/18/2005] [Accepted: 08/22/2005] [Indexed: 11/27/2022]
Abstract
The second transmembrane segment (TM2) of DAT and other neurotransmitter transporters has been proposed to play a role in oligomerization as well as in cocaine binding. In an attempt to determine whether TM2 contributes to the binding site and/or transport pathway of DAT, we mutated to cysteine, one at a time, 25 residues in TM2 - from Phe98 to Gln122 - in an appropriate DAT background construct. Four of the mutants, F98C, G110C, P112C, and E117C, did not express at the cell surface, and G121C was inactive, despite its presence on the cell surface. Of the 21 mutants that expressed, none of the substituted cysteines reacted with MTSEA biotin-CAP, and none of the 20 functional mutants was sensitive to MTSEA or MTSET. Thus, TM2 does not appear to be water-accessible, based both on the lack of functional effects of charged MTS derivatives, and on the biochemical determination of lack of reaction with a biotinylated MTS derivative. This leads to the conclusion that TM2 does not contribute directly to the substrate-binding site or the transport pathway, and suggests that the observed effect of mutations in this region on cocaine binding is indirect. Three mutants, M106C, V107C and I108C, were crosslinked by treatment with HgCl(2). This crosslinking was inhibited by the presence of the cocaine analogue MFZ 2-12, likely due to a conformational rearrangement in TM2 upon inhibitor binding. However, the lack of crosslinking of cysteines substituted for Leu99, Leu113 and Leu120 - three of the residues that along with Met106 form a leucine heptad repeat in TM2 - makes it unlikely that this leucine repeat plays a role in symmetrical TM2 dimerization. Importantly, a high-resolution structure of LeuT, a sodium-dependent leucine transporter that is sufficiently homologous to DAT to suggest a high degree of structural similarity, became available while this manuscript was under review. We have taken advantage of this structure to explore further and interpret our experimental results in a rigorous structural context.
Collapse
Affiliation(s)
- Namita Sen
- Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
33
|
Chen R, Han DD, Gu HH. A triple mutation in the second transmembrane domain of mouse dopamine transporter markedly decreases sensitivity to cocaine and methylphenidate. J Neurochem 2005; 94:352-9. [PMID: 15998286 DOI: 10.1111/j.1471-4159.2005.03199.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previously, we reported that Phe105 in transmembrane domain 2 of the mouse dopamine transporter (DAT) is crucial for high-affinity cocaine binding. In the current study, we investigated whether other residues surrounding Phe105 also affect the potency of cocaine inhibition. After three rounds of sequential random mutagenesis at these residues, we found a triple mutant (L104V, F105C and A109V) of mouse DAT that retained over 50% uptake activity and was 69-fold less sensitive to cocaine inhibition when compared with the wild-type mouse DAT. The triple mutation also resulted in a 47-fold decrease in sensitivity to methylphenidate inhibition, suggesting that the binding sites for cocaine and methylphenidate may overlap. In contrast, the inhibition of dopamine uptake by amphetamine or methamphetamine was not significantly changed by the mutations, suggesting that the binding sites for the amphetamines differ from those for cocaine and methylphenidate. Such functional but cocaine-insensitive DAT mutants can be used to generate a knock-in mouse line to study the role of DAT in cocaine addiction.
Collapse
Affiliation(s)
- Rong Chen
- Department of Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | |
Collapse
|
34
|
Núñez E, Martínez-Maza R, Geerlings A, Aragón C, López-Corcuera B. Transmembrane domains 1 and 3 of the glycine transporter GLYT1 contain structural determinants of N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine specificity. Neuropharmacology 2005; 49:922-34. [PMID: 16143353 DOI: 10.1016/j.neuropharm.2005.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/15/2005] [Accepted: 07/20/2005] [Indexed: 11/29/2022]
Abstract
The neurotransmitter glycine is removed from the synaptic cleft by two Na(+)-and Cl(-)-dependent transporters: GLYT1 and GLYT2. GLYT1, expressed in glial processes of glycinergic areas and in glia and neurons of glutamatergic pathways that contain N-methyl-d-aspartate (NMDA) receptors, is essential for regulating glycine levels both at glycinergic and NMDA-containing synapses. GLYT2 is the transporter present in glycinergic neurons and provides cytosolic glycine for vesicular release from glycinergic terminals. GLYT1 is selectively inhibited by the sarcosine derivative N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine (NFPS). In the present report, GLYT1-GLYT2 chimeric transporters have been generated and their inhibition by NFPS has been studied. The introduction of GLYT2 transmembrane domains (TMs) 1 or 3, but not 2, on GLYT1 structure reduced the inhibition potency of NFPS and sarcosine. Binding studies and kinetic analysis of NFPS inhibition indicate lower affinity and smaller sensitivity of the chimeras to the compound. Opposite chimeras containing TM1 or TM3 of GLYT1 on GLYT2 structure became sensitive to NFPS. Individual substitution mutants of GLYT2 TM1 residues on GLYT1 and opposite GLYT1 TM1 residues on GLYT2 indicate that the more N-terminal portion of GLYT1 including residue E40 contributes to NFPS specificity. Our results demonstrate that TM1 and TM3, but not TM2, contain residues involved in the specific action of NFPS on GLYT1.
Collapse
Affiliation(s)
- Enrique Núñez
- Centro de Biología Molecular "Severo Ochoa", Facultad de Ciencias, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
Lin Z, Uhl GR. Proline mutations induce negative-dosage effects on uptake velocity of the dopamine transporter. J Neurochem 2005; 94:276-87. [PMID: 15953370 DOI: 10.1111/j.1471-4159.2005.03196.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ala and Gly substitutions for Pro 101 (P101) located in transmembrane domain 2 of the dopamine transporter (DAT) abolished transport activity but did not disrupt plasma membrane expression. Due to the high conservation of P101 in all neurotransmitter transporters and the capability of Pro to add flexibility to helices, we hypothesized that P101 contributes to the dynamic feature of substrate translocation. To test this hypothesis, here we analysed transport activity for DAT mutants where this Pro was mutated into different amino acids, including Ser, Val, Leu and Phe. The transmembrane domain 2 helix of P101F, unlike the other mutants, was computationally predicted to have a Van der Waals energy threefold higher than the wild-type helix. P101F mutant expression was consistently disrupted in COS cells. Among all the other mutants that express normally, P101V, with a side-chain size close to that of Pro, restores the transport activity of P101A by sevenfold. Most importantly, P101V, P101L and P101S display negative-dosage effects on dopamine (DA) transport, i.e. the velocity-concentration curve for DA uptake does not show a plateau with increasing [DA] but rather peaks and then goes down. These data support the view that P101 of DAT plays an essential role in DA translocation.
Collapse
Affiliation(s)
- Zhicheng Lin
- Molecular Neurobiology Branch, NIDA-IRP, NIH, Baltimore, MD 21224, USA.
| | | |
Collapse
|
36
|
Hahn MK, Mazei-Robison MS, Blakely RD. Single nucleotide polymorphisms in the human norepinephrine transporter gene affect expression, trafficking, antidepressant interaction, and protein kinase C regulation. Mol Pharmacol 2005; 68:457-66. [PMID: 15894713 DOI: 10.1124/mol.105.011270] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of norepinephrine (NE) in attention, memory, affect, stress, heart rate, and blood pressure implicates NE in psychiatric and cardiovascular disease. The norepinephrine transporter (NET) mediates reuptake of released catecholamines, thus playing a role in the limitation of signaling strength in the central and peripheral nervous systems. Nonsynonymous single nucleotide polymorphisms (SNPs) in the human NET (hNET) gene that influence transporter function can contribute to disease, such as the nonfunctional transporter, A457P, identified in orthostatic intolerance. Here, we examine additional amino acid variants that have been identified but not characterized in populations that include cardiovascular phenotypes. Variant hNETs were expressed in COS-7 cells and were assayed for protein expression and trafficking using cell-surface biotinylation and Western blot analysis, transport of radiolabeled substrate, antagonist interaction, and regulation through protein kinase C (PKC)-linked pathways by the phorbol ester beta-phorbol-12-myristate-13-acetate. We observed functional perturbations in 6 of the 10 mutants studied. Several variants were defective in trafficking and transport, with the most dramatic effect observed for A369P, which was completely devoid of the fully glycosylated form of transporter protein, was retained intracellularly, and lacked any transport activity. Furthermore, A369P and another trafficking variant, N292T, impeded surface expression of hNET when coexpressed. F528C demonstrated increased transport and, remarkably, exhibited both insensitivity to down-regulation by PKC and a decrease in potency for the tricyclic antidepressant desipramine. These findings reveal functional deficits that are likely to compromise NE signaling in SNP carriers in the population and identify key regions of NET contributing to transporter biosynthesis, activity, and regulation.
Collapse
Affiliation(s)
- Maureen K Hahn
- Center for Molecular Neuroscience, 6133 Medical Research Building III, Suite 7140, Vanderbilt School of Medicine, Nashville, TN 37232-8548, USA
| | | | | |
Collapse
|
37
|
Dar DE, Thiruvazhi M, Abraham P, Kitayama S, Kopajtic TA, Gamliel A, Slusher BS, Carroll FI, Uhl GR. Structure-activity relationship of trihexyphenidyl analogs with respect to the dopamine transporter in the on going search for a cocaine inhibitor. Eur J Med Chem 2005; 40:1013-21. [PMID: 16009468 DOI: 10.1016/j.ejmech.2005.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 04/16/2005] [Accepted: 04/18/2005] [Indexed: 12/18/2022]
Abstract
A series of trihexyphenidyl (THP) analogs were used to search for a derivative that could serve as a cocaine inhibitor. A compound that blocks binding of the cocaine analog carboxyfluorotropane (CFT), allows dopamine uptake and exhibits low side effects could serve as a good candidate for that purpose. All analogs were tested for the extent to which they inhibit CFT binding, dopamine uptake and n-methyl scopolamine (NMS) binding. Several structure-function relationships emerged. Methylation/halogenation of THP's benzene ring enhanced the compound's ability to block CFT binding in comparison to its ability to block dopamine uptake (5a-e). Replacement of the cyclohexyl ring with a benzene ring tended to create compounds that had lower affinities to the dopamine transporter (7b compared to THP, 7d compared to 5h, 7c compared to 8c) and modification of THP's piperidine ring tended to enhance affinity to the dopamine transporter (5f-h, 8a, 8c). One analog (5f) that showed little muscarinic activity indicating that it would probably have few side effects was investigated for its effects as an in vivo cocaine inhibitor. However, it showed few antagonistic effects in vivo. Nevertheless, this work greatly elucidates the structure-function relationships required for potential cocaine inhibitors and so lays out promising directions for future research.
Collapse
Affiliation(s)
- D E Dar
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, P.O. Box 5180, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Volz TJ, Schenk JO. A comprehensive atlas of the topography of functional groups of the dopamine transporter. Synapse 2005; 58:72-94. [PMID: 16088952 DOI: 10.1002/syn.20183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The neuronal dopamine transporter (DAT) is a transmembrane transporter that clears DA from the synaptic cleft. Knowledge of DAT functional group topography is a prerequisite for understanding the molecular basis of transporter function, the actions of psychostimulant drugs, and mechanisms of dopaminergic neurodegeneration. Information concerning the molecular interactions of drugs of abuse (such as cocaine, amphetamine, and methamphetamine) with the DAT at the functional group level may also aid in the development of compounds useful as therapeutic agents for the treatment of drug abuse. This review will provide a cumulative and comprehensive focus on the amino acid functional group topography of the rat and human DATs, as revealed by protein chemical modification and the techniques of site-directed mutagenesis. The results from these studies, represented mostly by site-directed mutagenesis, can be classified into several main categories: modifications without substantial affects on substrate transport, DAT membrane expression, or cocaine analog binding; those modifications which alter both substrate transport and cocaine analog binding; and those that affect DAT membrane expression. Finally, some modifications can selectively affect either substrate transport or cocaine analog binding. Taken together, these literature results show that domains for substrates and cocaine analogs are formed by interactions with multiple and sometimes distinct DAT functional groups.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
39
|
Abstract
The dopamine transporter (DAT) regulates the action of dopamine by reuptake of the neurotransmitter into presynaptic neurons, and is the main molecular target of amphetamines and cocaine. DAT and the Na+/H+ antiporter (NhaA) are secondary transporter proteins that carry small molecules across a cell membrane against a concentration gradient, using ion gradients as energy source. A 3-dimensional projection map of the E. coli NhaA has confirmed a topology of 12 membrane spanning domains, and was previously used to construct a 3-dimensional NhaA model with 12 trans-membrane alpha-helices (TMHs). The NhaA model, and site directed mutagenesis data on DAT, were used to construct a detailed 3-dimensional DAT model using interactive molecular graphics and empiric force field calculations. The model proposes a dopamine transport mechanism involving TMHs 1, 3, 4, 5, 7 and 11. Asp79, Tyr252 and Tyr274 were the primary cocaine binding residues. Binding of cocaine or its analogue, (-)-2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane (CFT), seemed to lock the transporter in an inactive state, and thus inhibit dopamine transport. The present model may be used to design further experimental studies of the molecular structure and mechanisms of DAT and other secondary transporter proteins.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
40
|
Soyer OS, Goldstein RA. Predicting functional sites in proteins: site-specific evolutionary models and their application to neurotransmitter transporters. J Mol Biol 2004; 339:227-42. [PMID: 15123434 DOI: 10.1016/j.jmb.2004.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 02/26/2004] [Accepted: 03/09/2004] [Indexed: 11/21/2022]
Abstract
Currently there exist several computational methods for predicting the functional sites in a set of homologous proteins based on their sequences. Due to difficulties in defining the functional site in a protein, it is not trivial to compare the performance of these methods, evaluate their limitations and quantify improvements by new approaches. Here, we use extensive mutation data from two proteins, Lac repressor and subtilisin, to perform such an analysis. Along with the evaluation of existing approaches, we describe a site class model of evolution as a tool to predict functional sites in proteins. The results indicate that this model, which simulates the evolution process at the amino acid level using site-specific substitution matrices, provides the most accurate information on functional sites in a given protein family. Secondly, we present an application of this model to neurotransmitter transporters, a superfamily of proteins of which we have limited experimental knowledge. Based on this application we present testable hypotheses regarding the mechanism of action of these proteins.
Collapse
Affiliation(s)
- Orkun S Soyer
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
41
|
Miranda M, Sorkina T, Grammatopoulos TN, Zawada WM, Sorkin A. Multiple molecular determinants in the carboxyl terminus regulate dopamine transporter export from endoplasmic reticulum. J Biol Chem 2004; 279:30760-70. [PMID: 15128747 DOI: 10.1074/jbc.m312774200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane dopamine transporter (DAT) has an essential role in terminating dopaminergic neurotransmission by reuptake of dopamine into the presynaptic neurons. Therefore, the amount of DAT at the cell surface is a critical determinant of DAT function. In this study, we examined the role of the carboxyl terminus of DAT in trafficking of the transporter through the biosynthetic pathway to the plasma membrane. Live cell fluorescence microscopy and cell surface biotinylation were used to study the effects of systematic deletions and alanine substitutions in the carboxyl terminus on DAT localization. It was found that alanine substitutions of Lys-590 and Asp-600 significantly delayed the delivery of DAT to the plasma membrane because of retention of DAT in the endoplasmic reticulum (ER). Most surprising, mutation of Gly-585 to alanine completely blocked the exit of DAT from the ER and surface expression of the transporter. The effect of these three mutations on ER export of DAT was demonstrated in porcine aortic endothelial cells and the immortalized neuronal cell line 1RB3AN27. In primary cultures of rat embryonic midbrain neurons, DAT G585A, K590A, and D600A mutants were restricted to the cell soma and did not traffic to the dendrites or axonal processes. These data are consistent with the model whereby the local conformation and/or intramolecular interactions of the sequences of the DAT carboxyl terminus proximal to the last transmembrane domain are essential for the ER export of the transporter.
Collapse
Affiliation(s)
- Manuel Miranda
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
42
|
Lin Z, Uhl GR. Human dopamine transporter gene variation: effects of protein coding variants V55A and V382A on expression and uptake activities. THE PHARMACOGENOMICS JOURNAL 2004; 3:159-68. [PMID: 12815364 DOI: 10.1038/sj.tpj.6500169] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human dopamine transporter (DAT, SLC6A3) is an important 15 exon gene for dopamine neurotransmission and dopamine recycling. Common exon 15 variable number tandem repeat variants can be associated with attention deficit/hyperactivity disorder. Rarer single nucleotide polymorphisms produce missense variants including V55A and V382A. We now report studies of the functional influences of these DAT protein-coding variants. In COS cell transient-expression assays, V382A displays about half of the dopamine uptake velocity Vmax and cocaine analog binding Bmax values of wildtype DAT. V382A lowers dopamine's potency in inhibiting cocaine analog binding by six-fold. Cells expressing V382A or mixtures of V382A and wildtype DAT both display reduced plasma membrane and increased perinuclear expression, consistent with dominant effects of V328A on expression. V55A expresses normally but reveals a 1.7-fold-lower Km for dopamine uptake. Individuals with these human DAT protein variants could display altered dopamine systems.
Collapse
Affiliation(s)
- Zhicheng Lin
- Molecular Neurobiology Branch, NIDA-IRP, NIH, Nathan Shock Drive, Baltimore, MD, USA
| | | |
Collapse
|
43
|
Uhl GR. Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 2004; 18 Suppl 7:S71-80. [PMID: 14531049 DOI: 10.1002/mds.10578] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We review the basic science of the dopamine transporter (DAT), a key neurotransmitter for locomotor control and reward systems, including those lost or deranged in Parkinson's disease (PD). Physiology, pharmaceutical features, expression, cDNA, protein structure/function relationships, and phosphorylation and regulation are discussed. The localization of DAT provides the best marker for the integrity of just the pre-synaptic dopaminergic systems that are most affected in PD. Its function is key for the actions of several toxins that provide some of the best current models for idiopathic parkinsonism, and its variation can clearly alter movement. The wealth of information about this interesting molecule that has been developed over the last 12 years has led to increased interest in DAT among workers interested in both normal and abnormal movement.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIDA-IRP, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
44
|
Sato Y, Zhang YW, Androutsellis-Theotokis A, Rudnick G. Analysis of transmembrane domain 2 of rat serotonin transporter by cysteine scanning mutagenesis. J Biol Chem 2004; 279:22926-33. [PMID: 15044496 DOI: 10.1074/jbc.m312194200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The second transmembrane domain (TM2) of neurotransmitter transporters has been invoked to control oligomerization and surface expression. This transmembrane domain lies between TM1 and TM3, which have both been proposed to contain residues that contribute to the substrate binding site. Rat serotonin transporter (SERT) TM2 was investigated by cysteine scanning mutagenesis. Six mutants in which cysteine replaced an endogenous TM2 residue had low transport activity, and two were inactive. Most of the reduction in transport activity was due to decreased surface expression. In contrast, M124C and G128C showed increased activity and surface expression. Random mutagenesis at positions 124 and 128 revealed that hydrophobic residues at these positions also increased activity. When modeled as an alpha-helix, positions where mutation to cysteine strongly affects expression levels clustered on the face of TM2 surrounding the leucine heptad repeat conserved within this transporter family. 2-(Aminoethyl)-methanethiosulfonate hydrobromide (MTSEA)-biotin labeled A116C and Y136C but not F117C, M135C, or Y134C, suggesting that these residues may delimit the transmembrane domain. None of the cysteine substitution mutants from 117 through 135 were sensitive to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET) or MTSEA. However, treatment with MTSEA increased 5-hydroxytryptamine transport by A116C. Activation of A116C by MTSEA was observed only in mutants containing Cys to Ile mutation at position 357, suggesting that modification of Cys-116 activated transport by compensating for a disruption in transport in response to Cys-357 replacement. The reactivity of A116C toward MTSEA was substantially increased in the presence of substrates but not inhibitors. This increase required Na+ and Cl-, and was likely to result from conformational changes during the transport process.
Collapse
Affiliation(s)
- Yuichiro Sato
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|
45
|
Quirante J, Vila X, Bonjoch J, Kozikowski AP, Johnson KM. 2,3-Disubstituted 6-azabicyclo[3.2.1]octanes as novel dopamine transporter inhibitors. Bioorg Med Chem 2004; 12:1383-91. [PMID: 15018911 DOI: 10.1016/j.bmc.2004.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Accepted: 01/13/2004] [Indexed: 11/15/2022]
Abstract
A series of cis and trans 3beta-aryl-2-carbomethoxy-6-azabicyclo[3.2.1]octanes, with different substitution at the para-position of the aryl group, were synthesized and examined for reuptake inhibition at the dopamine transporter (DAT). The potency for inhibition of DA reuptake was compared with that of cocaine to determine the significance of the replacement of the 8-azabicyclo[3.2.1]octane (tropane nucleus), displayed in cocaine, for the 6-azabicyclo[3.2.1]octane (normorphan framework). This bicyclic core structure constitutes a novel chemical scaffold in DAT inhibitor design, which may provide new insights into the 3D structure of the DAT and its interaction with cocaine and DA. Among these compounds, the trans-amine series 8 were the most potent ligands at the DAT. In particular, the normorphan analogue 8c (bearing a p-chloro substituent at the beta-aryl group, IC(50)=452 nM) displayed a potency that is in the same range as cocaine (IC(50)=459 nM) itself.
Collapse
Affiliation(s)
- Josefina Quirante
- Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028- Barcelona, Spain.
| | | | | | | | | |
Collapse
|
46
|
Uhl GR, Lin Z. The top 20 dopamine transporter mutants: structure–function relationships and cocaine actions. Eur J Pharmacol 2003; 479:71-82. [PMID: 14612139 DOI: 10.1016/j.ejphar.2003.08.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our laboratory and others elucidated the primary amino acid sequences of the dopamine transporter (DAT) by cloning its cDNA and genomic sequences more than 12 years ago. Motivations for this work included the ideas that cocaine's interactions with DAT accounted for its rewarding properties and that selective inhibitors of DAT/cocaine interactions might thus provide good anticocaine medications. Such ideas supported interest in the detailed structure-function relationships of cocaine/DAT interactions, and in the construction and characterization of extensive series of site-directed DAT mutants. We can now select the most interesting 20 cocaine-analog selective mutations of the more than 100 single- and multiple amino acid substitution mutations that we have characterized. These mutants selectively reduce the affinities of the mutant DATs for cocaine analogs, but (absolutely or relatively) spare their affinities for dopamine. Several themes relevant to cocaine/DAT interactions emerge from these mutants. First, such mutations are found in a number of different DAT domains. Secondly, many but not all of these mutations lie in groups, near each other and near the same faces of presumably helical DAT transmembrane domains. Third, most are also conserved in the serotonin transporter (SERT), a transporter that is now strongly implicated in cocaine reward based on data from knockout mice. We discuss the results from these "top 20" mutants in light of the strengths and limitations of current DAT models and data from other studies. Taken together, these studies appear to indicate direct or indirect participation of several specific portions of DAT in selective recognition of cocaine analogs. These studies provide a strong basis for redirected studies aimed at producing dopamine- and serotonin-sparing cocaine antagonists that would represent combined DAT/SERT disinhibitors.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIDA-IRP, NIH, 5500 Nathan Shock Drive, PO Box 5180, Baltimore, MD 21224, USA.
| | | |
Collapse
|
47
|
Abstract
Glycine exerts multiple functions in the central nervous system, as an inhibitory neurotransmitter through activation of specific, Cl--permeable, ligand-gated ionotropic receptors and as an obligatory co-agonist with glutamate on the activation of N-methyl-D-aspartate (NMDA) receptors. In some areas of the central nervous system, glycine seems to be co-released with gamma-aminobutyric acid (GABA), the main inhibitory amino acid neurotransmitter. The synaptic action of glycine ends by active recapture through sodium- and chloride-coupled glycine transporters located in glial and neuronal plasma membranes, whose structure-function relationship is being studied. The trafficking and plasma membrane expressions of these proteins are controlled by regulatory mechanisms. Glycine transporter inhibitors may find application in the treatment of muscle tone defects, epilepsy, schizophrenia, pain and neurodegenerative disorders. This review deals on recent progress on localization, transport mechanisms, structure, regulation and pharmacology of the glycine transporters (GLYTs).
Collapse
Affiliation(s)
- Carmen Aragón
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
48
|
Madras BK, Fahey MA, Miller GM, De La Garza R, Goulet M, Spealman RD, Meltzer PC, George SR, O'Dowd BF, Bonab AA, Livni E, Fischman AJ. Non-amine-based dopamine transporter (reuptake) inhibitors retain properties of amine-based progenitors. Eur J Pharmacol 2003; 479:41-51. [PMID: 14612136 DOI: 10.1016/j.ejphar.2003.08.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Without exception, therapeutic and addictive drugs that produce their primary effects by blocking monoamine transporters in brain contain an amine nitrogen in their structure. This fundamental canon of drug design was based on a prevailing premise that an amine nitrogen is required to mimic the structures of monoamine neurotransmitters and other natural products. Non-amines, a novel class of compounds that contain no amine nitrogen, block monoamine transporters in the nM range and display markedly high selectivity for monoamine transporters, but not for receptors. Non-amines retain the spectrum of biochemical and pharmacological properties characteristic of amine-bearing counterparts. These novel drugs compel a revision of current concepts of drug-monoamine transporter complex formation and open avenues for discovery of a new generation of therapeutic drugs.
Collapse
Affiliation(s)
- Bertha K Madras
- Department of Psychiatry, Harvard Medical School, New England Primate Research Center, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ravna AW, Sylte I, Dahl SG. Molecular mechanism of citalopram and cocaine interactions with neurotransmitter transporters. J Pharmacol Exp Ther 2003; 307:34-41. [PMID: 12944499 DOI: 10.1124/jpet.103.054593] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selective serotonin reuptake inhibitors (SSRIs) and cocaine bind to the neural serotonin (5-HT) transporter (SERT) and thus inhibit presynaptic reuptake of 5-HT and elevate its concentration in the synaptic cleft. Cocaine also binds to the dopamine transporter (DAT) and to the noradrenaline transporter (NET) and inhibits presynaptic reuptake of dopamine and noradrenaline. SERT, DAT, and NET belong to the sodium/neurotransmitter symporter family, which is predicted to have a molecular structure with 12 transmembrane alpha-helices (TMHs) and intracellular amino- and carboxy terminals. We used an electron density projection map of the Escherichia coli Na+/H+ anti-porter, and site-directed mutagenesis data on DAT and SERT to construct 3-dimensional molecular models of SERT, DAT and NET. These models were used to simulate the molecular interaction mechanisms of the SSRI, S-citalopram, its less potent enantiomer, R-citalopram and of cocaine with the transporters. In the SERT model, a single amino acid (Tyr95) in TMH1 determined the transporter selectivity of S-citalopram for SERT over DAT and NET. A dipole-dipole interaction was formed between the hydroxy group of Tyr95 in SERT and the nitril group of S-citalopram, but could not be formed by S-citalopram in DAT and NET where the corresponding amino acid is a phenylalanine. The lower binding affinity of R-citalopram may be due to sterical hindrance at the binding site. The tropane ring of cocaine interacted with Tyr95 in SERT and with the corresponding phenylalanines in NET and DAT. This may explain why cocaine, but not S-citalopram, has high binding affinity to all three transporters.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, Norway
| | | | | |
Collapse
|
50
|
Lin Z, Zhang PW, Zhu X, Melgari JM, Huff R, Spieldoch RL, Uhl GR. Phosphatidylinositol 3-kinase, protein kinase C, and MEK1/2 kinase regulation of dopamine transporters (DAT) require N-terminal DAT phosphoacceptor sites. J Biol Chem 2003; 278:20162-70. [PMID: 12660249 DOI: 10.1074/jbc.m209584200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter (DAT) modulates dopamine neurotransmission and is a primary target for psychostimulant influences on locomotion and reward. Selective DAT expression by dopaminergic neurons has led to use of cocaine analog DAT radioligands to assess rates of progression of dopamine neuronal degeneration in Parkinson's disease. We have documented that DAT is a phosphoprotein that is regulated by phosphorylation through pathways that include protein kinase C cascades. We now extend this work using drugs selective for phosphatidylinositol 3-kinase (PI3K), protein kinase C, MEK1/2, p38 kinase, and Ca2+/calmodulin kinase II. We compare the drug effects on wild type DAT to the effects on 20 DAT mutants and a DAT deletion. PI3K and MEK1/2 modulators exert strong effects on DAT expression patterns and dopamine uptake Vmax. PKC principally modulates Vmax. Neither p38 nor Ca2+/calmodulin kinase II agents exert significant influences on wild type DAT. Several mutants and a DAT with an N-terminal deletion display alterations that interact with the effects of kinase modulators, especially S7A for PKC effects; T62A, S581A, and T612A for PI3K effects; and S12A and T595A mutants for MEK1/2 effects. 32P-Labeling studies confirm several of these effects of kinase pathway modulators on DAT phosphorylation. DAT expression and activities can be regulated by kinase cascades that require phosphoacceptor sites most concentrated in its N terminus. These results have a number of implications for DAT regulation and mandate caution in using DAT radioligand binding to infer changes in dopaminergic neuronal integrity after treatments that alter activities of these kinase pathways.
Collapse
Affiliation(s)
- Zhicheng Lin
- Molecular Neurobiology Branch, NIDA-IRP, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|