1
|
García-Morales V, Gento-Caro Á, Portillo F, Montero F, González-Forero D, Moreno-López B. Lysophosphatidic Acid and Several Neurotransmitters Converge on Rho-Kinase 2 Signaling to Manage Motoneuron Excitability. Front Mol Neurosci 2021; 14:788039. [PMID: 34938160 PMCID: PMC8685439 DOI: 10.3389/fnmol.2021.788039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Intrinsic membrane excitability (IME) sets up neuronal responsiveness to synaptic drive. Several neurotransmitters and neuromodulators, acting through G-protein-coupled receptors (GPCRs), fine-tune motoneuron (MN) IME by modulating background K+ channels TASK1. However, intracellular partners linking GPCRs to TASK1 modulation are not yet well-known. We hypothesized that isoform 2 of rho-kinase (ROCK2), acting as downstream GPCRs, mediates adjustment of MN IME via TASK1. Electrophysiological recordings were performed in hypoglossal MNs (HMNs) obtained from adult and neonatal rats, neonatal knockout mice for TASK1 (task1–/–) and TASK3 (task3–/–, the another highly expressed TASK subunit in MNs), and primary cultures of embryonic spinal cord MNs (SMNs). Small-interfering RNA (siRNA) technology was also used to knockdown either ROCK1 or ROCK2. Furthermore, ROCK activity assays were performed to evaluate the ability of various physiological GPCR ligands to stimulate ROCK. Microiontophoretically applied H1152, a ROCK inhibitor, and siRNA-induced ROCK2 knockdown both depressed AMPAergic, inspiratory-related discharge activity of adult HMNs in vivo, which mainly express the ROCK2 isoform. In brainstem slices, intracellular constitutively active ROCK2 (aROCK2) led to H1152-sensitive HMN hyper-excitability. The aROCK2 inhibited pH-sensitive and TASK1-mediated currents in SMNs. Conclusively, aROCK2 increased IME in task3–/–, but not in task1–/– HMNs. MN IME was also augmented by the physiological neuromodulator lysophosphatidic acid (LPA) through a mechanism entailing Gαi/o-protein stimulation, ROCK2, but not ROCK1, activity and TASK1 inhibition. Finally, two neurotransmitters, TRH, and 5-HT, which are both known to increase MN IME by TASK1 inhibition, stimulated ROCK2, and depressed background resting currents via Gαq/ROCK2 signaling. These outcomes suggest that LPA and several neurotransmitters impact MN IME via Gαi/o/Gαq-protein-coupled receptors, downstream ROCK2 activation, and subsequent inhibition of TASK1 channels.
Collapse
Affiliation(s)
- Victoria García-Morales
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Ángela Gento-Caro
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Federico Portillo
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Fernando Montero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - David González-Forero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Bernardo Moreno-López
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
2
|
Sugimoto K, Yokokawa T, Misaka T, Kaneshiro T, Yamada S, Yoshihisa A, Nakazato K, Takeishi Y. Endothelin-1 Upregulates Activin Receptor-Like Kinase-1 Expression via G i/RhoA/Sp-1/Rho Kinase Pathways in Human Pulmonary Arterial Endothelial Cells. Front Cardiovasc Med 2021; 8:648981. [PMID: 33708809 PMCID: PMC7940194 DOI: 10.3389/fcvm.2021.648981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is characterized by pulmonary vasoconstriction and organic stenosis. It has been demonstrated that endothelin-1 (ET-1) induces pulmonary vasoconstriction through the activation of RhoA. In addition, a gene mutation of activin receptor-like kinase (ACVRL)-1 is recognized in PAH patients. However, little is known about the association between ET-1 and ACVRL-1. Objective: In the present study, we aimed to investigate the effect of ET-1 on ACVRL-1 expression and delineate the involvement of the Gi/RhoA/Rho kinase pathway. Methods: ET-1 was added to culture medium of human pulmonary arterial endothelial cells (PAECs). Pre-treatment with pertussis toxin (PTX) or exoenzyme C3 transferase (C3T) was performed for inhibition of Gi or RhoA, respectively. Rho kinase was inhibited by Y27632. Mithramycin A was used for inhibition of Sp-1, which is a transcriptional factor of ACVRL-1. The active form of RhoA (GTP-RhoA) was assessed by pull-down assay. Results: ACVRL-1 expression was increased by ET-1 in the PAECs. Pull-down assay revealed that ET-1 induced GTP-loading of RhoA, which was suppressed by pre-treatment with PTX or C3T. Further, PTX, C3T, and Y27632 suppressed the ET-1-induced ACVRL-1 expression. ET-1 increased the activity of the ACVRL-1 promoter and stabilized the ACVRL-1 mRNA. Sp-1 peaked 15 min after adding ET-1 to the PAECs. PTX and C3T prevented the increase of Sp-1 induced by ET-1. Inhibition of Sp-1 by mithramycin A suppressed ET-1-induced ACVRL-1 upregulation. Conclusion: The present study demonstrated that ET-1 increases ACVRL-1 expression in human PAECs via the Gi/RhoA/Rho kinase pathway with the involvement of Sp-1.
Collapse
Affiliation(s)
- Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Pulmonary Hypertension, Fukushima Medical University, Fukushima, Japan
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Pulmonary Hypertension, Fukushima Medical University, Fukushima, Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shinya Yamada
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Nakazato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Munhoz DB, Carvalho LSF, Venancio FNC, Rangel de Almeida OL, Quinaglia E Silva JC, Coelho-Filho OR, Nadruz W, Sposito AC. Statin Use in the Early Phase of ST-Segment Elevation Myocardial Infarction Is Associated With Decreased QTc Dispersion. J Cardiovasc Pharmacol Ther 2020; 25:226-231. [PMID: 32008366 DOI: 10.1177/1074248420902302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although there is strong evidence supporting the use of statin therapy after myocardial infarction (MI), some mechanistic gaps exist regarding the benefits of this therapy at the very onset of MI. Among the potential beneficial mechanisms, statins may improve myocardial electrical stability and reduce life-threatening ventricular arrhythmia, as reported in stable clinical conditions. This study was designed to evaluate whether this mechanism could also occur during the acute phase of MI. METHODS Consecutive patients with ST-segment elevation MI were treated without statin (n = 57) or with a simvastatin dose of 20 to 80 mg (n = 87) within the first 24 hours after MI symptom onset. Patients underwent digital electrocardiography within the first 24 hours and at the third and fifth days after MI. The QTC dispersion (QTcD) was measured both with and without the U waves. RESULTS Although QTcD values were equivalent between the groups at the first day (80.6 ± 36.0 vs 80.0 ± 32.1; P = 0.36), they were shorter among individuals using simvastatin than in those receiving no statins on the third (90.4 ± 38.6 vs 86.5 ± 36.9; P = .036) and fifth days (73.1 ± 31 vs 69.2 ± 32.6; P = .049). We obtained similar results when analyzing the QTcD duration including the U wave. All values were adjusted by an ANCOVA model after propensity-score matching. CONCLUSIONS Statins administered within 24 hours of ST-segment elevation MI reduced QTc dispersion, which may potentially attenuate the substrate for life-threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Daniel B Munhoz
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Luiz Sergio F Carvalho
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Frank N C Venancio
- Hospital de Base do Distrito Federal, Brasilia, Brazil.,University of Brasilia, Brasilia, Brazil
| | | | | | - Otavio R Coelho-Filho
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Wilson Nadruz
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Andrei C Sposito
- Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| |
Collapse
|
4
|
Li L, Matsuoka I, Sakamoto K, Kimura J. Differential effects of lysophosphatidylcholine and ACh on muscarinic K(+),non-selective cation and Ca(2+) currents in guinea-pig atrial cells. Fukushima J Med Sci 2016; 62:27-35. [PMID: 26911304 DOI: 10.5387/fms.2015-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh).
Collapse
Affiliation(s)
- Libing Li
- Department of Pharmacology, School of Medicine, Fukushima Medical University
| | | | | | | |
Collapse
|
5
|
Goonasekara CL, Balse E, Hatem S, Steele DF, Fedida D. Cholesterol and cardiac arrhythmias. Expert Rev Cardiovasc Ther 2014; 8:965-79. [DOI: 10.1586/erc.10.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Ozturk N, Yaras N, Ozmen A, Ozdemir S. Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. J Bioenerg Biomembr 2013; 45:343-352. [PMID: 23640692 DOI: 10.1007/s10863-013-9514-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/19/2013] [Indexed: 01/09/2023]
Abstract
In recent years, many findings have been presented about the potential benefit of statin therapy on diabetes-induced cardiovascular complications. Cardioprotective effects of statins were suggested to be mediated at least in part through inhibition of small GTPases, particularly those of the Rho family. The present study was designed to examine whether rosuvastatin can improve electrical remodeling and contractile dysfunction in type 1 diabetic rat heart via modulation of RhoA pathway. Type 1 diabetes was induced by single dose injection of STZ (50 mg/kg). One week after injection rosuvastatin (10 mg/kg/day) and sham treatment was given for 5 weeks in the diabetic rats, as well as in control groups. Shortening and Ca²⁺ transients were recorded in myocytes loaded with Fura2-AM. Membrane currents and Ca²⁺ transients were measured synchronously via whole-cell patch clamping. In untreated diabetic rats, relaxation of shortening and decay of the matched Ca²⁺ transients were prolonged. Fractional shortening and Ca²⁺ transients were also decreased. Rosuvastatin treatment reversed those changes. I(CaL) density did not change in either group but rosuvastatin recovered the loss of sarcoplasmic reticulum Ca²⁺ and Na⁺/Ca²⁺ exchange as evidenced from amplitude and decay of caffeine-induced Ca²⁺ transients, peak INCX and calculated sarcoplasmic reticulum Ca²⁺ content. Diabetes-induced attenuation of I(to) and I(sus) was also reversed, whilst I(K1) was unchanged in diabetes and unaffected by treatment. Rosuvastatin prevented the diabetes-induced increase in RhoA expression. Plasma cholesterol and triglyceride levels were higher in diabetic rats, but rosuvastatin reduced only the latter. In conclusion, HMG-CoA reductase inhibitor rosuvastatin can prevent diabetes-induced electrical and functional remodeling of heart due to inhibition of RhoA signalling rather than reduction of cholesterol level.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Disease Models, Animal
- Fluorobenzenes/pharmacology
- Heart/drug effects
- Heart/physiopathology
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pyrimidines/pharmacology
- Rats
- Rats, Wistar
- Rosuvastatin Calcium
- Sarcoplasmic Reticulum/metabolism
- Sulfonamides/pharmacology
- rhoA GTP-Binding Protein/biosynthesis
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | |
Collapse
|
7
|
Endogenous Rho-kinase signaling maintains synaptic strength by stabilizing the size of the readily releasable pool of synaptic vesicles. J Neurosci 2012; 32:68-84. [PMID: 22219271 DOI: 10.1523/jneurosci.3215-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho-associated kinase (ROCK) regulates neural cell migration, proliferation and survival, dendritic spine morphology, and axon guidance and regeneration. There is, however, little information about whether ROCK modulates the electrical activity and information processing of neuronal circuits. At neonatal stage, ROCKα is expressed in hypoglossal motoneurons (HMNs) and in their afferent inputs, whereas ROCKβ is found in synaptic terminals on HMNs, but not in their somata. Inhibition of endogenous ROCK activity in neonatal rat brainstem slices failed to modulate intrinsic excitability of HMNs, but strongly attenuated the strength of their glutamatergic and GABAergic synaptic inputs. The mechanism acts presynaptically to reduce evoked neurotransmitter release. ROCK inhibition increased myosin light chain (MLC) phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. Functional and ultrastructural changes induced by ROCK inhibition were fully prevented/reverted by MLC kinase (MLCK) inhibition. Furthermore, ROCK inhibition drastically reduced the phosphorylated form of p21-associated kinase (PAK), which directly inhibits MLCK. We conclude that endogenous ROCK activity is necessary for the normal performance of motor output commands, because it maintains afferent synaptic strength, by stabilizing the size of the readily releasable pool of synaptic vesicles. The mechanism of action involves a tonic inhibition of MLCK, presumably through PAK phosphorylation. This mechanism might be present in adults since unilateral microinjection of ROCK or MLCK inhibitors into the hypoglossal nucleus reduced or increased, respectively, whole XIIth nerve activity.
Collapse
|
8
|
Kamioka M, Ishibashi T, Ohkawara H, Nagai R, Sugimoto K, Uekita H, Matsui T, Yamagishi SI, Ando K, Sakamoto T, Sakamoto N, Takuwa Y, Wada I, Shiomi M, Maruyama Y, Takeishi Y. Involvement of membrane type 1-matrix metalloproteinase (MT1-MMP) in RAGE activation signaling pathways. J Cell Physiol 2011; 226:1554-63. [PMID: 20945382 DOI: 10.1002/jcp.22492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An advanced glycation end products (AGE)/a receptor for AGE (RAGE) axis plays a key role in diabetic vascular complications. Membrane type 1-matrix metalloproteinase (MT1-MMP) has been shown to function not only as a proteolytic enzyme but also as a signaling molecule. In this study, we investigated the role of MT1-MMP in the AGE/RAGE-triggered signaling pathways in cultured rabbit smooth muscle cells (SMCs) and the molecular interaction between RAGE and MT1-MMP in vitro and in vivo. In SMCs, AGE-activated Rac1 and p47(phox) within 1 min, NADPH oxidase activity and reactive oxygen species (ROS) generation within 5 min, and NF-κB phosphorylation within 15 min, thereby inducing redox-sensitive molecular expression. Silencing of RAGE by small-interfering RNA (siRNA) blocked the AGE-induced signaling pathways. AGE-induced geranylgeranyl transferase I (GGTase I) activity, Rac1·p47(phox) activation, NADPH oxidase activity, ROS generation, and molecular expression were also markedly attenuated by silencing of MT1-MMP. An inhibitor of GGTase I mimicked the effects of MT1-MMP-specific siRNA. Fluorescent immunohistochemistry revealed that MT1-MMP was partially co-localized with RAGE in SMCs, and RAGE was found to form a complex with MT1-MMP in both cultured SMCs and the aortae of diabetic rats by immunoprecipitation. Furthermore, MT1-MMP and RAGE formed a complex in the aortic atherosclerotic lesions of hyperlipidemic rabbits. We show that MT1-MMP plays a crucial role in RAGE-activated NADPH oxidase-dependent signaling pathways and forms a complex with RAGE in the vasculature, thus suggesting that MT1-MMP may be a novel therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Masashi Kamioka
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ding WG, Toyoda F, Ueyama H, Matsuura H. Lysophosphatidylcholine enhances IKs currents in cardiac myocytes through activation of G protein, PKC and Rho signaling pathways. J Mol Cell Cardiol 2011; 50:58-65. [DOI: 10.1016/j.yjmcc.2010.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/15/2022]
|
10
|
Li L, Yao Y, Wang H, Ren Y, Ma L, Yan J, Gao C. Pravastatin attenuates cardiac dysfunction induced by lysophosphatidylcholine in isolated rat hearts. Eur J Pharmacol 2010; 640:139-42. [DOI: 10.1016/j.ejphar.2010.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/29/2010] [Accepted: 04/24/2010] [Indexed: 10/19/2022]
|
11
|
Yamashita A, Tanaka K, Kamata R, Kumazawa T, Suzuki N, Koga H, Waku K, Sugiura T. Subcellular localization and lysophospholipase/transacylation activities of human group IVC phospholipase A2 (cPLA2gamma). Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1011-22. [PMID: 19501189 DOI: 10.1016/j.bbalip.2009.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 11/29/2022]
Abstract
cPLA2gamma was identified as an ortholog of cPLA2alpha, which is a key enzyme in eicosanoid production. cPLA2gamma was reported to be located in endoplasmic reticulum (ER) and mitochondria and to have lysophospholipase activity beside phospholipase A2 (PLA2) activity. However, subcellular localization, mechanism of membrane binding, regulation and physiological function have not been fully established. In the present study, we examined the subcellular localization and enzymatic properties of cPLA2gamma with C-terminal FLAG-tag. We found that cPLA2gamma was located not only in ER but also mitochondria even in the absence of the prenylation. Purified recombinant cPLA2gamma catalyzed an acyltransferase reaction from one molecule of lysophosphatidylcholine (LPC) to another, forming phosphatidylcholine (PC). LPC or lysophosphatidylethanolamine acted as acyl donor and acceptor, but lysophosphatidylserine, lysophosphatidylinositol and lysophosphatidic acid (LPA) did not. PC and phosphatidylethanolamine (PE) also acted as weak acyl donors. Reaction conditions changed the balance of lysophospholipase and transacylation activities, with addition of LPA/PA, pH>8, and elevated temperature markedly increasing transacylation activity; this suggests that lysophospholipase/transacylation activities of cPLA2gamma may be regulated by various factors. As lysophospholipids are known to accumulate in ischemia heart and to induce arryhthmia, the cPLA2gamma that is abundant in heart may have a protective role through clearance of lysophospholipids by its transacylation activity.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Sagamihara, Kanagawa 229-0195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Maeda S, Sakamoto K, Matsuoka I, Iwamoto T, Kimura J. Lysophosphatidylcholine Increases Na+/Ca2+ Exchanger Expression via RhoB-Geranylgeranylation in H9c2 Cells. J Pharmacol Sci 2009; 109:565-72. [DOI: 10.1254/jphs.08253fp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Pochynyuk O, Stockand JD, Staruschenko A. Ion channel regulation by Ras, Rho, and Rab small GTPases. Exp Biol Med (Maywood) 2008; 232:1258-65. [PMID: 17959838 DOI: 10.3181/0703-mr-76] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulation of ion channels by heterotrimeric guanosine triphosphatases (GTPases), activated by heptathelical membrane receptors, has been the focus of several recent reviews. In comparison, regulation of ion channels by small monomeric G proteins, activated by cytoplasmic guanine nucleotide exchange factors, has been less well reviewed. Small G proteins, molecular switches that control the activity of cellular and membrane proteins, regulate a wide variety of cell functions. Many upstream regulators and downstream effectors of small G proteins now have been isolated. Their modes of activation and action are understood. Recently, ion channels were recognized as physiologically important effectors of small GTPases. Recent advances in understanding how small G proteins regulate the intracellular trafficking and activity of ion channels are discussed here. We aim to provide critical insight into physiological control of ion channel function and the biological consequences of regulation of these important proteins by small, monomeric G proteins.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
14
|
Sakamoto K, Honda T, Yokoya S, Waguri S, Kimura J. Rab-small GTPases are involved in fluvastatin and pravastatin-induced vacuolation in rat skeletal myofibers. FASEB J 2007; 21:4087-94. [PMID: 17634390 DOI: 10.1096/fj.07-8713com] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, known as statins, induce skeletal muscle injury including myalgia, myositis, and rhabdomyolysis. The mechanism of this myotoxicity remains unknown. This study examined the effect of statins on single skeletal myofibers enzymatically isolated from the rat flexor digitorum brevis muscles. Fluvastatin and pravastatin induced the formation of numerous vacuoles in the myofibers after 72 h of treatment. This effect progressed in a time- and concentration-dependent manner and, consequently, cell death occurred after 120 h. Electron micrographs revealed craters along the sarcolemma and swelling of the sarcoplasmic reticula and mitochondria, in addition to intracellular vacuoles. When caffeine was added after 72 h of fluvastatin treatment, contractile shortening of statin-treated myofibers was significantly attenuated and blebs formed on the surface of the myofibers. The coapplication of geranylgeranylpyrophosphate (GGPP) with fluvastatin prevented the morphological changes, while that of farnesylpyrophosphate (FPP) was ineffective. Furthermore, perillyl alcohol, an inhibitor of Rab geranylgeranyl transferase and geranylgeranyl transferase-I (GGTase-I), mimicked the effect of statins, while a specific GGTase-I inhibitor (GGTI-298) or a farnesyl transferase inhibitor (FTI-277) failed to do so. These results suggest that the inactivation of Rab GTPase, which involved in intracellular membrane transport, is a crucial factor in statin-induced-morphological abnormality in skeletal muscle fibers.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Fatty Acids, Monounsaturated/adverse effects
- Female
- Fluvastatin
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects
- Indoles/adverse effects
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Pravastatin/adverse effects
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Vacuoles/drug effects
- Vacuoles/enzymology
- Vacuoles/pathology
- Vacuoles/ultrastructure
- rab GTP-Binding Proteins/adverse effects
- rab GTP-Binding Proteins/physiology
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Hikarigaoka 1, Fukushima 960-1295, Japan.
| | | | | | | | | |
Collapse
|
15
|
Sakamoto T, Ishibashi T, Sugimoto K, Sakamoto N, Ohkawara H, Niinuma M, Nagata K, Kamioka M, Sugimoto N, Watanabe A, Kurabayashi M, Takuwa Y, Maruyama Y. RhoA-dependent PAI-1 gene expression induced in endothelial cells by monocyte adhesion mediates geranylgeranyl transferase I and Ca2+ signaling. Atherosclerosis 2007; 193:44-54. [PMID: 16973169 DOI: 10.1016/j.atherosclerosis.2006.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 08/07/2006] [Accepted: 08/11/2006] [Indexed: 11/29/2022]
Abstract
We investigated the role of RhoA activation and its mechanism in plasminogen activator inhibitor-1 (PAI-1) gene expression induced in endothelial cells by monocyte adhesion. Isolated human peripheral blood monocytes were added to cultured human coronary endothelial cells. Monocyte adhesion to endothelial cells increased PAI-1 expression at the transcriptional level and activated RhoA which was accompanied by an increase in the activity of geranylgeranyl transferase I (GGTase I), an enzyme responsible for geranylgeranylation, and actin stress fiber formation. Inhibition of RhoA by C3 exoenzyme or by adenovirus-mediated expression of N19RhoA, as well as by pravastatin, prevented the upregulation of PAI-1 induced by monocyte adhesion. GGTI-286, an inhibitor of GGTase I, prevented the monocyte-induced RhoA activation and PAI-1 expression in endothelial cells. Monocyte attachment induced an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells and Ca(2+) chelation prevented the increased promoter activity and expression of PAI-1 induced by monocyte adhesion. C3 exoenzyme and GGTI-286 also suppressed endothelial intracellular Ca(2+) mobilization and Ca(2+) entry induced by monocytes. The present study shows that GGTase I plays a role in the RhoA activation in endothelial cells induced by monocyte adhesion and that GGTase I-mediated Ca(2+) signaling may contribute to RhoA-dependent PAI-1 gene expression.
Collapse
Affiliation(s)
- Takayuki Sakamoto
- First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Maeda S, Matsuoka I, Kimura J. Modulation pathways of NCX mRNA stability: involvement of RhoB. Ann N Y Acad Sci 2007; 1099:193-4. [PMID: 17446458 DOI: 10.1196/annals.1387.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cardiac Na+/Ca2+ exchanger 1 (NCX1) expression levels change under various pathophysiological conditions. However, its mechanism is unknown. We found that fluvastatin, an HMG-CoA reductase inhibitor, decreased NCX1 mRNA and protein by inhibiting a small G protein, RhoB, in H9c2 cardiomyoblasts. Conversely, lysophosphatidylcholine (LPC) increased NCX1 mRNA and protein by activating RhoB. The effect of LPC was mediated by geranylgeranylation but not farnesylation of RhoB. Furthermore, we also detected that activation of RhoB increased NCX1 mRNA stability. Our results suggest that RhoB is involved in modulation of cardiac NCX1 mRNA expression.
Collapse
Affiliation(s)
- Sachiko Maeda
- Department of Pharmacology, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | | |
Collapse
|
17
|
Tamargo J, Caballero R, Gómez R, Núñez L, Vaquero M, Delpón E. Lipid-lowering therapy with statins, a new approach to antiarrhythmic therapy. Pharmacol Ther 2006; 114:107-26. [PMID: 17287023 DOI: 10.1016/j.pharmthera.2006.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 12/08/2006] [Indexed: 11/17/2022]
Abstract
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (statins) are the most effective and best-tolerated drugs to treat elevated levels of low-density lipoprotein cholesterol (LDL-C). In addition, they exhibit other effects unrelated to their lipid lowering effects (pleiotropic actions). In recent years, experimental and clinical evidence demonstrates that statins exert antiarrhythmic properties, reducing the recurrences of supraventricular and life-threatening ventricular arrhythmias both in patients with and without coronary artery disease (CAD). Thus, statins may constitute a novel therapeutic approach to cardiac arrhythmias. This article reviews the antiarrhythmic properties of statins as well as the possible mechanisms involved, including the lowering of LDL-C levels, the improvement of endothelial dysfunction and autonomic function, the stabilization of the atherosclerotic plaques, the antioxidant, antiinflammatory, antithrombotic and cardioprotective properties and the modulation of transmembrane ion fluxes.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Nakamura Y, Yasukochi M, Kobayashi S, Uehara K, Honda A, Inoue R, Imanaga I, Uehara A. Cell membrane-derived lysophosphatidylcholine activates cardiac ryanodine receptor channels. Pflugers Arch 2006; 453:455-62. [PMID: 17028837 DOI: 10.1007/s00424-006-0141-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Lysophosphatidylcholine (LPC) is metabolized from a membrane phospholipid and modulates a variety of channels in the plasma membrane (PM). We examined LPC modulation of cardiac ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR) using the planar lipid bilayer method to measure the single-channel currents. Micromolar concentrations of LPC increased the open probability of the reconstituted RyR channels irrespective of whether LPC was added to the cis or trans chamber. LPC also increased the membrane capacitance of the bilayer. The effects of LPC contrasted well with those of sphingosylphosphorylcholine (SPC). Taken together, these results suggest that amphipathic lipid LPC does not bind directly to the RyR channel protein, but rather, is incorporated into the bilayer membrane and activates the channel. Thus, we consider cell membrane-derived LPC to be a putative endogenous mediator that activates not only plasma membrane channels but also RyR channels and induces arrhythmogenic Ca(2+) mobilization in cardiomyocytes.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Physiology, School of Medicine, Fukuoka University, 45-1, 7-chome Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Crespo MJ, Quidgley JA. Statins Decrease Serotonin-Induced Contractions in Coronary Arteries of Swine in vitro. Pharmacology 2006; 76:141-7. [PMID: 16428899 DOI: 10.1159/000091045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 11/23/2005] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests that statins improve the status of patients with coronary artery disease not only by reducing cholesterol levels, but also by acting at the level of the endothelium-smooth muscle unit. Previous results from our laboratory showed that these drugs interact with the vascular wall by partially inhibiting calcium-dependent, agonist-induced contractions in rat aortas. To evaluate whether this effect is also extended to the coronary vasculature, we assessed the effect of statins on serotonin (5-HT) induced contractions of left and right coronary arteries of swine. Concentration-response curves for the 5-HT-induced contractions (from 0.1 nmol/l to 100 micromol/l) were calculated on rings from both coronaries in the presence and absence of either (5 micromol/l) pravastatin, mevastatin, simvastatin, lovastatin, or atorvastatin. After a 45-min incubation period, all statins significantly reduced the Emax for the 5-HT-induced contractions, ranging from 51.9 +/- 1.9% (simvastatin) to 15.9 +/- 2.0% (pravastatin) in the left coronary artery and from 48.8 +/- 2.0% (simvastatin) to 17.8 +/- 2.5% (pravastatin) in the right coronary artery. The EC50 values for the 5-HT-induced contractions were 0.150 +/- 0.005 micromol/l for the left coronary artery and 0.171 +/- 0.010 micromol/l for the right coronary artery. These values significantly changed after incubation with statins, ranging from 1.240 +/- 0.101 micromol/l (for simvastatin) to 0.081+/- 0.008 micromol/l (for pravastatin) in the left coronary artery and from 1.410 +/- 0.075 micromol/l (for simvastatin) to 0.084 +/- 0.008 micromol/l (for pravastatin) in the right coronary artery. This evidence supports the possibility that, beyond their lipid-lowering properties, statins may provide a beneficial effect in atherosclerotic patients by reducing the tone in the coronary vasculature, facilitating blood flow to the myocardium.
Collapse
Affiliation(s)
- Maria J Crespo
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.
| | | |
Collapse
|
20
|
Maeda S, Matsuoka I, Iwamoto T, Kurose H, Kimura J. Down-regulation of Na+/Ca2+ exchanger by fluvastatin in rat cardiomyoblast H9c2 cells: involvement of RhoB in Na+/Ca2+ exchanger mRNA stability. Mol Pharmacol 2005; 68:414-20. [PMID: 15879517 DOI: 10.1124/mol.104.000786] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of fluvastatin (Flv), an HMG-CoA reductase inhibitor, on Na(+)/Ca(2+) exchanger 1 (NCX1) expression in H9c2 cardiomyoblasts. Reverse transcriptase-polymerase chain reaction analyses revealed that Flv decreased NCX1 mRNA in a concentration- and time-dependent manner and NCX1 protein. This effect of Flv was caused by the inhibition of HMG-CoA reductase, because Flv did not affect the NCX1 mRNA in the presence of mevalonate. Flv-induced down-regulation of NCX1 mRNA was also cancelled by farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), suggesting an involvement of small G-proteins. However, overexpression of neither constitutive active RhoA nor Ras affected NCX1 mRNA. In contrast, intracellular expression of C3 toxin, a specific inhibitor of Rho family proteins, decreased NCX1 mRNA, suggesting that Flv decreases NCX1 mRNA by inhibiting a signaling pathway of Rho family proteins other than RhoA. On the other hand, lysophosphatidylcholine (LPC), an activator of Rho signaling, increased both NCX1 mRNA and protein in a C3 toxin-sensitive manner. Western blot analyses revealed that membrane-associated RhoB, which is isoprenylated by either FPP or GGPP, was decreased by Flv but was increased by LPC. Selective inhibition of gene expression by short interfering RNA duplex showed that RhoB but not RhoA is involved in the regulation of NCX1 mRNA and protein. When transcription was blocked by 5,6-dichlorobenzimidazole riboside, the NCX1 mRNA stability was decreased by Flv. Long-term treatment of rat with Flv in vivo also down-regulated the cardiac NCX1 mRNA. These results suggest that a RhoB-mediated signaling pathway regulates cardiac NCX1 levels by controlling the NCX1 mRNA stability.
Collapse
Affiliation(s)
- Sachiko Maeda
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | | | | | | | | |
Collapse
|
21
|
Staruschenko A, Nichols A, Medina JL, Camacho P, Zheleznova NN, Stockand JD. Rho small GTPases activate the epithelial Na(+) channel. J Biol Chem 2004; 279:49989-94. [PMID: 15448132 DOI: 10.1074/jbc.m409812200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|