1
|
Teixeira MR, Silva T, Felício RDFM, Bozza PT, Zembrzuski VM, de Mello Neto CB, da Fonseca ACP, Kohlrausch FB, Salum KCR. Exploring the genetic contribution in obesity: An overview of dopaminergic system genes. Behav Brain Res 2025; 480:115401. [PMID: 39689745 DOI: 10.1016/j.bbr.2024.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Obesity is a widespread global health concern that affects a significant portion of the population and is associated with reduced quality of life, morbidity, and mortality. It is considered a pandemic, with its prevalence constantly rising in Western countries. As a result, numerous studies have focused on understanding the elements that contribute to obesity. Researchers have focused on neurotransmitters in the brain to develop weight management drugs that regulate food intake. This review explores the literature on genetic influences on dopaminergic processes to determine whether genetic variation has an association with obesity in reward-responsive regions, including mesolimbic efferent and mesocortical areas. Various neurotransmitters play an essential role in regulating food intake, such as dopamine which controls through mesolimbic circuits in the brain that modulate food reward. Appetite stimulation, including primary reinforcers such as food, leads to an increase in dopamine release in the reward centers of the brain. This release is related to motivation and reinforcement, which determines the motivational weighting of the reinforcer. Changes in dopamine expression can lead to hedonic eating behaviors and contribute to the development of obesity. Genetic polymorphisms have been investigated due to their potential role in modulating the risk of obesity and eating behaviors. Therefore, it is crucial to assess the impact of genetic alterations that disrupt this pathway on the obesity phenotype.
Collapse
Affiliation(s)
- Myrela Ribeiro Teixeira
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Tamara Silva
- Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Rafaela de Freitas Martins Felício
- Congenital Malformation Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil
| | - Verônica Marques Zembrzuski
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Cicero Brasileiro de Mello Neto
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil; Postgraduate Program in Translational Biomedicine, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Fabiana Barzotto Kohlrausch
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Kaio Cezar Rodrigues Salum
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Professor Rodolpho Paulo Rocco Street, 255, University City, Rio de Janeiro, RJ 21941-617, Brazil.
| |
Collapse
|
2
|
Chloride requirement for monoamine transporters. Pflugers Arch 2016; 468:503-11. [PMID: 26794730 DOI: 10.1007/s00424-015-1783-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
This review focuses on the Cl(-) requirement for dopamine, serotonin, and norepinephrine (DA, 5-HT, and NE) transport and induced current via the transporters for these transmitters, DAT, SERT, and NET. Indirect evidence exists for the passage of Cl(-) ions through monoamine transporters; however, direct evidence is sparse. An unanswered question is why in some preparations, notably native neurons, it appears that Cl(-) ions carry the current through DAT, whereas in heterologous expression systems Na(+) ions carry the current often referred to as the uncoupled current. It is suggested that different functional states in monoamine transporters represent conformational states that carry dominantly Cl(-) or Na(+). Structures of monoamine transporters contribute enormously to structure-function relationships; however, thus far no structural features support the functionally relevant ionic currents that are known to exist in monoamine transporters.
Collapse
|
3
|
Livesay DR, Kidd PD, Eskandari S, Roshan U. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family. BMC Bioinformatics 2007; 8:397. [PMID: 17941992 PMCID: PMC2194793 DOI: 10.1186/1471-2105-8-397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/17/2007] [Indexed: 01/09/2023] Open
Abstract
Background Efforts to predict functional sites from globular proteins is increasingly common; however, the most successful of these methods generally require structural insight. Unfortunately, despite several recent technological advances, structural coverage of membrane integral proteins continues to be sparse. ConSequently, sequence-based methods represent an important alternative to illuminate functional roles. In this report, we critically examine the ability of several computational methods to provide functional insight within two specific areas. First, can phylogenomic methods accurately describe the functional diversity across a membrane integral protein family? And second, can sequence-based strategies accurately predict key functional sites? Due to the presence of a recently solved structure and a vast amount of experimental mutagenesis data, the neurotransmitter/Na+ symporter (NSS) family is an ideal model system to assess the quality of our predictions. Results The raw NSS sequence dataset contains 181 sequences, which have been aligned by various methods. The resultant phylogenetic trees always contain six major subfamilies are consistent with the functional diversity across the family. Moreover, in well-represented subfamilies, phylogenetic clustering recapitulates several nuanced functional distinctions. Functional sites are predicted using six different methods (phylogenetic motifs, two methods that identify subfamily-specific positions, and three different conservation scores). A canonical set of 34 functional sites identified by Yamashita et al. within the recently solved LeuTAa structure is used to assess the quality of the predictions, most of which are predicted by the bioinformatic methods. Remarkably, the importance of these sites is largely confirmed by experimental mutagenesis. Furthermore, the collective set of functional site predictions qualitatively clusters along the proposed transport pathway, further demonstrating their utility. Interestingly, the various prediction schemes provide results that are predominantly orthogonal to each other. However, when the methods do provide overlapping results, specificity is shown to increase dramatically (e.g., sites predicted by any three methods have both accuracy and coverage greater than 50%). Conclusion The results presented herein clearly establish the viability of sequence-based bioinformatic strategies to provide functional insight within the NSS family. As such, we expect similar bioinformatic investigations will streamline functional investigations within membrane integral families in the absence of structure.
Collapse
Affiliation(s)
- Dennis R Livesay
- Department of Computer Science and Bioinformatics Research Center, University of North Carolina at Charlotte, Charlotte, NC 28262, USA.
| | | | | | | |
Collapse
|
4
|
Reith MEA, Zhen J, Chen N. The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. Handb Exp Pharmacol 2007:75-93. [PMID: 16722231 DOI: 10.1007/3-540-29784-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
SLC6 transporters, which include transporters for gamma-aminobutyric acid (GABA), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine, betaine, and neutral cationic amino acids, require Na+ and Cl- for their function, and this review covers the interaction between transporters of this family with Na+ and Cl- from a structure-function standpoint. Because detailed structure-function information regarding ion interactions with SLC6 transporters is limited, we cover other proteins cotransporting Na+ or Cl- with substrate (SLClA2, PutP, SLC5A1, melB), or ion binding to proteins in general (rhodanese, ATPase, LacY, thermolysine, angiotensin-converting enzyme, halorhodopsin, CFTR). Residues can be involved in directly binding Na+ or Cl-, in coupling ion binding to conformational changes in transporter, in coupling Na+ or Cl- movement to transport, or in conferring ion selectivity. Coordination of ions can involve a number of residues, and portions of the substrate and coupling ion binding sites can be distal in space in the tertiary structure of the transporter, with other portions that are close in space thought to be crucial for the coupling process. The reactivity with methanethiosulfonate reagents of cysteines placed in strategic positions in the transporter provides a readout for conformational changes upon ion or substrate binding. More work is needed to establish the relationships between ion interactions and oligomerization of SLC6 transporters.
Collapse
Affiliation(s)
- M E A Reith
- Department of Biological Sciences, Illinois State University, Normal, IL 61656, USA.
| | | | | |
Collapse
|
5
|
Mazei-Robinson MS, Blakely RD. ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol 2006:373-415. [PMID: 16722244 DOI: 10.1007/3-540-29784-7_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The catecholamine dopamine (DA) plays an important role as a neurotransmitter in the brain in circuits linked to motor function, reward, and cognition. The presynaptic DA transporter (DAT) inactivates DA following release and provides a route for non-exocytotic DA release (efflux) triggered by amphetamines. The synaptic role of DATs first established through antagonist studies and more recently validated through mouse gene-knockout experiments, raises questions as to whether altered DAT structure or regulation support clinical disorders linked to compromised DA signaling, including drug abuse, schizophrenia, and attention deficit hyperactivity disorder (ADHD). As ADHD appears to have highly heritable components and the most commonly prescribed therapeutics for ADHD target DAT, studies ranging from brain imaging to genomic and genetic analyses have begun to probe the DAT gene and its protein for possible contributions to the disorder and/or its treatment. In this review, after a brief overview of ADHD prevalence and diagnostic criteria, we examine the rationale and experimental findings surrounding a role for human DAT in ADHD. Based on the available evidence from our lab and labs of workers in the field, we suggest that although a common variant within the human DAT (hDAT) gene (SLC6A3) is unlikely to play a major role in the ADHD, contributions of hDAT to risk maybe most evident in phenotypic subgroups. The in vitro and in vivo validation of functional variants, pursued for contributions to endophenotypes in a within family approach, may help elucidate DAT and DA contributions to ADHD and its treatment.
Collapse
Affiliation(s)
- M S Mazei-Robinson
- Vanderbilt School of Medicine, Suite 7140, MRB III, Nashville, TN 37232-8548, USA
| | | |
Collapse
|
6
|
Volz TJ, Schenk JO. A comprehensive atlas of the topography of functional groups of the dopamine transporter. Synapse 2005; 58:72-94. [PMID: 16088952 DOI: 10.1002/syn.20183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The neuronal dopamine transporter (DAT) is a transmembrane transporter that clears DA from the synaptic cleft. Knowledge of DAT functional group topography is a prerequisite for understanding the molecular basis of transporter function, the actions of psychostimulant drugs, and mechanisms of dopaminergic neurodegeneration. Information concerning the molecular interactions of drugs of abuse (such as cocaine, amphetamine, and methamphetamine) with the DAT at the functional group level may also aid in the development of compounds useful as therapeutic agents for the treatment of drug abuse. This review will provide a cumulative and comprehensive focus on the amino acid functional group topography of the rat and human DATs, as revealed by protein chemical modification and the techniques of site-directed mutagenesis. The results from these studies, represented mostly by site-directed mutagenesis, can be classified into several main categories: modifications without substantial affects on substrate transport, DAT membrane expression, or cocaine analog binding; those modifications which alter both substrate transport and cocaine analog binding; and those that affect DAT membrane expression. Finally, some modifications can selectively affect either substrate transport or cocaine analog binding. Taken together, these literature results show that domains for substrates and cocaine analogs are formed by interactions with multiple and sometimes distinct DAT functional groups.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
7
|
Bonnet JJ. Interactions of cations and anions with the binding of uptake blockers to the dopamine transporter. Eur J Pharmacol 2004; 479:199-212. [PMID: 14612150 DOI: 10.1016/j.ejphar.2003.08.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uptake blockers and substrates are likely to recognise a common binding domain on the dopamine neuronal transporter (DAT). Among cations that form ionic gradients at the level of the cellular plasma membrane, Na+ is the only one that can stimulate their binding. The binding stimulation appears over Na+ concentrations ranging from 0 to 10-60 mM; at higher Na+ concentrations, binding reaches a plateau or decreases, according to the uptake blocker that is studied. The majority of the other cations, including K+, Ca2+, Mg2+ and Tris+, inhibit the binding of uptake blockers. Several metals impair binding to the DAT and/or the dopamine transport, but, under specific conditions, some of them, and chiefly Zn2+, stimulate binding. The complex relationships between cations, uptake blockers and the DAT suggest that cations recognise at least three different sites: the first one, site 1, is for cation-induced binding inhibition; the second one, site 2, is for Na+-induced binding stimulation; and the third one, site 3, is for Zn2+-induced binding stimulation. Modelling of the interactions between Na+, K+ and radioligands allows a better understanding of the effects of cations at sites 1 and 2, and of uptake blockers at site 1. Some anions also facilitate the binding of uptake blockers to the DAT, as far as they are associated with Na+. The dependence of the binding of dopamine on ions could be involved in its preferential inward transport and used by uptake blockers for their own binding to the DAT.
Collapse
Affiliation(s)
- Jean-Jacques Bonnet
- UMR CNRS 6036, IFRMP 23, Laboratoire de Neuropsychopharmacologie expérimentale, 22 Boulevard Gambetta, 76000 Rouen, France.
| |
Collapse
|
8
|
Chen N, Zhen J, Reith MEA. Mutation of Trp84 and Asp313 of the dopamine transporter reveals similar mode of binding interaction for GBR12909 and benztropine as opposed to cocaine. J Neurochem 2004; 89:853-64. [PMID: 15140185 DOI: 10.1111/j.1471-4159.2004.02386.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The different psychomotor-stimulant effects of cocaine, GBR12909, and benztropine may partially stem from their different molecular actions on the dopamine transporter (DAT). To explore this possibility, we examined binding of these inhibitors to mutated DATs with altered Na(+) dependence of DAT activities and with enhanced binding of a cocaine analog, [(3)H]2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (CFT). In [(3)H]CFT competition assays with intact cells, the mutation-induced change in the ability of Na(+) to enhance the apparent affinity of CFT, cocaine, GBR12909, and benztropine was inhibitor-independent. Thus, for the four inhibitors, the curve of [Na(+)] versus apparent ligand affinity was steeper at W84L compared with wild type, shallower at D313N, and flat at W84LD313N. At each mutant, the apparent affinity of CFT and cocaine was enhanced regardless of whether Na(+) was present. However, the apparent affinity of GBR12909 and benztropine for W84L was reduced in the absence of Na(+) but near normal in the presence of 130 mm Na(+), and that for D313N and W84LD313N was barely changed. At the single mutants, the alterations in Na(+) dependence and apparent affinity of the four inhibitors were comparable between [(3)H]CFT competition assays and [(3)H]dopamine uptake inhibition assays. These results demonstrate that DAT inhibitors producing different behavioral profiles can respond in an opposite way when residues of the DAT protein are mutated. For GBR12909 and benztropine, their cocaine-like changes in Na(+) dependence suggest that they prefer a DAT state similar to that for cocaine. However, their cocaine-unlike changes in apparent affinity argue that they, likely via their diphenylmethoxy moiety, share DAT binding epitopes that are different from those for cocaine.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Psychiatry, New York University School of Medicine, New York 10016, USA.
| | | | | |
Collapse
|
9
|
Bryan-Lluka LJ, Bönisch H, Lewis RJ. chi-Conopeptide MrIA partially overlaps desipramine and cocaine binding sites on the human norepinephrine transporter. J Biol Chem 2003; 278:40324-9. [PMID: 12837768 DOI: 10.1074/jbc.m213101200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions of chi-conopeptide MrIA with the human norepinephrine transporter (hNET) were investigated by determining the effects of hNET point mutations on the inhibitory potency of MrIA. The mutants were produced by site-directed mutagenesis and expressed in COS-7 cells. The potency of MrIA was greater for inhibition of uptake by hNET of [3H]norepinephrine (Ki 1.89 microM) than [3H]dopamine (Ki 4.33 microM), and the human dopamine transporter and serotonin transporter were not inhibited by MrIA (to 7 microM). Of 18 mutations where hNET amino acid residues were exchanged with those of the human dopamine transporter, MrIA had increased potency for inhibition of [3H]norepinephrine uptake for three mutations (in predicted extracellular loops 3 and 4 and transmembrane domain (TMD) 8) and decreased potency for one mutation (in TMD6 and intracellular loop (IL) 3). Of the 12 additional mutations in TMDs 2, 4, 5, and 11 and IL1, three mutations (in TMD2 and IL1) had reduced MrIA inhibitory potency. All of the other mutations tested had no influence on MrIA potency. A comparison of the results with previous data for desipramine and cocaine inhibition of norepinephrine uptake by the mutant hNETs reveals that MrIA binding to hNET occurs at a site that is distinct from but overlaps with the binding sites for tricyclic antidepressants and cocaine.
Collapse
Affiliation(s)
- Lesley J Bryan-Lluka
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | | | | |
Collapse
|
10
|
Abstract
Advances have been made in characterizing the relationship between Na+ and the substrate permeation pathway in the dopamine transporter. This review covers the role of Na+ in co-transport with dopamine as well as in the recognition of dopamine. Apparent recognition depends on the preparation studied: it differs between intact cells heterologously expressing the dopamine transporter and membranes prepared from these cells. In our search for amino acid residues in the transporter involved in Na+ action, W84 and D313 were found to play a special role in cation interaction, with evidence for regulation of both Na+ and H+ sensitivity. Mutation of D313 to N appeared to decrease the affinity for the dopamine transporter in intact cells, not by altering recognition per se. A model is proposed in which access of dopamine, not recognition itself, is regulated by D313 and Na+. Thus, the role of external Na+ in intact cell preparations is to turn dopamine transporters to the externally facing form, allowing access of dopamine to its binding site.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Box 1649, Peoria, IL 61656-1649, USA
| | | |
Collapse
|
11
|
Fandrick K, Feng X, Janowsky A, Johnson R, Cashman JR. Bivalent biogenic amine reuptake inhibitors. Bioorg Med Chem Lett 2003; 13:2151-4. [PMID: 12798324 DOI: 10.1016/s0960-894x(03)00386-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A series of aryltropane-based bivalent ligands was prepared and investigated for binding potency and for their ability to inhibit reuptake of human dopamine, serotonin and norepinephrine transporters. The bivalent ligand 4, comprised of linking an aryltropane by an octamethylene spacer showed high efficacy for the human dopamine transporter and had a discrimination ratio of 130.
Collapse
Affiliation(s)
- Keith Fandrick
- Human BioMolecular Research Institute, 5310 Eastgate Mall, 92121, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
12
|
Sucic S, Bryan-Lluka LJ. The role of the conserved GXXXRXG motif in the expression and function of the human norepinephrine transporter. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 108:40-50. [PMID: 12480177 DOI: 10.1016/s0169-328x(02)00512-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Highly conserved motifs in the monoamine transporters, e.g. the human norepinephrine transporter (hNET) GXXXRXG motif which was the focus of the present study, are likely to be important structural features in determining function. This motif was investigated by mutating the glycines to glutamate (causing loss of function) and alanine, and the arginine to glycine. The effects of hG117A, hR121G and hG123A mutations on function were examined in COS-7 cells and compared to hNET. Substrate K(m) values were decreased for hG117A and hG123A, and their K(i) values for inhibition of [3H]nisoxetine binding were decreased 3-4-fold and 4-6-fold, respectively. Transporter turnover was reduced to 65% of hNET for hG117A and hR121G and to 28% for hG123A, suggesting that substrate translocation is impaired. K(i) values of nisoxetine and desipramine for inhibition of [3H]norepinephrine uptake were increased by 5-fold for hG117A, with no change for cocaine. The K(i) value of cocaine was increased by 3-fold for hG123A, with no change for nisoxetine and desipramine. However, there were no effects of the mutations on the K(d) of [3H]nisoxetine binding or K(i) values of desipramine or cocaine for inhibition of [3H]nisoxetine binding. Hence, glycine residues of the GXXXRXG motif are important determinants of NET expression and function, while the arginine residue does not have a major role. This study also showed that antidepressants and psychostimulants have different NET binding sites and provided the first evidence that different sites on the NET are involved in the binding of inhibitors and their competitive inhibition of substrate uptake.
Collapse
Affiliation(s)
- Sonja Sucic
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | | |
Collapse
|
13
|
Sucic S, Paczkowski FA, Runkel F, Bönisch H, Bryan-Lluka LJ. Functional significance of a highly conserved glutamate residue of the human noradrenaline transporter. J Neurochem 2002; 81:344-54. [PMID: 12064482 DOI: 10.1046/j.1471-4159.2002.00826.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the study was to investigate the role of glutamate residue 113 in transmembrane domain 2 of the human noradrenaline transporter in determining cell surface expression and functional activity. This residue is absolutely conserved in all members of the Na+- and Cl--dependent transporter family. Mutations to alanine (hE113A), aspartate (hE113D) and glutamine (hE113Q) were achieved by site-directed mutagenesis and the mutants were expressed in transfected COS-7 or HEK-293 cells. Cell surface expression of hE113A and hE113D, but not hE113Q, was markedly reduced compared with wild type, and functional noradrenaline uptake was detected only for the hE113Q mutant. The pharmacological properties of the hE113Q mutant showed very little change compared with wild type, except for a decrease in Vmax values for noradrenaline and dopamine uptake of 2-3-fold. However, the hE113D mutant showed very marked changes in its properties, compared with wild type, with 82-260-fold decreases in the affinities of the substrates, noradrenaline, dopamine and MPP+, and increased Na+ affinity for stimulation of nisoxetine binding. The results of the study show that the size and not the charge of the 113 glutamate residue of the noradrenaline transporter seems to be the most critical factor for maintenance of transporter function and surface expression.
Collapse
Affiliation(s)
- Sonja Sucic
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
14
|
Paczkowski FA, Bryan-Lluka LJ. Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:32-42. [PMID: 11744160 DOI: 10.1016/s0169-328x(01)00295-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K(m) and V(max) for uptake of the substrates, [3H]norepinephrine, [3H]MPP(+) and [3H]dopamine, the K(D) and B(max) for [3H]nisoxetine binding and the K(i) of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [3H]norepinephrine uptake. The K(m) values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower V(max) than NET for substrate uptake. The mutations at position 271 caused an increase in the K(i) or K(D) values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function.
Collapse
Affiliation(s)
- F A Paczkowski
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, 4072, Queensland, Brisbane, Australia
| | | |
Collapse
|
15
|
Syringas M, Janin F, Giros B, Costentin J, Bonnet JJ. Involvement of the NH2 terminal domain of catecholamine transporters in the Na(2+) and Cl(-)-dependence of a [3H]-dopamine uptake. Br J Pharmacol 2001; 133:387-94. [PMID: 11375255 PMCID: PMC1572801 DOI: 10.1038/sj.bjp.0704097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ionic dependence of the [3H]-dopamine uptake was studied in transfected cells expressing the human neuronal transporter for dopamine (hDAT) or noradrenaline (hNET), and chimeric transporters resulting from the symmetrical exchange of the region from the NH2 terminal through the first two transmembrane domains (cassette I). Chimera A is formed by hDAT comprising cassette I from hNET, whereas chimera B corresponds to the reverse construct. The appearance or the intensity of a Cl(-)-independent component of transport was linked to the presence of the COOH terminal part of hNET in both monoclonal and polyclonal Ltk(-) cells (Cl(-) substituted by isethionate and NO3(-), respectively), and in transiently transfected COS-7 cells. Cassette I was also involved in the Cl(-)-dependence because the transport activity of polyclonal Ltk(-) cells expressing A was partly Cl(-)-independent and because Ltk(-) cells expressing transporters containing cassette I of hDAT displayed higher K(mCl)- values than cells expressing the reverse constructs. In monoclonal Ltk(-) cell lines, K(mNa)+ values and biphasic vs monophasic dependence upon Na(+) concentrations differentiate transporters containing cassette I of hNET from those containing cassette I of hDAT. In COS-7 cells, the exchange of cassette I produced a significant change in Hill number values. In Na(+)-dependence studies, exchange of the COOH terminal part significantly modified Hill number values in both Ltk(-) and COS-7 cells. Hill number values close to two were found for hNET and hDAT when sucrose was used as substitute for NaCl. The NH2 terminal part of the transporters bears some of the differences in the Na(+) and Cl(-)-dependence of the uptake that are observed between hDAT and hNET. Present results also support a role of the COOH terminal part in the ionic dependence.
Collapse
Affiliation(s)
- Maria Syringas
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
| | - François Janin
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Bruno Giros
- INSERM U513, 8 av. du Général Sarrail, 94000 Créteil, France
| | - Jean Costentin
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Jean-Jacques Bonnet
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
- Author for correspondence:
| |
Collapse
|