1
|
Crescioli C, Paronetto MP. The Emerging Role of Phosphodiesterase 5 Inhibition in Neurological Disorders: The State of the Art. Cells 2024; 13:1720. [PMID: 39451238 PMCID: PMC11506759 DOI: 10.3390/cells13201720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests that neuroinflammation is not just a consequence of neurodegeneration in pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease or Amyotrophic lateral sclerosis, but it is rather a determinant factor, which plays a pivotal role in the onset and progression of these disorders. Neuroinflammation can affect cells and processes in the central nervous system (CNS) as well as immune cells, and might precede protein aggregation, which is a hallmark of the neurodegenerative process. Standard treatment methods are far from being able to counteract inflammation and delay neurodegeneration. Remarkably, phosphodiesterase 5 inhibitors (PDE5is), which represent potent vasoactive drugs used as a first-line treatment for erectile dysfunction (ED), display important anti-inflammatory effects through cyclic guanosine monophosphate (cGMP) level stabilization. Since PDE5 hydrolyzes cGMP, several studies positioned PDE5 as a therapeutic target, and more specifically, PDE5is as potential alternative strategies for the treatment of a variety of neurological disorders. Indeed, PDE5is can limit neuroinflammation and enhance synaptic plasticity, with beneficial effects on cognitive function and memory. The aim of this review is to provide an overview of some of the main processes underlying neuroinflammation and neurodegeneration which may be potential targets for PDE5is, focusing on sildenafil, the most extensively studied. Current strategies using PDEis for the treatment of neurodegenerative diseases will be summarized.
Collapse
Affiliation(s)
- Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
2
|
Agarwal S, Schaefer ML, Krall C, Johns RA. Isoflurane Disrupts Postsynaptic Density-95 Protein Interactions Causing Neuronal Synapse Loss and Cognitive Impairment in Juvenile Mice via Canonical NO-mediated Protein Kinase-G Signaling. Anesthesiology 2022; 137:212-231. [PMID: 35504002 PMCID: PMC9332139 DOI: 10.1097/aln.0000000000004264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inhalational anesthetics are known to disrupt PDZ2 domain-mediated protein-protein interactions of the postsynaptic density (PSD)-95 protein. The aim of this study is to investigate the underlying mechanisms in response to early isoflurane exposure on synaptic PSD-95 PDZ2 domain disruption that altered spine densities and cognitive function. The authors hypothesized that activation of protein kinase-G by the components of nitric oxide (NO) signaling pathway constitutes a mechanism that prevents loss of early dendritic spines and synapse in neurons and cognitive impairment in mice in response to disruption of PDZ2 domain of the PSD-95 protein. METHODS Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 wild-type PDZ2 peptide or soluble guanylyl cyclase activator YC-1 along with their respective controls. Primary neurons at 7 days in vitro were exposed to isoflurane or PSD-95 wild-type PDZ2 peptide for 4 h. Coimmunoprecipitation, spine density, synapses, cyclic guanosine monophosphate-dependent protein kinase activity, and novel object recognition memory were assessed. RESULTS Exposure of isoflurane or PSD-95 wild-type PDZ2 peptide relative to controls causes the following. First, there is a decrease in PSD-95 coimmunoprecipitate relative to N-methyl-d-aspartate receptor subunits NR2A and NR2B precipitate (mean ± SD [in percentage of control]: isoflurane, 54.73 ± 16.52, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 51.32 ± 12.93, P = 0.001). Second, there is a loss in spine density (mean ± SD [spine density per 10 µm]: control, 5.28 ± 0.56 vs. isoflurane, 2.23 ± 0.67, P < 0.0001; and PSD-95 mutant PDZ2 peptide, 4.74 ± 0.94 vs. PSD-95 wild-type PDZ2 peptide, 1.47 ± 0.87, P < 0.001) and a decrease in synaptic puncta (mean ± SD [in percentage of control]: isoflurane, 41.1 ± 14.38, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 50.49 ± 14.31, P < 0.001). NO donor or cyclic guanosine monophosphate analog prevents the spines and synapse loss and decline in the cyclic guanosine monophosphate-dependent protein kinase activity, but this prevention was blocked by soluble guanylyl cyclase or protein kinase-G inhibitors in primary neurons. Third, there were deficits in object recognition at 5 weeks (mean ± SD [recognition index]: male, control, 64.08 ± 10.57 vs. isoflurane, 48.49 ± 13.41, P = 0.001, n = 60; and female, control, 67.13 ± 11.17 vs. isoflurane, 53.76 ± 6.64, P = 0.003, n = 58). Isoflurane-induced impairment in recognition memory was preventable by the introduction of YC-1. CONCLUSIONS Activation of soluble guanylyl cyclase or protein kinase-G prevents isoflurane or PSD-95 wild-type PDZ2 peptide-induced loss of dendritic spines and synapse. Prevention of recognition memory with YC-1, a NO-independent activator of guanylyl cyclase, supports a role for the soluble guanylyl cyclase mediated protein kinase-G signaling in countering the effects of isoflurane-induced cognitive impairment. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Swati Agarwal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Michele L Schaefer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Caroline Krall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
3
|
Taoro-González L, Cabrera-Pastor A, Sancho-Alonso M, Felipo V. Intracellular and extracelluar cyclic GMP in the brain and the hippocampus. VITAMINS AND HORMONES 2022; 118:247-288. [PMID: 35180929 DOI: 10.1016/bs.vh.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic Guanosine-Monophosphate (cGMP) is implicated as second messenger in a plethora of pathways and its effects are executed mainly by cGMP-dependent protein kinases (PKG). It is involved in both peripheral (cardiovascular regulation, intestinal secretion, phototransduction, etc.) and brain (hippocampal synaptic plasticity, neuroinflammation, cognitive function, etc.) processes. Stimulation of hippocampal cGMP signaling have been proved to be beneficial in animal models of aging, Alzheimer's disease or hepatic encephalopathy, restoring different cognitive functions such as passive avoidance, object recognition or spatial memory. However, even when some inhibitors of cGMP-degrading enzymes (PDEs) are already used against peripheral pathologies, their utility as neurological treatments is still under clinical investigation. Additionally, it has been demonstrated a list of cGMP roles as not second but first messenger. The role of extracellular cGMP has been specially studied in hippocampal function and cognitive impairment in animal models and it has emerged as an important modulator of neuroinflammation-mediated cognitive alterations and hippocampal synaptic plasticity malfunction. Specifically, it has been demonstrated that extracellular cGMP decreases hippocampal IL-1β levels restoring membrane expression of glutamate receptors in the hippocampus and cognitive function in hyperammonemic rats. The mechanisms implicated are still unclear and might involve complex interactions between hippocampal neurons, astrocytes and microglia. Membrane targets for extracellular cGMP are still poorly understood and must be addressed in future studies.
Collapse
Affiliation(s)
- Lucas Taoro-González
- Department of Clinical Psychology, Psychobiology and Methodology, Area of Psycobiology, University of La Laguna, Tenerife, Spain
| | - Andrea Cabrera-Pastor
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain; Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
4
|
Yu KH, Hung HY. Synthetic strategy and structure-activity relationship (SAR) studies of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, Lificiguat): a review. RSC Adv 2021; 12:251-264. [PMID: 35424505 PMCID: PMC8978903 DOI: 10.1039/d1ra08120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
Since 1994, YC-1 (Lificiguat, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of hypoxia-inducible factor-1 (HIF-1) and NF-κB. Recently, Riociguat®, the first soluble guanylate cyclase (sGC) stimulator drug used to treat pulmonary hypertension and pulmonary arterial hypertension, was derived from the YC-1 structure. In this review, we aim to highlight the synthesis and structure–activity relationships in the development of YC-1 analogs and their possible indications. Since 1994, YC-1 (Lificiguat) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of HIF-1 and NF-κB.![]()
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
5
|
Memory Enhancers for Alzheimer's Dementia: Focus on cGMP. Pharmaceuticals (Basel) 2021; 14:ph14010061. [PMID: 33451088 PMCID: PMC7828493 DOI: 10.3390/ph14010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic guanosine-3',5'-monophosphate, better known as cyclic-GMP or cGMP, is a classical second messenger involved in a variety of intracellular pathways ultimately controlling different physiological functions. The family of guanylyl cyclases that includes soluble and particulate enzymes, each of which comprises several isoforms with different mechanisms of activation, synthesizes cGMP. cGMP signaling is mainly executed by the activation of protein kinase G and cyclic nucleotide gated channels, whereas it is terminated by its hydrolysis to GMP operated by both specific and dual-substrate phosphodiesterases. In the central nervous system, cGMP has attracted the attention of neuroscientists especially for its key role in the synaptic plasticity phenomenon of long-term potentiation that is instrumental to memory formation and consolidation, thus setting off a "gold rush" for new drugs that could be effective for the treatment of cognitive deficits. In this article, we summarize the state of the art on the neurochemistry of the cGMP system and then review the pre-clinical and clinical evidence on the use of cGMP enhancers in Alzheimer's disease (AD) therapy. Although preclinical data demonstrates the beneficial effects of cGMP on cognitive deficits in AD animal models, the results of the clinical studies carried out to date are not conclusive. More trials with a dose-finding design on selected AD patient's cohorts, possibly investigating also combination therapies, are still needed to evaluate the clinical potential of cGMP enhancers.
Collapse
|
6
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
7
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
8
|
Sun Z, Yang T, Wang Y, Li C, Yang Y, Wang D, Guo J, Shi T, Wang Y, Qu Y, Wei Q, Feng C. Propionic acid abrogates the deleterious effects of cerebral ischemic reperfusion injury through nuclear factor-κb signaling in mice. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_306_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
10
|
Yazir Y, Polat S, Utkan T, Aricioglu F. Role of the nitric oxide-soluble guanylyl cyclase pathway in cognitive deficits in streptozotocin-induced diabetic rats. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1471883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Yusufhan Yazir
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Selen Polat
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Tijen Utkan
- Department of Pharmacology and Experimental Medical Research and Application Unit, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Feyza Aricioglu
- Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Marmara University, İstanbul, Turkey
| |
Collapse
|
11
|
Horton A, Nash K, Tackie-Yarboi E, Kostrevski A, Novak A, Raghavan A, Tulsulkar J, Alhadidi Q, Wamer N, Langenderfer B, Royster K, Ducharme M, Hagood K, Post M, Shah ZA, Schiefer IT. Furoxans (Oxadiazole-4 N-oxides) with Attenuated Reactivity are Neuroprotective, Cross the Blood Brain Barrier, and Improve Passive Avoidance Memory. J Med Chem 2018; 61:4593-4607. [PMID: 29683322 DOI: 10.1021/acs.jmedchem.8b00389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) mimetics and other agents capable of enhancing NO/cGMP signaling have demonstrated efficacy as potential therapies for Alzheimer's disease. A group of thiol-dependent NO mimetics known as furoxans may be designed to exhibit attenuated reactivity to provide slow onset NO effects. The present study describes the design, synthesis, and evaluation of a furoxan library resulting in the identification of a prototype furoxan, 5a, which was profiled for use in the central nervous system. Furoxan 5a demonstrated negligible reactivity toward generic cellular thiols under physiological conditions. Nonetheless, cGMP-dependent neuroprotection was observed, and 5a (20 mg/kg) reversed cholinergic memory deficits in a mouse model of passive avoidance fear memory. Importantly, 5a can be prepared as a pharmaceutically acceptable salt and is observed in the brain 12 h after oral administration, suggesting potential for daily dosing and excellent metabolic stability. Continued investigation into furoxans as attenuated NO mimetics for the CNS is warranted.
Collapse
|
12
|
Neuroprotective potential of high-dose biotin. Med Hypotheses 2017; 109:145-149. [PMID: 29150274 DOI: 10.1016/j.mehy.2017.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 01/28/2023]
Abstract
A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain-permeable phosphodiesterase-5 inhibitors.
Collapse
|
13
|
Alvarado BA, Lemus M, Montero S, Melnikov V, Luquín S, García-Estrada J, Roces de Álvarez-Buylla E. Nitric oxide in the nucleus of the tractus solitarius is involved in hypoglycemic conditioned response. Brain Res 2017; 1667:19-27. [PMID: 28483509 DOI: 10.1016/j.brainres.2017.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
The repeated injection of insulin (unconditioned stimulus, UCS) immediately followed by exposure to sensory stimulation (e.g. sound or odor; conditioned stimulus, CS) results in a learned conditioned reflex in which the exposure to the CS alone lowers blood glucose. The brain regions participating in this hypoglycemic Pavlovian response remain unknown. Here we investigate if nitric oxide (NO) in the nucleus tractus solitarius (NTS), a nucleus known to be involved in glucose homeostasis, participates in this hypoglycemic reflex. Insulin injections (UCS) were paired with exposure to menthol odor (CS). After 8-10 reinforcements (4-5days training), rats acquire the learned hypoglycemic response. An increase in c-Fos expression was observed in the NTS, the ventrolateral hypothalamic nucleus (VLH) and other brain regions of conditioned rats. Microinjections of 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) a stimulator of soluble guanylate cyclase (sGC) into NTS before the UCS accelerated the acquisition of the learned hypoglycemic response; 5-6 reinforcement produced pronounced glucose drop when exposed to the CS. In contrast, an inhibitor of NO synthase (NOS) Nω-Nitro-l-arginine methyl ester (L-NAME) in the NTS prolonged the required training period (11-15 reinforcements) to obtain the hypoglycemic reflex, and reduced the glycemic response. The number of c-Fos expressing cells in the NTS and VLH in rats receiving YC-1was significantly higher than that observed in rats receiving L-NAME. These findings suggest that NO-cGMP-PKG signaling in the NTS can modify the acquisition of conditioned hypoglycemia, and suggests that this nucleus directly participates in this reflex.
Collapse
Affiliation(s)
- Beatriz A Alvarado
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Mónica Lemus
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Sergio Montero
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico; Faculty of Medicine, Colima University, Colima, Mexico
| | | | - Sonia Luquín
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | - Joaquín García-Estrada
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | | |
Collapse
|
14
|
Management of Alzheimer’s disease—An insight of the enzymatic and other novel potential targets. Int J Biol Macromol 2017; 97:700-709. [DOI: 10.1016/j.ijbiomac.2017.01.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
|
15
|
Komsuoglu Celikyurt I, Utkan T, Ozer C, Gacar N, Aricioglu F. Effects of YC-1 on learning and memory functions of aged rats. Med Sci Monit Basic Res 2014; 20:130-7. [PMID: 25144469 PMCID: PMC4148360 DOI: 10.12659/msmbr.891064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The aim of this study was to investigate the effects of a potent nitric oxide-guanylate cyclase activator, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), on learning and memory functions in aged rats. Material/Methods Rats were divided into 2 groups as 4-month-old and 24-month-old rats. Rats received YC-1 (1 mg/kg/day) for 2 weeks long-term. Morris water maze (MWM) and passive avoidance (PA) tests were used to determine learning and memory functions. Results In the MWM test, there is a significant increase in the acquisition latency (1–4 days) of 24-month-old rats. There is a significant reduction in the “time spent in the escape platform’s quadrant” in 24-month-old rats compared to 4-month-old rats in the probe trial of the MWM test. YC-1 treatment reversed the reduction of the “time spent in the escape platform’s quadrant” of 24-month-old rats. In the PA test, there was no significant difference in the 1st-day latency of rats in all groups. On the 2nd day, retention latency significantly decreased in the 24-month-old rats compared to 4-month-olds. YC-1 reversed the diminished retention latency in 24-month-old rats. YC-1 treatment and aging did not affect results of the locomotor activity test or the foot-shock sensitivity test, suggesting our results were not due to a change in motor activity or disability of the animals. Conclusions Our findings suggest that activation of the NO-sGC-cGMP pathway plays an important role in spatial and emotional learning and memory functions in aged rats.
Collapse
Affiliation(s)
- Ipek Komsuoglu Celikyurt
- Department of Pharmacology, Medical Faculty and Experimental Medical Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Tijen Utkan
- Department of Pharmacology, Medical Faculty and Experimental Medical Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Cuneyt Ozer
- Medical Faculty and Experimental Medical Research-Application Center, Kocaeli University, Kocaeli, Turkey
| | - Nejat Gacar
- Department of Pharmacology, Medical Faculty and Experimental Medical Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
16
|
Pose I, Silveira V, Damián A, Higgie R, Morales FR. Modulation of glycinergic synaptic transmission in the trigeminal and hypoglossal motor nuclei by the nitric oxide-cyclicGMP signaling pathway. Neuroscience 2014; 267:177-86. [PMID: 24626159 DOI: 10.1016/j.neuroscience.2014.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/16/2022]
Abstract
In a previous work we found that nitric oxide (NO) and cyclicGMP (cGMP) inhibit glutamatergic synaptic transmission in trigeminal motoneurons (MnV). Here we study the actions of the NO/cGMP signaling pathway on glycinergic synaptic transmission in trigeminal and hypoglossal motoneurons (MnXII) in brain stem slices of neonatal rats. Glycinergic inhibitory postsynaptic currents (IPSCs) were recorded in MnV by stimulation of the supratrigeminal nucleus (SuV) and in MnXII by stimulation of the nucleus of Roller. The NO donor DETA/NONOate (DETA/NO) reduced the amplitude of the IPSC to 58.1±4.2% of control values in MnV. In the presence of YC-1, a modulator of guanylate cyclase that acts as a NO sensitizer, lower and otherwise ineffective concentrations of DETA/NO induced a reduction of the IPSC to 47.2±15.6%. NO effects were mimicked by 8 bromo cyclicGMP (8BrcGMP). They were accompanied by an increase in the paired pulse facilitation (PPF) and in the failure rate of evoked IPSCs. 8BrcGMP did not modify the glycinergic currents elicited by exogenous glycine. In MnXII the IPSCs were also reduced by NO donors and 8BrcGMP to 52.9±6.3% and 45.9±4% of control values, respectively. In these neurons, but not in MnV, we also observed excitatory postsynaptic actions of NO donors. We propose that the differences between the two motor pools may be due to a differential development of the nitrergic system in the two nuclei. Our data show that NO, through its second messenger cGMP, reduces inhibitory glycinergic synaptic transmission in both MnV and MnXII. For MnV, evidence in favor of presynaptic inhibition of glycine release is presented. Given our previous data together with the current results, we propose that the NO/cGMP signaling pathway participates pre- and postsynaptically in the combined regulation of MnV and MnXII activities in motor acts in which they participate.
Collapse
Affiliation(s)
- I Pose
- Departamento de Fisiología, Facultad de Medicina, UDELAR, Montevideo, Uruguay.
| | - V Silveira
- Departamento de Fisiología, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | - A Damián
- Departamento de Fisiología, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | - R Higgie
- Departamento de Fisiología, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | - F R Morales
- Departamento de Fisiología, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| |
Collapse
|
17
|
Modulating nitric oxide signaling in the CNS for Alzheimer's disease therapy. Future Med Chem 2014; 5:1451-68. [PMID: 23919554 DOI: 10.4155/fmc.13.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO)/solube GC (sGC)/cGMP signaling is important for modulating synaptic transmission and plasticity in the hippocampus and cerebral cortex, which are critical for learning and memory. Physiological concentrations of NO also elicit anti-apoptotic/prosurvival effects against various neurotoxic challenges and brain insults through multiple mechanisms. Depression of the NO/sGC pathway is a feature of Alzheimer's disease (AD), attributed to amyloid-β neuropathology, and altered expression and activity of NOS, sGC and PDE enzymes. Different classes of NO-releasing hybrid drugs, including nomethiazoles, NO-NSAIDs and NO-acetylcholinesterase inhibitors were designed to deliver low concentrations of exogenous NO to the CNS while targeting other underlying disease mechanisms, such as excitotoxicity, neuro-inflammation and acetylcholine deficiency, respectively. Incorporating a NO-donating moiety may also reduce gastrointestinal and liver toxicity of the parent drugs. Progress has also been made in targeting downstream sGC and PDE enzymes. The PDE9 inhibitor PF-04447943 has completed Phase II clinical trials for AD. The search for effective NO-donating hybrid drugs, CNS-targeting sGC stimulators/activators and selective PDE inhibitors is an important goal for pharmacotherapy that manipulates NO biochemical pathways involved in cognitive function and neuroprotection. Rigorous preclinical validation of target engagement, and optimization of pharmacokinetic and toxicity profiles are likely to advance more drug candidates into clinical trials for mild cognitive impairment and early stage AD.
Collapse
|
18
|
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2013; 76 Pt A:27-50. [PMID: 23891641 DOI: 10.1016/j.neuropharm.2013.07.004] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Christian Medical College, Vellore 632002, Tamilnadu, India.
| | | | | |
Collapse
|
19
|
Reneerkens OA, Rutten K, Bollen E, Hage T, Blokland A, Steinbusch HW, Prickaerts J. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav Brain Res 2013; 236:16-22. [DOI: 10.1016/j.bbr.2012.08.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022]
|
20
|
Xu Q, Zhu Z, Xu J, Gu W, Zhao Z. Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice. Braz J Med Biol Res 2012; 45:1234-9. [PMID: 23033162 PMCID: PMC3854223 DOI: 10.1590/s0100-879x2012007500158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 04/03/2012] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide (NO), synthesized as needed by NO synthase (NOS), is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS). The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS) expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS) and male wild-type mice (WT) at postnatal day 7 (P7), P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7) and nNOS protein was estimated by Western blot (N = 3) and immunohistochemistry (N = 1). In the PCR assessment, primers 5′-GTGGCCATCGTGTCCTACCATAC-3′ and 5′-GTTTCGAGGCAGGTGGAAGCTA-3′ were used for the detection of nNOS and primers 5′-CCGTTTCTCCTGGCTCAGTTTA-3′ and 5′-CCCCAATACCACATCATCCAT-3′ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05). Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05). These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS.
Collapse
Affiliation(s)
- Qin Xu
- Department of Children's Health Care, Children's Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
21
|
Potes CS, Boyle CN, Wookey PJ, Riediger T, Lutz TA. Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in amylin's eating inhibitory effect. Am J Physiol Regul Integr Comp Physiol 2012; 302:R340-51. [DOI: 10.1152/ajpregu.00380.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peripheral amylin inhibits eating via the area postrema (AP). Because amylin activates the extracellular-signal regulated kinase 1/2 (ERK) pathway in some tissues, and because ERK1/2 phosphorylation (pERK) leads to acute neuronal responses, we postulated that it may be involved in amylin's eating inhibitory effect. Amylin-induced ERK phosphorylation (pERK) was investigated by immunohistochemistry in brain sections containing the AP. pERK-positive AP neurons were double-stained for the calcitonin 1a/b receptor, which is part of the functional amylin-receptor. AP sections were also phenotyped using dopamine-β-hydroxylase (DBH) as a marker of noradrenergic neurons. The effect of fourth ventricular administration of the ERK cascade blocker U0126 on amylin's eating inhibitory action was tested in feeding trials. The number of pERK-positive neurons in the AP was highest ∼10–15 min after amylin treatment; the effect appeared to be dose-dependent (5–20 μg/kg amylin). A portion of pERK-positive neurons in the AP carried the amylin-receptor and 22% of the pERK-positive neurons were noradrenergic. Pretreatment of rats with U0126 decreased the number of pERK-positive neurons in the AP after amylin injection. U0126 also attenuated the ability of amylin to reduce eating, at least when the animals had been fasted 24 h prior to the feeding trial. Overall, our results suggest that amylin directly stimulates pERK in AP neurons in a time- and dose-dependent manner. Part of the AP neurons displaying pERK were noradrenergic. At least under fasting conditions, pERK was shown to be a necessary part in the signaling cascade mediating amylin's anorectic effect.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, Vetsuisse Faculty University of Zurich, Zurich Switzerland; and
| | - Christina Neuner Boyle
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, Vetsuisse Faculty University of Zurich, Zurich Switzerland; and
| | | | - Thomas Riediger
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, Vetsuisse Faculty University of Zurich, Zurich Switzerland; and
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, Vetsuisse Faculty University of Zurich, Zurich Switzerland; and
| |
Collapse
|
22
|
Ramos-Espiritu LS, Hess KC, Buck J, Levin LR. The soluble guanylyl cyclase activator YC-1 increases intracellular cGMP and cAMP via independent mechanisms in INS-1E cells. J Pharmacol Exp Ther 2011; 338:925-31. [PMID: 21665942 PMCID: PMC3164349 DOI: 10.1124/jpet.111.184135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022] Open
Abstract
In addition to increasing cGMP, the soluble guanylyl cyclase (sGC) activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) can elevate intracellular cAMP levels. This response was assumed to be as a result of cGMP-dependent inhibition of cAMP phosphodiesterases; however, in this study, we show that YC-1-induced cAMP production in the rat pancreatic beta cell line INS-1E occurs independent of its function as a sGC activator and independent of its ability to inhibit phosphodiesterases. This YC-1-induced cAMP increase is dependent upon soluble adenylyl cyclase and not on transmembrane adenylyl cyclase activity. We previously showed that soluble adenylyl cyclase-generated cAMP can lead to extracellular signal-regulated kinase activation and that YC-1-stimulated cAMP production also stimulates extracellular signal-regulated kinase. Although YC-1 has been used as a tool for investigating sGC and cGMP-mediated pathways, this study reveals cGMP-independent pharmacological actions of this compound.
Collapse
|
23
|
Dallas ML, Boyle JP, Milligan CJ, Sayer R, Kerrigan TL, McKinstry C, Lu P, Mankouri J, Harris M, Scragg JL, Pearson HA, Peers C. Carbon monoxide protects against oxidant-induced apoptosis via inhibition of Kv2.1. FASEB J 2011; 25:1519-30. [PMID: 21248240 PMCID: PMC7615704 DOI: 10.1096/fj.10-173450] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress induces neuronal apoptosis and is implicated in cerebral ischemia, head trauma, and age-related neurodegenerative diseases. An early step in this process is the loss of intracellular K(+) via K(+) channels, and evidence indicates that K(v)2.1 is of particular importance in this regard, being rapidly inserted into the plasma membrane in response to apoptotic stimuli. An additional feature of neuronal oxidative stress is the up-regulation of the inducible enzyme heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). CO provides neuronal protection against stresses such as stroke and excitotoxicity, although the underlying mechanisms are not yet elucidated. Here, we demonstrate that CO reversibly inhibits K(v)2.1. Channel inhibition by CO involves reactive oxygen species and protein kinase G activity. Overexpression of K(v)2.1 in HEK293 cells increases their vulnerability to oxidant-induced apoptosis, and this is reversed by CO. In hippocampal neurons, CO selectively inhibits K(v)2.1, reverses the dramatic oxidant-induced increase in K(+) current density, and provides marked protection against oxidant-induced apoptosis. Our results provide a novel mechanism to account for the neuroprotective effects of CO against oxidative apoptosis, which has potential for therapeutic exploitation to provide neuronal protection in situations of oxidative stress.
Collapse
Affiliation(s)
- Mark L. Dallas
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - John P. Boyle
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Rachael Sayer
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Connor McKinstry
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Peiyuan Lu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jamel Mankouri
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mark Harris
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jason L. Scragg
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hugh A. Pearson
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Chris Peers
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
24
|
Pose I, Silveira V, Morales FR. Inhibition of excitatory synaptic transmission in the trigeminal motor nucleus by the nitric oxide-cyclic GMP signaling pathway. Brain Res 2011; 1393:1-16. [PMID: 21396351 DOI: 10.1016/j.brainres.2011.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/24/2011] [Accepted: 03/01/2011] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) and cyclic GMP (cGMP) suppressed glutamatergic synaptic transmission to trigeminal motoneurons in brain stem slices of neonatal rats. Histological studies showed guanylate cyclase (GC) containing fibers in the trigeminal motor pool. Glutamatergic excitatory postsynaptic currents (EPSCs) were recorded from neonatal trigeminal motoneurons in response to stimulation of the supratrigeminal nucleus (SuV). The NO donors DETA/NONOate (DETA/NO), at a concentration which released 275.1 nM of NO, and Spermine/NONOate (Sper/NO) reduced the amplitude of the EPSC to 52.7±0.6% and 60.1±10.8% of control values, respectively. These actions were not blocked by the GC inhibitors, ODQ or NS-2028. However, in the presence of YC-1 or BAY41-2272, modulators of GC that act as NO sensitizers, lower and otherwise ineffective concentrations of DETA/NO induced a reduction of the EPSC to 60.6±5.2%. Moreover, NO effects were mimicked by 8BrcGMP and by Zaprinast, an inhibitor of Phosphodiesterase 5. Glutamatergic currents evoked by exogenous glutamate were not reduced by DETA/NO nor 8BrcGMP. Paired-pulse facilitation was increased by NO donors. Under "minimal stimulation" conditions NO donors and cGMP increased the failure rate of evoked EPSCs. Protein kinase inhibitors antagonized cGMP effects. The results suggest that NO, through the synthesis of cGMP, presynaptically inhibits glutamatergic synaptic transmission on trigeminal motoneurons. We propose that NO has complex actions on motor pools; specific studies are needed to elucidate their physiological significance in the behaving animal.
Collapse
Affiliation(s)
- Inés Pose
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Gral Flores 2125, Montevideo 11800, Uruguay.
| | | | | |
Collapse
|
25
|
Kelley JB, Anderson KL, Altmann SL, Itzhak Y. Long-term memory of visually cued fear conditioning: roles of the neuronal nitric oxide synthase gene and cyclic AMP response element-binding protein. Neuroscience 2011; 174:91-103. [PMID: 21073925 PMCID: PMC3022382 DOI: 10.1016/j.neuroscience.2010.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies implicated NO signaling in contextual and auditory cued fear conditioning. The present study investigated the role of NO signaling in visually cued fear conditioning. First, visually cued fear conditioning was investigated in wild-type (WT) and nNOS knockout (KO) mice. Second, the effects of pharmacological modulators of NO signaling on the acquisition of visually cued fear conditioning were investigated. Third, plasma levels of corticosterone were measured to determine a relationship between physiological and behavioral responses to fear conditioning. Fourth, levels of extracellular signal-related kinase (ERK1/2) and cyclic AMP response element binding protein (CREB) phosphorylation, downstream of NO signaling, were determined in the amygdala as potential correlates of fear learning. Mice underwent single or multiple (4) spaced trainings that consisted of a visual cue (blinking light) paired with footshock. WT mice acquired cued and contextual LTM following single and multiple trainings. nNOS KO mice acquired neither cued nor contextual LTM following a single training; however, multiple trainings improved contextual but not cued LTM. The selective nNOS inhibitor S-methyl-thiocitrulline (SMTC) impaired cued and contextual LTM in WT mice. The NO donor molsidomine recovered contextual LTM but had no effect on cued LTM in nNOS KO mice. Re-exposure to the visual cue 24 h posttraining elicited freezing response and a marked increase in plasma corticosterone levels in WT but not nNOS KO mice. The expression of CREB phosphorylation (Ser-133) was significantly higher in naive nNOS KO mice than in WT counterparts, and pharmacological modulators of NO had significant effects on levels of CREB phosphorylation and expression. These findings suggest that visual cue-dependent LTM is impaired in nNOS KO mice, and aberrant modulation of CREB in the absence of the nNOS gene may hinder cued and contextual LTM formation.
Collapse
Affiliation(s)
- Jonathan B. Kelley
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Karen L. Anderson
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Stefanie L. Altmann
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yossef Itzhak
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
26
|
Furini CR, Rossato JI, Bitencourt LL, Medina JH, Izquierdo I, Cammarota M. Beta-adrenergic receptors link NO/sGC/PKG signaling to BDNF expression during the consolidation of object recognition long-term memory. Hippocampus 2010; 20:672-83. [PMID: 19533679 DOI: 10.1002/hipo.20656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The nitric oxide (NO)/soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway is important for memory processing, but the identity of its downstream effectors as well as its actual participation in the consolidation of nonaversive declarative long-term memory (LTM) remain unknown. Here, we show that training rats in an object recognition (OR) learning task rapidly increased nitrites/nitrates (NOx) content in the CA1 region of the dorsal hippocampus while posttraining intra-CA1 microinfusion of the neuronal NO synthase (nNOS) inhibitor L-NN hindered OR LTM retention without affecting memory retrieval or other behavioral variables. The amnesic effect of L-NN was not state dependent, was mimicked by the sGC inhibitor LY83583 and the PKG inhibitor KT-5823, and reversed by coinfusion of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and the PKG activator 8-bromoguanosine 3',5'-cyclic monophosphate (8Br-cGMP). SNAP did not affect the amnesic effect of LY83583 and KT-5823. Conversely, 8Br-cGMP overturned the amnesia induced by LY83583 but not that caused by KT-5823. Intra-CA1 infusion of the beta-adrenergic receptor blocker timolol right after training hindered OR LTM and, although coadministration of noradrenaline reversed the amnesia caused by L-NN, LY83583, and KT5823, the amnesic effect of timolol was unaffected by coinfusion of 8Br-cGMP or SNAP, indicating that hippocampal beta-adrenergic receptors act downstream NO/sGC/PKG signaling. We also found that posttraining intra-CA1 infusion of function-blocking anti-brain-derived neurotrophic factor (BDNF) antibodies hampered OR LTM retention, whereas OR training increased CA1 BDNF levels in a nNOS- and beta-adrenergic receptor-dependent manner. Taken together, our results demonstrate that NO/sGC/PKG signaling in the hippocampus is essential for OR memory consolidation and suggest that beta-adrenergic receptors link the activation of this pathway to BDNF expression during the consolidation of declarative memories.
Collapse
Affiliation(s)
- Cristiane R Furini
- Centro de Memória, Instituto do Cérebro, Pontifícia Universidade Católica do Rio Grande do Sul and Instituto Nacional de Neurociência Translacional, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
27
|
Hung CC, Liou HH. YC-1, a novel potential anticancer agent, inhibit multidrug-resistant protein via cGMP-dependent pathway. Invest New Drugs 2010; 29:1337-46. [PMID: 20676745 DOI: 10.1007/s10637-010-9496-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/12/2010] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to evaluate the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) on multidrug resistance. Expression of human P-glycoprotein was assessed by realtime quantitative RT-PCR and western blot. The efflux function of P-glycoprotein was evaluated by rhodamine 123 accumulation and calcein-AM uptake models. The mechanisms of action of YC-1 on different signaling pathways were studied using series of antagonists and the kinetics was also assessed. Cytotoxicity was evaluated by MTT assay. The results demonstrated that increased intracellular accumulation of rhodamine 123 and increased fluorescence of calcein were observed after YC-1 treatment. Furthermore, increased YC-1 concentration resulted in significant decrease in Vmax while K(M) remained unchanged suggested that YC-1 acted as a noncompetitive inhibitor of P-glycoprotein. Moreover, the inhibition of Pgp efflux function by YC-1 was significantly reversed by NO synthase inhibitor, (L)-NAME, the sGC inhibitor, ODQ, the PKG inhibitor, Rp-8-Br-PET-cGMPS, and the PKG inhibitor KT5823. In addition, ERK kinase inhibitor PD98059 also significantly restored YC-1 inhibited Pgp efflux function. These results indicated that YC-1 inhibited Pgp efflux via the NO-cGMP-PKG-ERK signaling pathway through noncompetitive inhibition. The present study revealed that YC-1 could be a good candidate for development as a MDR modulator.
Collapse
Affiliation(s)
- Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, Republic of China
| | | |
Collapse
|
28
|
Kelley JB, Anderson KL, Itzhak Y. Pharmacological modulators of nitric oxide signaling and contextual fear conditioning in mice. Psychopharmacology (Berl) 2010; 210:65-74. [PMID: 20224887 DOI: 10.1007/s00213-010-1817-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
RATIONALE Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) is a retrograde neuronal messenger that participates in synaptic plasticity, including late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies have shown that nNOS knockout (KO) mice have a severe deficit in contextual fear conditioning compared to wild type (WT) counterparts (Kelley et al. 2009). OBJECTIVES Given the role of the nNOS gene in fear conditioning, we investigated whether systemic administration of modulators of NO signaling affect the formation of contextual and cued fear memories and the effects of these modulators on cyclic 3'5'-guanosine monophosphate (cGMP) levels in the hippocampus and amygdala. METHODS The preferential nNOS inhibitor S-methyl-L-thiocitrulline (SMTC; 10-200 mg/kg) was administered (IP) to WT mice, and the NO donor molsidomine (10 mg/kg) was administered (IP) to nNOS KO mice either 30 min pretraining or immediately posttraining. RESULTS Pretraining SMTC administration to WT mice impaired both short- and long-term memories of contextual (36% inhibition) but not cued fear conditioning. Pretraining molsidomine administration to nNOS KO mice improved their deficit in short- and long-term memories of contextual fear conditioning (46% increase). Posttraining drug administration had no effect on WT and nNOS KO mice. The systemic administration of SMTC dose-dependently decreased cGMP concentrations down to 25% of control, while molsidomine increased cGMP concentration (three- and five-fold) in amygdala and hippocampus, respectively. CONCLUSIONS These findings suggest that neuronal NO and its downstream second messenger cGMP are important for acquisition and subsequent consolidation of LTM of contextual fear conditioning.
Collapse
Affiliation(s)
- Jonathan B Kelley
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
29
|
Ota KT, Monsey MS, Wu MS, Young GJ, Schafe GE. Synaptic plasticity and NO-cGMP-PKG signaling coordinately regulate ERK-driven gene expression in the lateral amygdala and in the auditory thalamus following Pavlovian fear conditioning. Learn Mem 2010; 17:221-35. [PMID: 20351057 DOI: 10.1101/lm.1592510] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the present series of experiments, we show that N-methyl-D-aspartate receptor (NMDAR)-driven synaptic plasticity and NO-cGMP-PKG signaling in the LA regulate the training-induced expression of ERK and the ERK-driven immediate early genes (IEGs) Arc/Arg3.1, c-Fos, and EGR-1 in the LA and the MGm/PIN. Rats receiving intra-LA infusion of the NR2B selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibited significant decreases in ERK activation and in the training-induced expression of all three IEGs in the LA and MGm/PIN while intra-LA infusion of the PKG activator 8-Br-cGMP had the opposite effect. Remarkably, those rats given intra-LA infusion of the membrane impermeable NO scavenger c-PTIO exhibited significant decreases in ERK activation and ERK-driven IEG expression in the MGm/PIN, but not in the LA. Together with our previous experiments, these results suggest that synaptic plasticity and the NO-cGMP-PKG signaling pathway promote fear memory consolidation, in part, by regulating ERK-driven transcription in both the LA and the MGm/PIN. They further suggest that synaptic plasticity in the LA during fear conditioning promotes ERK-driven transcription in MGm/PIN neurons via NO-driven "retrograde signaling."
Collapse
Affiliation(s)
- Kristie T Ota
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
30
|
Discrimination between cocaine-associated context and cue in a modified conditioned place preference paradigm: role of the nNOS gene in cue conditioning. Int J Neuropsychopharmacol 2010; 13:171-80. [PMID: 19775503 DOI: 10.1017/s1461145709990666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conditioned place preference (CPP) paradigm entails appetitive learning and is utilized to investigate the motivational effects of drug and natural reward in rodents. However, a typical CPP design does not allow dissociation between cue- and context-dependent appetitive learning. In humans, context and cues that had been associated with drug reward can elicit conditioned response and drug craving. Therefore, we investigated (a) methods by which to discriminate between cue- and context-dependent appetitive learning, and (b) the role of the neuronal nitric oxide synthase (nNOS) gene in appetitive learning. Wild-type (WT) and nNOS knockout (KO) mice were trained by cocaine (20 mg/kg) in a discrete context paired with a light cue (a compound context-cue stimulus). In test 1, approach behaviour to either the training context or to the cue in a novel context was determined. WT mice showed robust preference for both cocaine-associated context and cue. nNOS KO mice acquired approach behaviour for the cocaine-associated context but not cue. This finding suggests that the nNOS gene is required for cue-dependent appetitive learning. On the following day (test 2), mice were tested for approach behaviour to the compound context-cue stimulus. Context but not cue exposure in test 1 reduced approach behaviour to the compound context-cue stimulus in test 2, suggesting that repeated context but not cue exposures diminished the conditioned response. Hence, this modified CPP paradigm is useful for the investigation of approach behaviour for both drug-associated context and cue, and allows further investigation of mechanisms underlying cue- and context-dependent appetitive learning.
Collapse
|
31
|
Paul C, Stratil C, Hofmann F, Kleppisch T. cGMP-dependent protein kinase type I promotes CREB/CRE-mediated gene expression in neurons of the lateral amygdala. Neurosci Lett 2010; 473:82-6. [PMID: 20171263 DOI: 10.1016/j.neulet.2010.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/22/2010] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
Abstract
The process transforming newly learned information into stable long-term memory is called memory consolidation and, like the underlying long-term synaptic plasticity, critically depends on de novo RNA and protein synthesis. We have shown recently that the cGMP-dependent protein kinase Type I (cGKI) plays an important role for the consolidation of amygdala-dependent fear memory and long-term potentiation (LTP) in the lateral amygdala. Signalling downstream of cGKI at the level of transcriptional regulation remained unclear. A transcription factor of major importance for learning and memory is the cAMP-response element binding protein (CREB). The representation of fear memory in the lateral amygdala strikingly depends on the activity of CREB in individual neurons. Moreover, findings from in vitro experiments demonstrate CREB phosphorylation by cGK. In the hippocampus, CREB phosphorylation increases following activation of NO/cGMP signalling contributing to the late phase of LTP. To demonstrate a link from cGKI to activation of CREB and CREB-dependent transcription in neurons of the lateral amygdala as a possible mechanism for cGKI-mediated fear memory consolidation, we examined the effect of cGMP on activation of CREB/CRE using immunohistochemical staining specific for phospho-CREB and a reporter gene in control and cGKI-deficient mice, respectively. Supporting our hypothesis, marked CREB phosphorylation and CRE-mediated transcription was induced by cGMP in the lateral amygdala of control mice, but not in cGKI-deficient mice. It has been proposed that activation of cGKI is followed by its nuclear translocation that would allow direct phosphorylation of CREB. Therefore, we examined the cellular localisation of cGKI in neurons of the lateral amygdala in the presence of cGMP by double staining for cGKI and a nuclear marker in sections from areas showing prominent CREB phosphorylation, and did not observe prominent nuclear translocation of the enzyme. In summary, we provide evidence that cytosolic cGKI can support fear memory consolidation and LTP in neurons of the lateral amygdala via activation of CREB and CRE-dependent transcription.
Collapse
Affiliation(s)
- Cindy Paul
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Biedersteiner Strasse 29, 80802 München, Germany
| | | | | | | |
Collapse
|
32
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Paul C, Schöberl F, Weinmeister P, Micale V, Wotjak C, Hofmann F, Kleppisch T. Role of cGMP-dependent protein kinases for fear memory formation in the lateral amygdala. BMC Pharmacol 2009. [PMCID: PMC3313412 DOI: 10.1186/1471-2210-9-s1-s21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Komatsu T, Sakurada S, Kohno K, Shiohira H, Katsuyama S, Sakurada C, Tsuzuki M, Sakurada T. Spinal ERK activation via NO-cGMP pathway contributes to nociceptive behavior induced by morphine-3-glucuronide. Biochem Pharmacol 2009; 78:1026-34. [PMID: 19589334 DOI: 10.1016/j.bcp.2009.06.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 12/20/2022]
Abstract
Intrathecal (i.t.) injection of morphine-3-glucuronide (M3G), a major metabolite of morphine without analgesic actions, produces a severe hindlimb scratching followed by biting and licking in mice. The pain-related behavior evoked by M3G was inhibited dose-dependently by i.t. co-administration of tachykinin NK(1) receptor antagonists, sendide, [D-Phe(7), D-His(9)] substance P(6-11), CP-99994 or RP-67580 and i.t. pretreatment with antiserum against substance P. The competitive NMDA receptor antagonists, D-APV and CPP, the NMDA ion-channel blocker, MK-801 or the competitive antagonist of the polyamine recognition site of NMDA receptor ion-channel complex, ifenprodil, produced inhibitory effects on i.t. M3G-evoked nociceptive response. The NO-cGMP-PKG pathway, which involves the extracellular signal-regulated kinase (ERK), has been implicated as mediators of plasticity in several pain models. Here, we investigated whether M3G could influence the ERK activation in the NO-cGMP-PKG pathway. The i.t. injection of M3G evoked a definite activation of ERK in the lumbar dorsal spinal cord, which was prevented dose-dependently by U0126, a MAP kinase-ERK inhibitor. The selective nNOS inhibitor N(omega)-propyl-l-arginine, the selective iNOS inhibitor W1400, the soluble guanylate cyclase inhibitor ODQ and the PKG inhibitor KT-5823 inhibited dose-dependently the nociceptive response to i.t. M3G. In western blotting analysis, inhibiting M3G-induced nociceptive response using these inhibitors resulted in a significant blockade of ERK activation induced by M3G in the spinal cord. Taken together, these results suggest that activation of the spinal ERK signaling in the NO-cGMP-PKG pathway contributes to i.t. M3G-evoked nociceptive response.
Collapse
Affiliation(s)
- Takaaki Komatsu
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Drugs of abuse usurp the mechanisms underlying synaptic plasticity in areas of the brain, a process that may contribute to the development of addiction. We previously reported that GABAergic synapses onto dopaminergic neurons in the ventral tegmental area (VTA) exhibit long-term potentiation (LTP(GABA)) blocked by in vivo exposure to morphine. The presynaptically maintained LTP requires the retrogradely released nitric oxide (NO) to activate a presynaptic cGMP signaling cascade. Previous work reported that inhibitory GABA(A) receptor synapses in the VTA are also potentiated by cAMP. Here, we explored the interactions between cGMP-dependent (PKG) and cAMP-dependent (PKA) protein kinases in the regulation of these GABAergic synapses and LTP(GABA). Activation of PKG was required for NO-cGMP signaling and was also essential for the induction of synaptically elicited LTP(GABA), but not for its maintenance. Synapses containing GABA(A) receptors were potentiated by NO-cGMP signaling, whereas synapses containing GABA(B) receptors on the same cells were not potentiated. Moreover, although the cAMP-PKA system potentiated GABA(A) synapses, synaptically induced LTP(GABA) was independent of PKA activation. Surprisingly, however, raising cGMP levels saturated potentiation of these synapses, precluding further potentiation by cAMP and suggesting a convergent end point for both signaling pathways in the regulation of GABAergic release. We further found that persistent GABAergic synaptic modifications observed with in vivo morphine did not involve the presynaptic cAMP-PKA cascade. Taken together, our data suggest a synapse-specific role for NO-cGMP-PKG signaling pathway in opioid-induced plasticity of VTA GABA(A) synapses.
Collapse
Affiliation(s)
- Fereshteh S Nugent
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
36
|
Lin YC, Chou LC, Chen SC, Kuo SC, Huang LJ, Gean PW. Neuroprotective effects of furopyrazole derivative of benzylindazole analogs on C2 ceramide-induced apoptosis in cultured cortical neurons. Bioorg Med Chem Lett 2009; 19:3225-8. [DOI: 10.1016/j.bmcl.2009.04.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
|
37
|
Signaling through cGMP-dependent protein kinase I in the amygdala is critical for auditory-cued fear memory and long-term potentiation. J Neurosci 2009; 28:14202-12. [PMID: 19109502 DOI: 10.1523/jneurosci.2216-08.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) of inputs relaying sensory information from cortical and thalamic neurons to principal neurons in the lateral amygdala (LA) is thought to serve as a cellular mechanism for associative fear learning. Nitric oxide (NO), a messenger molecule widely implicated in synaptic plasticity and behavior, has been shown to enhance LTP in the LA as well as consolidation of associative fear memory. Additional evidence suggests that NO-induced enhancement of LTP and amygdala-dependent learning requires signaling through soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinase (cGK). Mammals possess two genes for cGK: the prkg1 gene gives rise to the cGK type I isoforms, cGKIalpha and cGKIbeta, and the prkg2 gene encodes the cGK type II. Reportedly, both cGKI and cGKII are expressed in the amygdala, and cGKII is involved in controlling anxiety-like behavior. Because selective pharmacological tools for individual cGK isoforms are lacking, we used different knock-out mouse models to examine the function of cGKI and cGKII for LTP in the LA and pavlovian fear conditioning. We found robust expression of the cGKI specifically in the LA with cGKIbeta as the prevailing isoform. We further show a marked reduction of LTP at both thalamic and cortical inputs to the LA and a selective impairment of auditory-cued fear memory in cGKI-deficient mutants. In contrast, cGKII null mutants lack these phenotypes. Our data suggest a function of cGKI, likely the beta isoform, in the LA, supporting synaptic plasticity and consolidation of fear memory.
Collapse
|
38
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.
Collapse
|
39
|
Abstract
The nitric oxide (NO) signalling pathway is altered in cardiovascular diseases, including systemic and pulmonary hypertension, stroke, and atherosclerosis. The vasodilatory properties of NO have been exploited for over a century in cardiovascular disease, but NO donor drugs and inhaled NO are associated with significant shortcomings, including resistance to NO in some disease states, the development of tolerance during long-term treatment, and non-specific effects such as post-translational modification of proteins. The development of pharmacological agents capable of directly stimulating the NO receptor, soluble guanylate cyclase (sGC), is therefore highly desirable. The benzylindazole compound YC-1 was the first sGC stimulator to be identified; this compound formed a lead structure for the development of optimized sGC stimulators with improved potency and specificity for sGC, including CFM-1571, BAY 41-2272, BAY 41-8543, and BAY 63-2521. In contrast to the NO- and haem-independent sGC activators such as BAY 58-2667, these compounds stimulate sGC activity independent of NO and also act in synergy with NO to produce anti-aggregatory, anti-proliferative, and vasodilatory effects. Recently, aryl-acrylamide compounds were identified independent of YC-1 as sGC stimulators; although structurally dissimilar to YC-1, they have a similar mode of action and promote smooth muscle relaxation. Pharmacological stimulators of sGC may be beneficial in the treatment of a range of diseases, including systemic and pulmonary hypertension, heart failure, atherosclerosis, erectile dysfunction, and renal fibrosis. An sGC stimulator, BAY 63-2521, is currently in clinical development as an oral therapy for patients with pulmonary hypertension. It has demonstrated efficacy in a proof-of-concept study, reducing pulmonary vascular resistance and increasing cardiac output from baseline. A full, phase 2 trial of BAY 63-2521 in pulmonary hypertension is underway.
Collapse
Affiliation(s)
- Johannes-Peter Stasch
- Bayer Schering Pharma AG, Cardiology Research, Pharma Research Center, Wuppertal, 42096, Germany.
| | | |
Collapse
|
40
|
Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase. Learn Mem 2008; 15:792-805. [PMID: 18832566 DOI: 10.1101/lm.1114808] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and long-term potentiation (LTP) at thalamic and cortical input pathways to the LA. In behavioral experiments, rats given intra-LA infusions of either the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibited dose-dependent impairments or enhancements of fear memory consolidation, respectively. In slice electrophysiology experiments, bath application of Rp-8-Br-PET-cGMPS or the guanylyl cyclase inhibitor LY83583 impaired LTP at thalamic, but not cortical inputs to the LA, while bath application of 8-Br-cGMP or the guanylyl cyclase activator YC-1 resulted in enhanced LTP at thalamic inputs to the LA. Interestingly, YC-1-induced enhancement of LTP in the LA was reversed by concurrent application of the MEK inhibitor U0126, suggesting that the NO-cGMP-PKG signaling pathway may promote synaptic plasticity and fear memory formation in the LA, in part by activating the ERK/MAPK signaling cascade. As a test of this hypothesis, we next showed that rats given intra-LA infusion of the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibit impaired or enhanced activation, respectively, of ERK/MAPK in the LA after fear conditioning. Collectively, our findings suggest that an NO-cGMP-PKG-dependent form of synaptic plasticity at thalamic input synapses to the LA may underlie memory consolidation of Pavlovian fear conditioning, in part, via activation of the ERK/MAPK signaling cascade.
Collapse
Affiliation(s)
- Kristie T Ota
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
41
|
Chien WL, Liang KC, Fu WM. Enhancement of active shuttle avoidance response by the NO-cGMP-PKG activator YC-1. Eur J Pharmacol 2008; 590:233-40. [PMID: 18590724 DOI: 10.1016/j.ejphar.2008.06.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/23/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022]
Abstract
Although much has been learned about the role of the amygdala in Pavlovian fear conditioning, relatively little is known about the signaling pathway involved in the acquisition of an active avoidance reaction. The aim of this study is to investigate the potentiating effects of the NO-guanylate cyclase activator YC-1 on learning and memory of shuttle avoidance test in rats. YC-1 enhanced the induction of long-term potentiation (LTP) in amygdala through NO-cGMP-PKG-ERK pathway and the increase of BDNF expression. The Western blot and PCR methods were used to examine the signaling pathways involved in fear memory. It was found that YC-1 increased the avoidance responses during learning period and the memory retention lasted longer than one week. The enhancement of learning behavior by YC-1 was antagonized by intracerebroventricular injection of NOS inhibitor l-NAME, PKG inhibitor Rp-8-Br-PET-cGMPS and MEK inhibitor PD98059, indicating that NO-cGMP-PKG and ERK pathways are involved in the learning potentiating action of YC-1. In addition, YC-1 increased the activation of ERK and Akt 30 min after Day-1 training in amygdala. YC-1 also potentiated the expression of BDNF and CREB in response to fear memory test. Taken together, these findings suggest that NO-cGMP-PKG-ERK signaling pathway is involved in the action of YC-1 in enhancing the fear memory.
Collapse
Affiliation(s)
- Wei-Lin Chien
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
42
|
Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB. A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 2007; 56:670-88. [PMID: 18031684 PMCID: PMC2153457 DOI: 10.1016/j.neuron.2007.09.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 11/13/2006] [Accepted: 09/14/2007] [Indexed: 10/24/2022]
Abstract
Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.
Collapse
Affiliation(s)
- Yafell Serulle
- Program in Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016
| | - Shuang Zhang
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016
| | - Ipe Ninan
- Department of Pathology and Taub Institute, Columbia University, New York, New York, 10032, USA
| | - Daniela Puzzo
- Department of Pathology and Taub Institute, Columbia University, New York, New York, 10032, USA
| | - Maria McCarthy
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016
| | - Latika Khatri
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016
| | - Ottavio Arancio
- Department of Pathology and Taub Institute, Columbia University, New York, New York, 10032, USA
| | - Edward B. Ziff
- Program in Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
43
|
Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AMG. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 2007; 8:766-75. [PMID: 17882254 DOI: 10.1038/nrn2214] [Citation(s) in RCA: 1095] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
At the end of the 1980s, it was clearly demonstrated that cells produce nitric oxide and that this gaseous molecule is involved in the regulation of the cardiovascular, immune and nervous systems, rather than simply being a toxic pollutant. In the CNS, nitric oxide has an array of functions, such as the regulation of synaptic plasticity, the sleep-wake cycle and hormone secretion. Particularly interesting is the role of nitric oxide as a Janus molecule in the cell death or survival mechanisms in brain cells. In fact, physiological amounts of this gas are neuroprotective, whereas higher concentrations are clearly neurotoxic.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Hajjhussein H, Suvarna NU, Gremillion C, Judson Chandler L, O’Donnell JM. Changes in NMDA receptor-induced cyclic nucleotide synthesis regulate the age-dependent increase in PDE4A expression in primary cortical cultures. Brain Res 2007; 1149:58-68. [PMID: 17407767 PMCID: PMC2720317 DOI: 10.1016/j.brainres.2007.02.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 02/17/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
NMDA receptor-induced cAMP and cGMP are selectively hydrolyzed by PDE4 and PDE2, respectively, in rat primary cerebral cortical and hippocampal cultures. Because cAMP levels regulate the expression of PDE4 in rat primary cortical cultures, we examined the manner in which NMDA receptor activity regulates the age-dependent increase in the expression of PDE4A observed in vivo and in vitro. Inhibiting the activity of NR2B subunit with ifenprodil blocked NMDA receptor-induced cGMP synthesis and increased NMDA receptor-induced cAMP levels in a manner that reduced PDE4 activity. Therefore, NR1/NR2B receptor-induced cGMP signaling is involved in an acute cross-talk regulation of NR1/NR2A receptor-induced cAMP levels, mediated by PDE4. Chronic inhibition of NMDA receptor activity with MK-801 reduced PDE4A1 and PDE4A5 expression and activity in a time-dependent manner; this effect was reversed by adding the PKA activator dbr-cAMP. Inhibiting GABA receptors with bicuculline increased NMDA receptor-induced cAMP synthesis and PDE4A expression in cultures treated between DIV 16 and DIV 21 but not in cultures treated between DIV 8 and DIV 13. This effect was due to a high tone of NMDA receptor-induced cGMP in younger cultures, which negatively regulated the expression of PDE4A by a PKG-mediated process. The present results are consistent with behavioral data showing that both PDE4 and PDE2 are involved in NMDA receptor-mediated memory processes.
Collapse
Affiliation(s)
- Hassan Hajjhussein
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN
| | - Neesha U. Suvarna
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN
| | - Carmen Gremillion
- Department of Pharmacology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - L. Judson Chandler
- Departments of Physiology/Neuroscience and Psychiatry, Medical University of South Carolina, Charleston, SC
| | - James M. O’Donnell
- Departments of Behavioral Medicine & Psychiatry and Neurobiology & Anatomy, West Virginia University Health Sciences Center, Morgantown, WV
| |
Collapse
|
45
|
Sabatini MJ, Ebert P, Lewis DA, Levitt P, Cameron JL, Mirnics K. Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. J Neurosci 2007; 27:3295-304. [PMID: 17376990 PMCID: PMC6672470 DOI: 10.1523/jneurosci.4765-06.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/03/2007] [Accepted: 02/12/2007] [Indexed: 11/21/2022] Open
Abstract
Children exposed to early parental loss from death or separation carry a greater risk for developing future psychiatric illnesses, such as major depression and anxiety. Monkeys experiencing maternal separation at 1 week of age show fewer social behaviors and an increase in self-comforting behaviors (e.g., thumb sucking) over development, whereas in contrast, monkeys experiencing maternal separation at 1 month of age show increased seeking of social comfort later in life. We sought to identify neural systems that may underlie these stress-induced behavioral changes by examining changes in mRNA content in amygdala tissue collected from 1 week separated, 1 month separated, and maternally reared infants at 3 months of age. mRNA from the right medial temporal lobe, primarily the amygdala, was analyzed using Affymetrix U133A 2.0 arrays. One gene, guanylate cyclase 1 alpha 3 (GUCY1A3), showed differential expression between the 1 week and maternally reared groups and the 1 week and 1 month groups; these changes were confirmed by in situ hybridization. The expression of this gene was positively correlated with acute social-comforting behavior (r = 0.923; p = 0.001) and longer-term close social behavior (r = 0.708; p = 0.015) and negatively correlated with self-comforting behaviors (r = -0.88; p < 0.001). Additional in situ hybridization studies of GUCY1A3 in normal monkeys showed that this gene is expressed at adult levels by 1 week of age and that its expression is greater in the amygdala than all other brain areas examined. We conclude that GUCY1A3 may contribute to the altered behavioral phenotypes that are differentially displayed depending on the age at which macaque infants experience an early-life stress.
Collapse
Affiliation(s)
- Michael J Sabatini
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bennett BM, Reynolds JN, Prusky GT, Douglas RM, Sutherland RJ, Thatcher GRJ. Cognitive deficits in rats after forebrain cholinergic depletion are reversed by a novel NO mimetic nitrate ester. Neuropsychopharmacology 2007; 32:505-13. [PMID: 16525416 DOI: 10.1038/sj.npp.1301054] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many conditions adversely affecting learning, memory, and cognition are associated with reductions in forebrain acetylcholine (ACh), most notably aging and Alzheimer's disease. In the current study, we demonstrate that bilateral depletion of neocortical and hippocampal ACh in rats produces deficits in a spatial learning task and in a recently described, delayed visual matching-to-sample task. Oral administration of the novel nitrate, GT1061 (4-methyl-5-(2-nitroxyethyl) thiazole HCl), and the acetylcholinesterase inhibitor, donepezil, reversed the cognitive deficits in both memory tasks in a dose-dependent manner. GT1061 was superior in the delayed matching-to-sample task. GT1061 was absorbed rapidly after oral administration, crossed the blood brain barrier, and achieved brain concentrations that were slightly higher than those found in plasma. The activity of GT1061 was NO mimetic: soluble guanylyl cyclase (sGC) was activated, but selectivity was observed for sGC in the hippocampus relative to the vasculature; and hippocampal levels of phosphorylated ERK1/2, which is a postulated intermediary in the formation of long-term memory, were increased. The beneficial effect on visual and spatial memory task performance supports the concept that stimulating the NO/sGC/cGMP signal transduction system can provide new, effective treatments for cognitive disorders. This approach may be superior to that of current drugs that attempt only to salvage the residual function of damaged cholinergic neurons.
Collapse
Affiliation(s)
- Brian M Bennett
- Department of Pharmacology & Toxicology, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
Corazza S, Scarabottolo L, Lohmer S, Liberati C. An innovative cell-based assay for the detection of modulators of soluble guanylate cyclase. Assay Drug Dev Technol 2006; 4:165-73. [PMID: 16712420 DOI: 10.1089/adt.2006.4.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Guanylate cyclase (GC) catalyzes the biosynthesis of cyclic guanosine 3',5'- monophosphate (cGMP) from GTP. GC exists in two isoenzyme forms: soluble and membrane-bound. The soluble GC (sGC) is a heterodimer composed of an alpha and a beta subunit, and it contains heme as a prosthetic group. The most important physiological activator of sGC is nitric oxide, which activates the enzyme upon binding to the heme moiety. By producing the second messenger cGMP, which regulates various effector systems such as phosphodiesterases, ion channels, and protein kinases, sGC plays an important role in different physiological processes, thus representing a very attractive pharmacological target. In fact, the pathogenesis of several diseases, especially those of the cardiovascular system, has been linked to inappropriate regulation of sGC. In order to find new modulators for this important enzyme, an innovative cell-based assay has been developed and optimized for the use in high-throughput screening. This luminescent assay, which is suitable for both 96- and 384-well plate formats, has been achieved by stably expressing the alpha and beta subunits of a mutated form of sGC in Chinese hamster ovary cells. The mutated form synthesizes cyclic adenosine 3',5'-monophosphate instead of cGMP, allowing the detection of enzymatic activity by a reporter gene approach. We demonstrated that this cell line responds to compounds typically used in the field of sGC research and that it represents an innovative and robust assay to screen for sGC modulators with high efficiency and high sensitivity by means of standard luminescence readers.
Collapse
|
48
|
Cao JL, Liu HL, Wang JK, Zeng YM. Cross talk between nitric oxide and ERK1/2 signaling pathway in the spinal cord mediates naloxone-precipitated withdrawal in morphine-dependent rats. Neuropharmacology 2006; 51:315-26. [PMID: 16712881 DOI: 10.1016/j.neuropharm.2006.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/19/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Our recent study has shown activation of spinal extracellular signal-regulated kinase-1 and -2 (ERK1/2), a member of the mitogen-activated protein kinase (MAPK) family, contributes to naloxone-precipitated withdrawal and withdrawal-induced spinal neuronal sensitization in morphine-dependent rats. However, the mechanism and significance of the spinal ERK1/2 activation during morphine dependence and withdrawal remain unknown. In this study, we reported that intrathecal (i.t.) pretreatment with either the non-selective nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), neuronal NOS (nNOS) inhibitor 7-nitro indazole (7-NI), or the inducible NOS (iNOS) inhibitor aminoguanidine (AG), could reduce morphine withdrawal-induced increase of phospho-ERK1/2 (pERK1/2) expression in the rat spinal cord. On the other hand, attenuation of the spinal ERK phosphorylation by the MAPK kinase (MEK) inhibitor U0126 also could inhibit the increase of nNOS and iNOS expression in the spinal cord of morphine withdrawal rats. Inhibitory expression of pERK1/2 by i.t. NOS inhibitor L-NAME, 7-NI or AG and of nNOS and iNOS by i.t. U0126 in the spinal cord were accompanied by decreased scores of morphine withdrawal and the inhibited spinal Fos protein (a maker for neuronal excitation or activation) expression induced by morphine withdrawal. These findings suggest cross talk between nitric oxide (NO) and the ERK1/2 signaling pathway mediates morphine withdrawal and withdrawal-induced spinal neuronal sensitization in morphine-dependent rats.
Collapse
Affiliation(s)
- Jun-Li Cao
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Jiangsu Institute of Anesthesiology, Jiangsu Province, Xuzhou, Jiangsu 221002, PR China.
| | | | | | | |
Collapse
|
49
|
Yazawa S, Tsuchiya H, Hori H, Makino R. Functional characterization of two nucleotide-binding sites in soluble guanylate cyclase. J Biol Chem 2006; 281:21763-21770. [PMID: 16754683 DOI: 10.1074/jbc.m508983200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Soluble guanylate cyclase is a heterodimeric hemoprotein composed of alpha- and beta-subunits with a homologous motif to the nucleotide-binding sites of adenylate cyclases. Homology modeling of guanylate cyclase, based on the crystal structure of adenylate cyclase, reveals a single GTP-binding site and a putative second site pseudosymmetric to the GTP-binding site. However, the role of this pseudosymmetric site has remained unclear. Using equilibrium dialysis, we identified two nucleotide-binding sites with high and low affinity for alpha,beta-methylene guanosine 5'-triphosphate (GMP-CPP). In contrast, 2'-dADP occupied both sites with equivalent affinities. Adenosine-5'-beta,gamma-imido triphosphate (AMP-PNP), which competitively inhibited the cyclase reaction, bound solely to the high affinity site, indicating the role of this site as the catalytic site. The function of the low affinity site was examined using allosteric activators YC-1 and BAY 41-2272. YC-1 significantly reduced the affinity of 2'-dADP, probably by competing for the same site as 2'-dADP. BAY 41-2272 totally inhibited the specific binding of one molecule of 2'-dADP as well as GMP-CPP. This suggests that the activators compete with these nucleotides for the low affinity site. Infrared and EPR analyses of the enzymic CO- and NO-hemes also supported the suggested role of the low affinity site as a target for the activators. Our results imply that the low affinity site is the pseudosymmetric site, which binds YC-1 or BAY 41-2272.
Collapse
Affiliation(s)
- Shinsuke Yazawa
- Department of Life Science, College of Science, Rikkyo University, Nishi-ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501
| | - Hidemi Tsuchiya
- Department of Life Science, College of Science, Rikkyo University, Nishi-ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501
| | - Hiroshi Hori
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryu Makino
- Department of Life Science, College of Science, Rikkyo University, Nishi-ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501.
| |
Collapse
|
50
|
Cary SPL, Winger JA, Derbyshire ER, Marletta MA. Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci 2006; 31:231-9. [PMID: 16530415 DOI: 10.1016/j.tibs.2006.02.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/09/2006] [Accepted: 02/21/2006] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) triggers various physiological responses in numerous tissues by binding and activating soluble guanylate cyclase (sGC) to produce the second messenger cGMP. In vivo, basal NO/cGMP signaling maintains a resting state in target cells (for example, resting tone in smooth muscle), but an acute burst of NO/cGMP signaling triggers rapid responses (such as smooth muscle relaxation). Recent studies have shown that the sGC heterodimer comprises at least four modular domains per subunit. The N-terminal heme domain is a member of the H-NOX family of domains that bind O(2) and/or NO and are conserved in prokaryotes and higher eukaryotes. Studies of these domains have uncovered the molecular basis for ligand discrimination by sGC. Other work has identified two temporally distinct states of sGC activation by NO: formation of a stable NO-heme complex results in a low-activity species, and additional NO produces a transient fully active enzyme. Nucleotides also allosterically modulate the duration and intensity of enzyme activity. Together, these studies suggest a biochemical basis for the two distinct types of NO/cGMP signal observed in vivo.
Collapse
Affiliation(s)
- Stephen P L Cary
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|