1
|
Ramer R, Hinz B. Effect of cannabinoids on the efficacy and side effects of anticancer therapeutic strategies - Current status of preclinical and clinical research. Pharmacol Ther 2025; 270:108851. [PMID: 40221102 DOI: 10.1016/j.pharmthera.2025.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Cannabinoids have attracted increasing attention in cancer research in recent decades. A major focus of current preclinical and clinical studies is on the interactions and potential risks when combined with chemotherapeutic agents, targeted therapies and other anticancer strategies. Given the extensive preclinical data on additive, synergistic and, in some cases, antagonistic tumor cell killing effects of chemotherapeutic agents and cannabinoids when co-administered, a critical analysis of these data seems essential. The available data mainly relate to combination treatments for glioblastoma, hematological malignancies and breast cancer, but also for other cancer types. Such an analysis also appears necessary because cannabinoids are used as an option to treat nausea and vomiting caused by chemotherapy, as well as tumor-related pain, and cancer patients sometimes take cannabinoids without a medical prescription. In addition, numerous recent preclinical studies also suggest cannabinoid-mediated relief of other chemotherapy-related side effects such as peripheral neuropathy, nephrotoxicity, cardiotoxicity, cystitis, bladder complications and mucositis. To summarize, the data available to date raise the prospect that cannabinoids may increase the efficacy of chemotherapeutic agents while reducing their side effects. However, preclinical studies on anticancer interactions are mostly limited to cytotoxicity analyses. An equally thorough investigation of the effects of such combinations on the immune system and on the tumorigenic levels of angiogenesis, invasion and metastasis is still pending. On this basis, a comprehensive understanding for the evaluation of a targeted additional treatment of various cancers with cannabinoids could be established.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany.
| |
Collapse
|
2
|
Scopetti M, Morena D, Manetti F, Santurro A, Fazio ND, D'Errico S, Padovano M, Frati P, Fineschi V. Cannabinoids and Brain Damage: A Systematic Review on a Frequently Overlooked Issue. Curr Pharm Biotechnol 2023; 24:741-757. [PMID: 35702797 DOI: 10.2174/1389201023666220614145535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although cannabinoid consumption represents a current social and health problem, especially in a historical context characterized by an open orientation for recreational and therapeutic purposes, risks regarding the neurotoxicity of such substances are frequently overlooked. OBJECTIVE The present systematic review aims to summarize the available evidence regarding the mechanism of cannabinoids-induced brain damage as a substrate of neurological, psychiatric, and behavioral effects. Another objective is to provide support for future investigations and legislative choices. METHODS The systematic literature search through PubMed and Scopus and a critical appraisal of the collected studies were conducted. Search terms were "(("Cannabinoids" OR "THC" OR "CBD") AND "Brain" AND ("Damage" OR "Toxicity"))" in the title and abstracts. Studies were included examining toxic effects on the brain potentially induced by cannabinoids on human subjects. RESULTS At the end of the literature selection process, 30 papers were considered for the present review. The consumption of cannabinoids is associated with the development of psychiatric, neurocognitive, neurological disorders and, in some cases of acute consumption, even death. In this sense, the greatest risks have been related to the consumption of high-potency synthetic cannabinoids, although the consumption of phytocannabinoids is not devoid of risks. CONCLUSION The research carried out has allowed to highlight some critical points to focus on, such as the need to reinforce the toxic-epidemiologic monitor of new substances market and the importance of information for both medical personnel and general population, with particular attention to the mostly involved age groups.
Collapse
Affiliation(s)
- Matteo Scopetti
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Donato Morena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Federico Manetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandro Santurro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano D'Errico
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | - Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
4
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
5
|
Hinz B, Ramer R. Cannabinoids as anticancer drugs: current status of preclinical research. Br J Cancer 2022; 127:1-13. [PMID: 35277658 PMCID: PMC9276677 DOI: 10.1038/s41416-022-01727-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractDrugs that target the endocannabinoid system are of interest as pharmacological options to combat cancer and to improve the life quality of cancer patients. From this perspective, cannabinoid compounds have been successfully tested as a systemic therapeutic option in a number of preclinical models over the past decades. As a result of these efforts, a large body of data suggests that the anticancer effects of cannabinoids are exerted at multiple levels of tumour progression via different signal transduction mechanisms. Accordingly, there is considerable evidence for cannabinoid-mediated inhibition of tumour cell proliferation, tumour invasion and metastasis, angiogenesis and chemoresistance, as well as induction of apoptosis and autophagy. Further studies showed that cannabinoids could be potential combination partners for established chemotherapeutic agents or other therapeutic interventions in cancer treatment. Research in recent years has yielded several compounds that exert promising effects on tumour cells and tissues in addition to the psychoactive Δ9-tetrahydrocannabinol, such as the non-psychoactive phytocannabinoid cannabidiol and inhibitors of endocannabinoid degradation. This review provides an up-to-date overview of the potential of cannabinoids as inhibitors of tumour growth and spread as demonstrated in preclinical studies.
Collapse
|
6
|
Ramer R, Wittig F, Hinz B. The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers (Basel) 2021; 13:cancers13225701. [PMID: 34830856 PMCID: PMC8616499 DOI: 10.3390/cancers13225701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research. Abstract Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons. Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects. In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread. This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.
Collapse
|
7
|
Orrego-González E, Londoño-Tobón L, Ardila-González J, Polania-Tovar D, Valencia-Cárdenas A, Velez-Van Meerbeke A. Cannabinoid Effects on Experimental Colorectal Cancer Models Reduce Aberrant Crypt Foci (ACF) and Tumor Volume: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2371527. [PMID: 32765628 PMCID: PMC7387981 DOI: 10.1155/2020/2371527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Colorectal cancer represents a heavy burden for health systems worldwide, being the third most common cancer worldwide. Despite the breakthroughs in medicine, current chemotherapeutic options continue to have important side effects and may not be effective in preventing disease progression. Cannabinoids might be substances with possible therapeutic potential for cancer because they can attenuate the side effects of chemotherapy and have antiproliferative and antimetastatic effects. We aim to determine, through a systematic review of experimental studies performed on animal CRC models, if cannabinoids can reduce the formation of preneoplastic lesions (aberrant crypt foci), number, and volume of neoplastic lesions. MATERIALS AND METHODS A systematic, qualitative review of the literature was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Embase, and Scopus databases were searched. We use the following Medical Subject Headings (MESH) terms in PubMed: "colorectal neoplasms," "colonic neoplasms," "colorectal cancer," "polyps," "rimonabant," "cannabidiol," "cannabinoids," "azoxymethane," "xenograft," and "mice." Only studies that met the eligibility criteria were included. RESULTS Eight in vivo experimental studies were included in the analysis after the full-text evaluation. Seven studies were azoxymethane (AOM) colorectal cancer models, and four studies were xenograft models. Cannabidiol botanical substance (CBD BS) and rimonabant achieved high aberrant crypt foci (ACF) reduction (86% and 75.4%, respectively). Cannabigerol, O-1602, and URB-602 demonstrated a high capacity for tumor volume reduction. Induction of apoptosis, interaction with cell survival, growth pathways, and angiogenesis inhibition were the mechanisms extracted from the studies that explain cannabinoids' actions on CRC. CONCLUSIONS Cannabinoids have incredible potential as antineoplastic agents as experimental models demonstrate that they can reduce tumor volume and ACF formation. It is crucial to conduct more experimental studies to understand the pharmacology of cannabinoids in CRC better.
Collapse
Affiliation(s)
- Eduardo Orrego-González
- Research Group, Neurosciences (NEUROS), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Luisa Londoño-Tobón
- Research Group, Neurosciences (NEUROS), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - José Ardila-González
- Research Group, Neurosciences (NEUROS), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Diego Polania-Tovar
- Research Group, Neurosciences (NEUROS), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | | | - Alberto Velez-Van Meerbeke
- Research Group, Neurosciences (NEUROS), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Hinz B, Ramer R. Anti-tumour actions of cannabinoids. Br J Pharmacol 2019; 176:1384-1394. [PMID: 30019449 PMCID: PMC6487602 DOI: 10.1111/bph.14426] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has emerged as an important target for the treatment of many diverse diseases. In addition to the well-established palliative effects of cannabinoids in cancer therapy, phytocannabinoids, synthetic cannabinoid compounds and inhibitors of endocannabinoid degradation have attracted attention as possible systemic anticancer drugs. Results emerging from preclinical studies suggest cannabinoids elicit effects at different levels of cancer progression, including inhibition of proliferation, neovascularization, invasion and chemoresistance, induction of apoptosis and autophagy as well as enhancement of tumour immune surveillance. Although the clinical use of cannabinoid receptor ligands is limited by their psychoactivity, non-psychoactive compounds, such as cannabidiol, have gained attention due to preclinically established anticancer properties and a favourable risk-to-benefit profile. Thus, cannabinoids may complement the currently used collection of chemotherapeutic agents, as a broadly diversified option for cancer treatment, while counteracting some of their severe side effects. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Burkhard Hinz
- Institute of Pharmacology and ToxicologyRostock University Medical CenterRostockGermany
| | - Robert Ramer
- Institute of Pharmacology and ToxicologyRostock University Medical CenterRostockGermany
| |
Collapse
|
9
|
Lüder E, Ramer R, Peters K, Hinz B. Decisive role of P42/44 mitogen-activated protein kinase in Δ 9-tetrahydrocannabinol-induced migration of human mesenchymal stem cells. Oncotarget 2017; 8:105984-105994. [PMID: 29285308 PMCID: PMC5739695 DOI: 10.18632/oncotarget.22517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/28/2017] [Indexed: 12/29/2022] Open
Abstract
In past years, medical interest in Δ9-tetrahydrocannabinol (THC), the major psychoactive ingredient of the Cannabis plant, has been renewed due to the elucidation of the endocannabinoid system and diverse other receptor targets involved in biological cannabinoid effects. The present study therefore investigates the impact of THC on the migration of mesenchymal stem cells (MSCs) which are known to be involved in various regenerative processes such as bone healing. Using Boyden chamber assays, THC was found to increase the migration of adipose-derived MSCs. Migration by THC was almost completely suppressed by the CB1 receptor antagonist AM-251 and to a lesser extent by the CB2 receptor antagonist AM-630. By contrast, the TRPV1 antagonist capsazepine as well as the G protein-coupled receptor 55 (GRP55) agonist O-1602 did not significantly interfere with the promigratory effect of THC. Furthermore, increased migration by THC was fully suppressed by PD98059, an inhibitor of p42/44 mitogen-activated protein kinase (MAPK) activation, and was accompanied by a time-dependent activation of this pathway accordingly. In line with the migration data, additional inhibitor experiments pointed towards a decisive role of the CB1 receptor in conferring THC-induced activation of p42/44 MAPK. Collectively, this study demonstrates THC to exert a promigratory effect on MSCs via a CB1 receptor-dependent activation of p42/44 MAPK phosphorylation. This pathway may be involved in regenerative effects of THC and could be a target of pharmacological intervention.
Collapse
Affiliation(s)
- Ellen Lüder
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.,Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
11
|
Keresztes A, Streicher JM. Synergistic interaction of the cannabinoid and death receptor systems - a potential target for future cancer therapies? FEBS Lett 2017; 591:3235-3251. [PMID: 28948607 DOI: 10.1002/1873-3468.12863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 01/16/2023]
Abstract
Cannabinoid receptors have been shown to interact with other receptors, including tumor necrosis factor receptor superfamily (TNFRS) members, to induce cancer cell death. When cannabinoids and death-inducing ligands (including TNF-related apoptosis-inducing ligand) are administered together, they have been shown to synergize and demonstrate enhanced antitumor activity in vitro. Certain cannabinoid ligands have been shown to sensitize cancer cells and synergistically interact with members of the TNFRS, thus suggesting that the combination of cannabinoids with death receptor (DR) ligands induces additive or synergistic tumor cell death. This review summarizes recent findings on the interaction of the cannabinoid and DR systems and suggests possible clinical co-application of cannabinoids and DR ligands in the treatment of various malignancies.
Collapse
Affiliation(s)
- Attila Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Dobovišek L, Hojnik M, Ferk P. Overlapping molecular pathways between cannabinoid receptors type 1 and 2 and estrogens/androgens on the periphery and their involvement in the pathogenesis of common diseases (Review). Int J Mol Med 2016; 38:1642-1651. [PMID: 27779654 DOI: 10.3892/ijmm.2016.2779] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/12/2016] [Indexed: 11/06/2022] Open
Abstract
The physiological and pathophysiological roles of sex hormones have been well documented and the modulation of their effects is applicable in many current treatments. On the other hand, the physiological role of endocannabinoids is not yet clearly understood and the endocannabinoid system is considered a relatively new therapeutic target. The physiological association between sex hormones and cannabinoids has been investigated in several studies; however, its involvement in the pathophysiology of common human diseases has been studied separately. Herein, we present the first systematic review of molecular pathways that are influenced by both the cannabinoids and sex hormones, including adenylate cyclase and protein kinase A, epidermal growth factor receptor, cyclic adenosine monophosphate response element-binding protein, vascular endothelial growth factor, proto-oncogene serine/threonine-protein kinase, mitogen-activated protein kinase, phosphatidylinositol-4,5-bisphosphate 3-kinase, C-Jun N-terminal kinase and extracellular-signal-regulated kinases 1/2. Most of these influence cell proliferative activity. Better insight into this association may prove to be beneficial for the development of novel pharmacological treatment strategies for many common diseases, including breast cancer, endometrial cancer, prostate cancer, osteoporosis and atherosclerosis. The associations between cannabinoids, estrogens and androgens under these conditions are also presented and the molecular interactions are highlighted.
Collapse
Affiliation(s)
- Luka Dobovišek
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Hojnik
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Polonca Ferk
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
13
|
Liu H, Xu XF, Zhao Y, Tang MC, Zhou YQ, Gao FH. NS-398 promotes pancreatic cancer cell invasion by CD147 and MMP-2 via the activation of P38. Mol Med Rep 2016; 13:2208-14. [PMID: 26782265 DOI: 10.3892/mmr.2016.4783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/29/2015] [Indexed: 11/05/2022] Open
Abstract
The overexpression or abnormal activation of cyclo‑oxygenase‑2 (COX‑2) has been reported in pancreatic cancer cells. NS‑398, a selective inhibitor of COX‑2, is unable to inhibit pancreatic cancer cell proliferation, as determined by a Cell Counting Kit 8 assay. However, it does increase cancer cell invasiveness, and therefore the invasiveness of the PANC‑1 cells was determined, along with the activation of P38, which was assessed by western blotting. In the present study, to evaluate the mechanisms underlying the action of NS‑398 in pancreatic cancer cells, PANC‑1 cells were treated with NS‑398, and the invasion signaling pathways of cluster of differentiation (CD)147‑matrix metalloproteinase (MMP)‑2 and mitogen‑activated protein kinases were evaluated. The results showed that NS‑398‑induced the expression of CD147 and MMP‑2 via the activation of P38, which was involved in antiproliferative activity and induced pancreatic cancer cell invasiveness. The PANC‑1 cells were also co‑treated with CD147 small interfering (si)RNA and NS‑398, and it was found that the NS‑398‑induced activation of P38 was not inhibited by CD147 siRNA, however, the expression of MMP‑2 was inhibited. CD147 siRNA inhibited the invasiveness of the pancreatic cancer cells induced by NS‑398, but also restored NS‑398‑induced antiproliferative activity. These data indicated that P38 in the pancreatic cancer cells was non‑specifically activated by NS‑398. This activation induced the expression of CD147‑MMP‑2, opposed the antiproliferative activity of NS‑398 and increased the invasiveness of the PANC‑1 cells.
Collapse
Affiliation(s)
- Hua Liu
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Xuan-Fu Xu
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Yan Zhao
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Mao-Chun Tang
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Ying-Qun Zhou
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
14
|
Esain V, Kwan W, Carroll KJ, Cortes M, Liu SY, Frechette GM, Sheward LMV, Nissim S, Goessling W, North TE. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity. Stem Cells 2015; 33:2596-612. [PMID: 25931248 DOI: 10.1002/stem.2044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 12/30/2022]
Abstract
Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized. Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development. During HSC specification in the aorta-gonad-mesonephros (AGM) region, CNR2 stimulation by AM1241 increased runx1;cmyb(+) HSPCs, through heightened proliferation, whereas CNR2 antagonism decreased HSPC number; FACS analysis and absolute HSC counts confirmed and quantified these effects. Epistatic investigations showed AM1241 significantly upregulated PGE2 synthesis in a Ptgs2-dependent manner to increase AGM HSCs. During the phases of HSC production and colonization of secondary niches, AM1241 accelerated migration to the caudal hematopoietic tissue (CHT), the site of embryonic HSC expansion, and the thymus; however these effects occurred independently of PGE2. Using a candidate approach for HSC migration and retention factors, P-selectin was identified as the functional target of CNR2 regulation. Epistatic analyses confirmed migration of HSCs into the CHT and thymus was dependent on CNR2-regulated P-selectin activity. Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways.
Collapse
Affiliation(s)
- Virginie Esain
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Wanda Kwan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kelli J Carroll
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sarah Y Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gregory M Frechette
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Lea M V Sheward
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sahar Nissim
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Caballero FJ, Soler-Torronteras R, Lara-Chica M, García V, Fiebich BL, Muñoz E, Calzado MA. AM404 inhibits NFAT and NF-κB signaling pathways and impairs migration and invasiveness of neuroblastoma cells. Eur J Pharmacol 2014; 746:221-32. [PMID: 25460026 DOI: 10.1016/j.ejphar.2014.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/03/2023]
Abstract
N-Arachidonoylphenolamine (AM404), a paracetamol lipid metabolite, is a modulator of the endocannabinoid system endowed with pleiotropic activities. AM404 is a dual agonist of the Transient Receptor Potential Vanilloid type 1 (TRPV1) and the Cannabinoid Receptor type 1 (CB₁) and inhibits anandamide (AEA) transport and degradation. In addition, it has been shown that AM404 also exerts biological activities through TRPV1- and CB₁ -independent pathways. In the present study we have investigated the effect of AM404 in the NFAT and NF-κB signaling pathways in SK-N-SH neuroblastoma cells. AM404 inhibited NFAT transcriptional activity through a CB₁- and TRPV1-independent mechanism. Moreover, AM404 inhibited both the expression of COX-2 at transcriptional and post-transcriptional levels and the synthesis of PGE₂. AM404 also inhibited NF-κB activation induced by PMA/Ionomycin in SK-N-SH cells by targeting IKKβ phosphorylation and activation. We found that Cot/Tlp-2 induced NFAT and COX-2 transcriptional activities were inhibited by AM404. NFAT inhibition paralleled with the ability of AM404 to inhibit MMP-1, -3 and -7 expression, cell migration and invasion in a cell-type specific dependent manner. Taken together, these data reveal that paracetamol, the precursor of AM404, can be explored not only as an antipyretic and painkiller drug but also as a co-adjuvant therapy in inflammatory and cancer diseases.
Collapse
Affiliation(s)
- Francisco J Caballero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Rafael Soler-Torronteras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Victor García
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Bernd L Fiebich
- Department of Psychiatry, University of Freiburg Medical School, Freiburg, Germany
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain.
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
16
|
Lin HY, Delmas D, Vang O, Hsieh TC, Lin S, Cheng GY, Chiang HL, Chen CE, Tang HY, Crawford DR, Whang-Peng J, Hwang J, Liu LF, Wu JM. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J Cell Biochem 2013; 114:1940-54. [PMID: 23495037 DOI: 10.1002/jcb.24539] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 02/28/2013] [Indexed: 01/15/2023]
Abstract
Ceramide is a member of the sphingolipid family of bioactive molecules demonstrated to have profound, diverse biological activities. Ceramide is a potential chemotherapeutic agent via the induction of apoptosis. Exposure to ceramide activates extracellular-signal-regulated kinases (ERK)1/2- and p38 kinase-dependent apoptosis in human ovarian cancer OVCAR-3 cells, concomitant with an increase in the expression of COX-2 and p53 phosphorylation. Blockade of cyclooxygenase-2 (COX-2) activity by siRNA or NS398 correspondingly inhibited ceramide-induced p53 Ser-15 phosphorylation and apoptosis; thus COX-2 appears at the apex of the p38 kinase-mediated signaling cascade induced by ceramide. Induction of apoptosis by ceramide or resveratrol was inhibited by the endocytosis inhibitor, cytochalasin D (CytD); however, cells exposed to resveratrol showed greater sensitivity than ceramide-treated cells. Ceramide-treated cells underwent a dose-dependent reduction in trans-membrane potential. Although both ceramide and resveratrol induced the expressions of caspase-3 and -7, the effect of inducible COX-2 was different in caspase-7 expression induced by ceramide compared to resveratrol. In summary, resveratrol and ceramide converge on an endocytosis-requiring, ERK1/2-dependent signal transduction pathway and induction of COX-expression as an essential molecular antecedent for subsequent p53-dependent apoptosis. In addition, expressions of caspase-3 and -7 are observed. However, a p38 kinase-dependent signal transduction pathway and change in mitochondrial potential are also involved in ceramide-induced apoptosis.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gustafsson SB, Wallenius A, Zackrisson H, Popova D, Plym Forshell L, Jacobsson SOP. Effects of cannabinoids and related fatty acids upon the viability of P19 embryonal carcinoma cells. Arch Toxicol 2013; 87:1939-1951. [PMID: 23552853 DOI: 10.1007/s00204-013-1051-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/26/2013] [Indexed: 01/18/2023]
Abstract
Compounds acting on the cannabinoid (CB) receptors are involved in the control of cell fate, and there is an emerging consensus that CBs have anticancer effects. However, the CB-mediated effects are contradictory since some studies suggest stimulatory effects on cancer cell proliferation, and CBs have been shown to stimulate both proliferation and differentiation of other mitotic cells such as stem and progenitor cells. In this study, the concentration-dependent effects of synthetic and endogenous CBs on the viability of mouse P19 embryonal carcinoma (EC) cells have been examined by using fluorescence assays of cell membrane integrity, cell proliferation, oxidative stress, and detection of apoptosis and necrosis. All compounds examined produced a concentration-dependent decrease in cell viability in the micromolar range, with the potent CB receptor agonist HU 210 and the enantiomer HU 211 (with no CB receptor activity) being the most potent compounds examined with apparent IC50 values of 1 and 0.6 μM, respectively. The endogenous CB anandamide showed similar potency and efficacy as structurally related polyunsaturated fatty acids with no reported activity at the CB receptors. The rapid (within hours) decrease in cell viability induced by the examined CBs suggests cytocidal rather than antiproliferative effects and is dependent on the plating cell population density with the highest toxicity around 100 cells/mm(2). The CB-induced cytotoxicity, which appears to involve CB receptors and the sphingomyelin-ceramide pathway, is a mixture of both apoptosis and necrosis that can be blocked by the antioxidants α-tocopherol and N-acetylcysteine. In conclusion, both synthetic and endogenous CBs produce seemingly unspecific cytotoxic effects in the P19 EC cells.
Collapse
Affiliation(s)
- Sofia B Gustafsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Anders Wallenius
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Hanna Zackrisson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Dina Popova
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Linus Plym Forshell
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Stig O P Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
18
|
Schiffmann S, Ziebell S, Sandner J, Birod K, Deckmann K, Hartmann D, Rode S, Schmidt H, Angioni C, Geisslinger G, Grösch S. Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochem Pharmacol 2010; 80:1632-40. [DOI: 10.1016/j.bcp.2010.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
19
|
Brain CB₂ Receptors: Implications for Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2010; 3:2517-2553. [PMID: 27713365 PMCID: PMC4033937 DOI: 10.3390/ph3082517] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 12/26/2022] Open
Abstract
Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.
Collapse
|
20
|
Howlett AC, Blume LC, Dalton GD. CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem 2010; 17:1382-93. [PMID: 20166926 DOI: 10.2174/092986710790980023] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/18/2010] [Indexed: 12/22/2022]
Abstract
CB1 receptors are G-protein coupled receptors (GPCRs) abundant in neurons, in which they modulate neurotransmission. The CB(1) receptor influence on memory and learning is well recognized, and disease states associated with CB(1) receptors are observed in addiction disorders, motor dysfunction, schizophrenia, and in bipolar, depression, and anxiety disorders. Beyond the brain, CB(1) receptors also function in liver and adipose tissues, vascular as well as cardiac tissue, reproductive tissues and bone. Signal transduction by CB(1) receptors occurs through interaction with Gi/o proteins to inhibit adenylyl cyclase, activate mitogen-activated protein kinases (MAPK), inhibit voltage-gated Ca(2+) channels, activate K(+) currents (K(ir)), and influence Nitric Oxide (NO) signaling. CB(1) receptors are observed in internal organelles as well as plasma membrane. beta-Arrestins, adaptor protein AP-3, and G-protein receptor-associated sorting protein 1 (GASP1) modulate cellular trafficking. Cannabinoid Receptor Interacting Protein1a (CRIP1a) is an accessory protein whose function has not been delineated. Factor Associated with Neutral sphingomyelinase (FAN) regulates ceramide signaling. Such diversity in cellular signaling and modulation by interacting proteins suggests that agonists and allosteric modulators could be developed to specifically regulate unique, cell type-specific responses.
Collapse
Affiliation(s)
- Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
21
|
Ramer R, Hinz B. Cyclooxygenase-2 and tissue inhibitor of matrix metalloproteinases-1 confer the antimigratory effect of cannabinoids on human trabecular meshwork cells. Biochem Pharmacol 2010; 80:846-57. [PMID: 20488167 DOI: 10.1016/j.bcp.2010.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 11/17/2022]
Abstract
Cannabinoids have received considerable attention as potential antiglaucomatous drugs. Recently, prostaglandins (PG) have been suggested to contribute to this effect. Within the factors conferring the development of glaucoma, depletion of the aqueous humor outflow-regulating trabecular meshwork (TM) cells elicited by migration from the outflow system is considered to play a pivotal role. This study therefore investigates the impact of two cannabinoids, Delta(9)-tetrahydrocannabinol (THC) and R(+)-methanandamide (MA), on the migration of human TM cells and the involvement of the PG-synthesizing enzyme cyclooxygenase-2 (COX-2) and one of its potential downstream targets, the tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), to this response. Using Boyden chamber assays cannabinoids were shown to elicit an antimigratory effect that was reversed by antagonists for CB(1) as well as CB(2) receptors and accompanied by upregulation of COX-2 and TIMP-1 expression and PGE(2) synthesis. Knockdown of cannabinoid-induced COX-2 or TIMP-1 expression by siRNA or inhibition of COX-2 activity by NS-398 led to a significant suppression of this antimigratory action. Migration was also diminished by the major COX-2 product PGE(2) and by recombinant TIMP-1. Experiments using selective E prostanoid (EP) receptor agonists and antagonists revealed that decreased migration by PGE(2), THC and MA was mediated via EP(2) and EP(4) receptors. Finally, the cannabinoid-mediated increases of TIMP-1 levels were abolished by NS-398, and PGE(2) was shown to elicit a concentration-dependent increase of TIMP-1. Collectively, this data demonstrate a COX-2-dependent upregulation of TIMP-1 conferring the antimigratory action of cannabinoids. A decreased migration reducing TM cell loss in glaucoma might be involved in the antiglaucomatous action of cannabinoids.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | | |
Collapse
|
22
|
Mattila S, Tuominen H, Koivukangas J, Stenbäck F. The terminal prostaglandin synthases mPGES-1, mPGES-2, and cPGES are all overexpressed in human gliomas. Neuropathology 2009; 29:156-65. [DOI: 10.1111/j.1440-1789.2008.00963.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Eichele K, Ramer R, Hinz B. R(+)-methanandamide-induced apoptosis of human cervical carcinoma cells involves a cyclooxygenase-2-dependent pathway. Pharm Res 2008; 26:346-55. [PMID: 19015962 DOI: 10.1007/s11095-008-9748-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/06/2008] [Indexed: 01/21/2023]
Abstract
PURPOSE Cannabinoids have received renewed interest due to their antitumorigenic effects. Using human cervical carcinoma cells (HeLa), this study investigates the role of cyclooxygenase-2 (COX-2) in apoptosis elicited by the endocannabinoid analog R(+)-methanandamide (MA). METHODS COX-2 expression was assessed by RT-PCR and Western blotting. PGE2/PGD2 levels in cell culture supernatants and DNA fragmentation were measured by ELISA. RESULTS MA led to an induction of COX-2 expression, PGD2 and PGE2 synthesis. Cells were significantly less sensitive to MA-induced apoptosis when COX-2 was suppressed by siRNA or the selective COX-2 inhibitor NS-398. COX-2 expression and apoptosis by MA was also prevented by the ceramide synthase inhibitor fumonisin B1, but not by antagonists to cannabinoid receptors and TRPV1. In line with the established role of peroxisome proliferator-activated receptor gamma (PPARgamma) in the proapoptotic action of PGs of the D and J series, inhibition of MA-induced apoptosis was also achieved by siRNA targeting lipocalin-type PGD synthase (L-PGDS) or PPARgamma. A role of COX-2 and PPARgamma in MA-induced apoptosis was confirmed in another human cervical cancer cell line (C33A) and in human lung carcinoma cells (A549). CONCLUSION This study demonstrates COX-2 induction and synthesis of L-PGDS-derived, PPARgamma-activating PGs as a possible mechanism of apoptosis by MA.
Collapse
Affiliation(s)
- Karin Eichele
- Institute for Toxicology and Pharmacology, University of Rostock, Schillingallee 70, D-18057, Rostock, Germany
| | | | | |
Collapse
|
24
|
Kim SR, Bok E, Chung YC, Chung ES, Jin BK. Interactions between CB(1) receptors and TRPV1 channels mediated by 12-HPETE are cytotoxic to mesencephalic dopaminergic neurons. Br J Pharmacol 2008; 155:253-64. [PMID: 18552868 PMCID: PMC2538702 DOI: 10.1038/bjp.2008.246] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/18/2008] [Accepted: 03/28/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSES We recently proposed the existence of neurotoxic interactions between the cannabinoid type 1 (CB(1)) receptor and transient receptor potential vanilloid 1 (TRPV1) channels in rat mesencephalic cultures. This study seeks evidence for the mediator(s) and mechanisms underlying the neurotoxic interactions between CB(1) receptors and TRPV1 in vitro and in vivo. EXPERIMENTAL APPROACH The mediator(s) and mechanism(s) for the interactions between CB(1) receptors and TRPV1 were evaluated by cell viability assays, immunocytochemistry, Fura-2 calcium imaging, mitochondrial morphology assay, ELISA and Western blot assay in vitro in neuron-enriched mesencephalic cultures. Injections into the substantia nigra and subsequent cell counts were also used to confirm these interactions in vivo. KEY RESULTS The neurotoxic interactions were mediated by 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), an endogenous TRPV1 agonist. CB(1) receptor agonists (HU210 and WIN55,212-2) increased the level of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a downstream metabolite of 12(S)-HPETE, which stimulates TRPV1-mediated death of mesencephalic neurons, both in vitro and in vivo. The neurotoxicity was mediated by increased intracellular Ca(2+) concentration ([Ca(2+)](i)) through TRPV1, consequently leading to mitochondrial damage and was attenuated by baicalein, a 12-lipoxygenase inhibitor. CONCLUSION AND IMPLICATIONS Activation of CB(1) receptors in rat mesencephalic neurons was associated with biosynthesis of 12(S)-HPETE, which in turn stimulated TRPV1 activity, leading to increased [Ca(2+)](i), mitochondrial damage and neuronal death.
Collapse
Affiliation(s)
- S R Kim
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
| | - E Bok
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| | - Y C Chung
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| | - E S Chung
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| | - B K Jin
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| |
Collapse
|
25
|
Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. Cancer Chemother Pharmacol 2008; 63:691-701. [PMID: 18629502 DOI: 10.1007/s00280-008-0788-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Cannabinoids (CBs) have been found to exert antiproliferative effects upon a variety of cancer cells, including colorectal carcinoma cells. However, little is known about the signalling mechanisms behind the antitumoural effect in these cells, whether the effects are shared by endogenous lipids related to endocannabinoids, or whether such effects are synergistic with treatment paradigms currently used in the clinic. The aim of this preclinical study was to investigate the effect of synthetic and endogenous CBs and their related fatty acids on the viability of human colorectal carcinoma Caco-2 cells, and to determine whether CB effects are synergistic with those seen with the pyrimidine antagonist 5-fluorouracil (5-FU). The synthetic CB HU 210, the endogenous CB anandamide, the endogenous structural analogue of anandamide, N-arachidonoyl glycine (NAGly), as well as the related polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid showed antiproliferative and cytotoxic effects in the Caco-2 cells, as measured by using [(3)H]-thymidine incorporation assay, the CyQUANT proliferation assay and calcein-AM fluorescence. HU 210 was the most potent compound examined, followed by anandamide, whereas NAGly showed equal potency and efficacy as the polyunsaturated fatty acids. Furthermore, HU 210 and 5-FU produced synergistic effects in the Caco-2 cells, but not in the human colorectal carcinoma cell lines HCT116 or HT29. The compounds examined produced cytotoxic, rather than antiproliferative effects, by a mechanism not involving CB receptors, since the CB receptor antagonists AM251 and AM630 did not attenuate the effects, nor did pertussis toxin. However, alpha-tocopherol and the nitric oxide synthase inhibitor L-NAME attenuated the CB toxicity, suggesting involvement of oxidative stress. It is concluded that the CB system may provide new targets for the development of drugs to treat colorectal cancer.
Collapse
|
26
|
Wu D, Meydani SN. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol 2008; 84:900-14. [PMID: 18596135 DOI: 10.1189/jlb.0108023] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with dysregulated immune and inflammatory responses. Declining T cell function is the most significant and best-characterized feature of immunosenescence. Intrinsic changes within T cells and extrinsic factors contribute to the age-associated decline in T cell function. T cell defect seen in aging involves multiple stages from early receptor activation events to clonal expansion. Among extrinsic factors, increased production of T cell-suppressive factor PGE(2) by macrophages (Mphi) is most recognized. Vitamin E reverses an age-associated defect in T cells, particularly naïve T cells. This effect of vitamin E is also reflected in a reduced rate of upper respiratory tract infection in the elderly and enhanced clearance of influenza infection in a rodent model. The T cell-enhancing effect of vitamin E is accomplished via its direct effect on T cells and indirectly by inhibiting PGE(2) production in Mphi. Up-regulated inflammation with aging has attracted increasing attention as a result of its implications in the pathogenesis of diseases. Increased PGE(2) production in old Mphi is a result of increased cyclooxygenase 2 (COX-2) expression, leading to higher COX enzyme activity, which in turn, is associated with the ceramide-induced up-regulation of NF-kappaB. Similar to Mphi, adipocytes from old mice have a higher expression of COX-2 as well as inflammatory cytokines IL-1beta, IL-6, and TNF-alpha, which might also be related to elevated levels of ceramide and NF-kappaB activation. This review will discuss the above age-related immune and inflammatory changes and the effect of vitamin E as nutritional intervention with a focus on the work conducted in our laboratory.
Collapse
Affiliation(s)
- Dayong Wu
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | | |
Collapse
|
27
|
Ramer R, Hinz B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst 2007; 100:59-69. [PMID: 18159069 DOI: 10.1093/jnci/djm268] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion. METHODS Matrigel-coated and uncoated Boyden chambers were used to quantify invasiveness and migration, respectively, of human cervical cancer (HeLa) cells that had been treated with cannabinoids (the stable anandamide analog R(+)-methanandamide [MA] and the phytocannabinoid delta9-tetrahydrocannabinol [THC]) in the presence or absence of antagonists of the CB1 or CB2 cannabinoid receptors or of transient receptor potential vanilloid 1 (TRPV1) or inhibitors of p38 or p42/44 mitogen-activated protein kinase (MAPK) pathways. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting were used to assess the influence of cannabinoids on the expression of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs). The role of TIMP-1 in the anti-invasive action of cannabinoids was analyzed by transfecting HeLa, human cervical carcinoma (C33A), or human lung carcinoma cells (A549) cells with siRNA targeting TIMP-1. All statistical tests were two-sided. RESULTS Without modifying migration, MA and THC caused a time- and concentration-dependent suppression of HeLa cell invasion through Matrigel that was accompanied by increased expression of TIMP-1. At the lowest concentrations tested, MA (0.1 microM) and THC (0.01 microM) led to a decrease in invasion (normalized to that observed with vehicle-treated cells) of 61.5% (95% CI = 38.7% to 84.3%, P < .001) and 68.1% (95% CI = 31.5% to 104.8%, P = .0039), respectively. The stimulation of TIMP-1 expression and suppression of cell invasion were reversed by pretreatment of cells with antagonists to CB1 or CB2 receptors, with inhibitors of MAPKs, or, in the case of MA, with an antagonist to TRPV1. Knockdown of cannabinoid-induced TIMP-1 expression by siRNA led to a reversal of the cannabinoid-elicited decrease in tumor cell invasiveness in HeLa, A549, and C33A cells. CONCLUSION Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, Rostock D-18057, Germany
| | | |
Collapse
|
28
|
The endocannabinoid system in cancer-potential therapeutic target? Semin Cancer Biol 2007; 18:176-89. [PMID: 18249558 DOI: 10.1016/j.semcancer.2007.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/05/2007] [Indexed: 01/13/2023]
Abstract
Endogenous arachidonic acid metabolites with properties similar to compounds of Cannabis sativa Linnaeus, the so-called endocannabinoids, have effects on various types of cancer. Although endocannabinoids and synthetic cannabinoids may have pro-proliferative effects, predominantly inhibitory effects on tumor growth, angiogenesis, migration and metastasis have been described. Remarkably, these effects may be selective for the cancer cells, while normal cells and tissues are spared. Such apparent tumor cell selectivity makes the endocannabinoid system an attractive potential target for cancer therapy. In this review we discuss various means by which the endocannabinoid system may be targeted in cancer and the current knowledge considering the regulation of the endocannabinoid system in malignancy.
Collapse
|
29
|
Decisive role of cyclooxygenase-2 and lipocalin-type prostaglandin D synthase in chemotherapeutics-induced apoptosis of human cervical carcinoma cells. Oncogene 2007; 27:3032-44. [PMID: 18071320 DOI: 10.1038/sj.onc.1210962] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of cyclooxygenase-2 (COX-2) in cancer remains controversial. Using cervical carcinoma cells (HeLa), the present study investigates the involvement of COX-2 in apoptosis elicited by the chemotherapeutics paclitaxel, cisplatin and 5-fluorouracil. Each compound led to a profound induction of COX-2 expression and prostaglandin (PG) synthesis, accompanied by a substantial decrease of viability and enhanced apoptosis. Cells were significantly less sensitive to apoptotic death when either COX-2 expression or its activity was suppressed by small-interfering RNA (siRNA) and by the selective COX-2 inhibitor NS-398, respectively. Experiments performed to clarify how COX-2 leads to apoptosis revealed a profound proapoptotic action of PGD2 and its dehydration product, 15-deoxy-Delta(12,14) PGJ2 (15d-PGJ2). In line with these findings, chemotherapeutics-induced apoptosis was prevented by siRNA targeting lipocalin-type PGD synthase (L-PGDS), which catalyses the isomerization of PGH(2) to PGD2. Moreover, apoptosis by chemotherapeutics, PGD2 and 15d-PGJ2 was suppressed by the peroxisome proliferator-activated receptor gamma (PPARgamma) antagonist, GW-9662 or PPARgamma siRNA. Finally, a COX-2-dependent apoptotic mechanism of all investigated chemotherapeutics was confirmed in human lung cancer cells (A549) as well as in another cervical carcinoma cell line (C33A). Collectively, this study suggests COX-2 induction and synthesis of L-PGDS-derived, PPARgamma-activating PGs as a decisive target by which several chemotherapeutics induce apoptosis. COX-2 is therefore suspected to sensitize cancer cells to apoptotic death under certain circumstances, suggesting that COX-2 inhibition during cancer therapy could diminish its efficacy.
Collapse
|
30
|
Abstract
BACKGROUND High-grade glioma remains one of the most difficult cancers to treat. Recent studies in oncology have identified a role of the ubiquitous enzyme, cyclooxygenase (Cox), especially cyclooxygenase-2 (COX-2) in cell proliferation, and its inhibition in cancer control, apoptosis, as well as synergy with other forms of therapy. The inhibitors of the Cox enzyme are well known as members of the nonsteroidal anti-inflammatory drug (NSAID) class of pharmaceuticals. METHODS In vitro and in vivo studies of different cancers expressing COX-2, including glioma studies, along with the few clinical trials that have been reported are reviewed to specifically identify the actions of these agents. RESULTS The anticancer effect of the COX-2 inhibitors may occur irrelevant of COX-2 expression, and it appears to be drug-specific, as well as dose-specific in different cancers. In combination with chemotherapeutic agents, the COX-2 inhibitors may have an additive, synergistic, or inhibitory effect on tumor growth. CONCLUSIONS As evaluations of this class of drugs begin in glioma, in vitro and in vivo data should be acquired to accurately predict which compounds will have an effect in controlling tumor growth and at which doses these should be used. The actual expression and inhibition of COX-2 may not always be relevant to the effects on tumor growth.
Collapse
Affiliation(s)
- Pamela New
- Department of Neurosurgery/Neuro-oncology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Hinz B, Woelkart K, Bauer R. Alkamides from Echinacea inhibit cyclooxygenase-2 activity in human neuroglioma cells. Biochem Biophys Res Commun 2007; 360:441-6. [PMID: 17599805 DOI: 10.1016/j.bbrc.2007.06.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/14/2007] [Indexed: 11/20/2022]
Abstract
During past years inhibition of the cyclooxygenase-2 (COX-2) enzyme has been proven as an effective strategy to suppress pain and inflammation. Based on this and other mechanistic findings, interest has also renewed in the molecular pathways underlying the anti-inflammatory effects of herbal drugs. The present study addressed this issue and investigated the impact of several polyunsaturated alkamides isolated from a CO2 extract of the roots of Echinacea angustifolia DC. on both activity and expression of COX-2. A 48-h treatment of H4 human neuroglioma cells with the CO2 extract led to a significant suppression of prostaglandin (PG) E2 formation. Analysis of eight different alkamides revealed a contribution of undeca-2Z-ene-8,10-diynoic acid isobutylamide (A5), dodeca-2E-ene-8,10-diynoic acid isobutylamide (A7), and dodeca-2E,4Z-diene-8,10-diynoic acid 2-methylbutylamide (A8) to this response. Using an established short-term COX-2 activity assay, all three alkamides were shown to interfere with COX-2 activity. In contrast, none of the COX-2-suppressing nor any other tested alkamide was found to inhibit COX-2 mRNA and protein expression. Instead, increased COX-2 mRNA and protein levels were registered in the presence of the CO2 extract and most of the analyzed alkamides which caused, however, no stimulation of PG formation. Overall, our results suggest that certain alkamides derived from E. angustifolia roots may contribute to the pharmacological action of the herbal extract by inhibiting COX-2-dependent PGE2 formation at sites of inflammation.
Collapse
Affiliation(s)
- Burkhard Hinz
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock, Germany.
| | | | | |
Collapse
|
32
|
Hinz B, Brune K. Antipyretic analgesics: nonsteroidal antiinflammatory drugs, selective COX-2 inhibitors, paracetamol and pyrazolinones. Handb Exp Pharmacol 2007:65-93. [PMID: 17087120 DOI: 10.1007/978-3-540-33823-9_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antipyretic analgesics are a group of heterogeneous substances including acidic (nonsteroidal antiinflammatory drugs, NSAIDs) and nonacidic (paracetamol, pyrazolinones) drugs. Moreover, various selective cyclooxygenase-2 (COX-2) inhibitors with improved gastrointestinal tolerability as compared with conventional NSAIDs have been established for symptomatic pain treatment in recent years. The present review summarizes the pharmacology of all of these drugs with particular emphasis on their rational use based on the diverse pharmacokinetic characteristics and adverse drug reaction profiles. Referring to the current debate, potential mechanisms underlying cardiovascular side effects associated with long-term use of COX inhibitors are discussed.
Collapse
Affiliation(s)
- B Hinz
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | | |
Collapse
|
33
|
Bifulco M, Laezza C, Pisanti S, Gazzerro P. Cannabinoids and cancer: pros and cons of an antitumour strategy. Br J Pharmacol 2006; 148:123-35. [PMID: 16501583 PMCID: PMC1617062 DOI: 10.1038/sj.bjp.0706632] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the last two decades, research has dramatically increased the knowledge of cannabinoids biology and pharmacology. In mammals, compounds with properties similar to active components of Cannabis sativa, the so called 'endocannabinoids', have been shown to modulate key cell-signalling pathways involved in cancer cell growth, invasion and metastasis. To date, cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increased evidences showed direct antiproliferative actions of cannabinoid agonists on several tumour cells in vitro and in animal models. In this article, we will review the principal molecular pathways modulated by cannabinoids on cancer and summarize pros and cons evidence on the possible future use of endocannabinoid-based drugs in cancer therapy.
Collapse
Affiliation(s)
- Maurizio Bifulco
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, Fisciano 84084, Salerno, Italy.
| | | | | | | |
Collapse
|
34
|
Eichele K, Weinzierl U, Ramer R, Brune K, Hinz B. R(+)-Methanandamide Elicits a Cyclooxygenase-2-Dependent Mitochondrial Apoptosis Signaling Pathway in Human Neuroglioma Cells. Pharm Res 2006; 23:90-4. [PMID: 16267630 DOI: 10.1007/s11095-005-8815-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Cannabinoids have been associated with tumor regression and apoptosis of cancer cells. Recently, we have shown that R(+)-methanandamide (R(+)-MA) induces apoptosis of H4 human neuroglioma cells via a mechanism involving de novo expression of the cyclooxygenase-2 (COX-2) enzyme. The present study investigated a possible involvement of a mitochondrial-driven pathway in this process. METHODS Cell death was determined by the WST-1 cell viability test, and changes in apoptotic parameters [i.e., release of mitochondrial cytochrome c, activation of caspases, cleavage of poly(ADP-ribose) polymerase (PARP)] were detected by Western blotting. RESULTS H4 cells treated with R(+)-MA showed typical signs of mitochondrial apoptosis, i.e., release of mitochondrial cytochrome c into the cytosol and activation of initiator caspase-9. Moreover, activation of the executor caspase-3 was observed following cannabinoid treatment. Cells were fully protected from apoptotic cell death by the caspase-3 inhibitor Ac-DEVD-CHO, indicating a crucial role for caspase-3 activation in R(+)-MA-elicited apoptosis. Furthermore, cleavage of the caspase-3 target protein PARP was registered. All of the aforementioned effects were substantially reduced by the selective COX-2 inhibitor celecoxib (1 muM) at a pharmacologically relevant, nonapoptotic concentration. CONCLUSION R(+)-MA-induced apoptosis is mediated via a mitochondrial-dependent pathway that becomes activated, at least in part, through up-regulation of the COX-2 enzyme.
Collapse
Affiliation(s)
- Karin Eichele
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, D-91054, Erlangen, Germany
| | | | | | | | | |
Collapse
|
35
|
Gustafsson K, Christensson B, Sander B, Flygare J. Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol Pharmacol 2006; 70:1612-20. [PMID: 16936228 DOI: 10.1124/mol.106.025981] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently shown that cannabinoids induce growth inhibition and apoptosis in mantle cell lymphoma (MCL), a malignant B-cell lymphoma that expresses high levels of cannabinoid receptor types 1 and 2 (CB(1) and CB(2)). In the current study, the role of each receptor and the signal transduction triggered by receptor ligation were investigated. Induction of apoptosis after treatment with the synthetic agonists R(+)-methanandamide [R(+)-MA] and Win55,212-2 (Win55; (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone) was dependent on both cannabinoid receptors, because pretreatment with N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716A) and N-((1S)-endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) (SR144528), specific antagonists to CB(1) and CB(2), respectively, abrogated caspase-3 activity. Preincubation with the inhibitors 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) and 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole (SB202190) showed that phosphorylation of MAPK p38 was implicated in the signal transduction leading to apoptosis. Treatment with R(+)-MA and Win55 was associated with accumulation of ceramide, and pharmacological inhibition of ceramide synthesis de novo prevented both p38 activation and mitochondria depolarization assessed by binding of 3,3'-dihexyloxacarbocyanine iodide (DiOC(6)). In contrast, the pancaspase inhibitor z-Val-Ala-Asp(Ome)-CH(2)F (z-VAD-FMK) did not protect the mitochondrial integrity. Taken together, these results suggest that concurrent ligation of CB(1) and CB(2) with either R(+)-MA or Win55 induces apoptosis via a sequence of events in MCL cells: accumulation of ceramide, phosphorylation of p38, depolarization of the mitochondrial membrane, and caspase activation. Although induction of apoptosis was observed in both MCL cell lines and primary MCL, normal B cells remained unaffected. The present data suggest that targeting CB(1)/CB(2) may have therapeutic potential for the treatment of mantle cell lymphoma.
Collapse
Affiliation(s)
- Kristin Gustafsson
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital Huddinge, F-46, SE-14186 Stockholm, Sweden
| | | | | | | |
Collapse
|
36
|
Tang HY, Shih A, Cao HJ, Davis FB, Davis PJ, Lin HY. Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther 2006; 5:2034-42. [PMID: 16928824 DOI: 10.1158/1535-7163.mct-06-0216] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase-2 (COX-2) is antiapoptotic and is implicated in tumorigenesis. Recent reports, however, have also ascribed a proapoptotic action to inducible COX-2. We show here for the first time that a stilbene, resveratrol, induces nuclear accumulation of COX-2 protein in human breast cancer MCF-7 and MDA-MB-231 cell cultures. The induction of COX-2 accumulation by resveratrol is mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2)- and activator protein 1- dependent. Nuclear COX-2 in resveratrol-treated cells colocalizes with Ser(15)-phosphorylated p53 and with p300, a coactivator for p53-dependent gene expression. The interaction of COX-2, p53, and p300, as well as resveratrol-induced apoptosis, was inhibited by a MAPK activation inhibitor, PD98059. A specific inhibitor of COX-2, NS398, and small interfering RNA knockdown of COX-2 were associated with reduced p53 phosphorylation and consequent decrease in p53-dependent apoptosis in resveratrol-treated cells. We conclude that nuclear accumulation of COX-2 can be induced by resveratrol and that the COX has a novel intranuclear colocalization with Ser(15)-phosphorylated p53 and p300, which facilitates apoptosis in resveratrol-treated breast cancer cells.
Collapse
Affiliation(s)
- Heng-Yuan Tang
- Research Service, Stratton Veterns Affairs Medical Center, New York State Department of Health, Albany, New York, USA
| | | | | | | | | | | |
Collapse
|
37
|
Mestre L, Correa F, Docagne F, Clemente D, Guaza C. The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler's virus infection. Biochem Pharmacol 2006; 72:869-80. [PMID: 16914119 DOI: 10.1016/j.bcp.2006.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/22/2006] [Accepted: 06/26/2006] [Indexed: 11/17/2022]
Abstract
Brain endothelial cells infection represents one of the first events in the pathogenesis of TMEV-induced demyelination disease (TMEV-IDD), a model of multiple sclerosis (MS). The fact that cyclooxygenase-2 (COX-2) expression in brain endothelium mediates a wide variety of actions during CNS inflammatory diseases such as MS, and that cannabinoids ameliorate the progression of TMEV-IDD, lead us to investigate the role of cannabinoids on COX-2 expression on murine brain endothelial cell cultures subjected or not to TMEV infection. Murine brain endothelial cells (b.end5) express both cannabinoid receptors CB1 and CB2. However, treatment of b.end5 with the cannabinoid agonist WIN 55,212-2 resulted in up-regulation COX-2 protein and PGE2 release by a mechanism independent on activation of these receptors. Other cannabinoids such as 2-arachidonoyl glycerol (2-AG) or the abnormal cannabidiol (Abn-CBD) failed to affect COX-2 in our conditions. TMEV infection of murine brain endothelial cell cultures induced a significant increase of COX-2 expression at 8h, which was maintained even increased, at 20 and 32h post-infection. The combination of TMEV infection and Win 55,212-2 treatment increased COX-2 expression to a greater amount than was seen with either treatment alone. 2-AG and Abn-CBD did not modify COX-2 expression after TMEV. COX-2 synthesis involved different signaling pathways when was induced by WIN 55,212-2 and/or by TMEV infection. WIN 55,212-2-induced COX-2 up-regulation involves the PI(3)K pathway, whereas COX-2 induction by TMEV needs p38 MAPK activation too. Overexpression of COX-2 and the subsequent increase of PGE2 could be affecting flow blood and/or immune reactivity.
Collapse
Affiliation(s)
- Leyre Mestre
- Neuroimmunology Group, Neural Plasticity Department, Cajal Institute, CSIC, Avda. Dr. Arce 37, 28002 Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006; 38:1654-61. [PMID: 16713323 DOI: 10.1016/j.biocel.2006.03.021] [Citation(s) in RCA: 404] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/21/2006] [Accepted: 03/31/2006] [Indexed: 01/22/2023]
Abstract
Cyclooxygenease-2 (COX-2) is the key enzyme regulating the production of prostaglandins, central mediators of inflammation. The expression of cyclooxygenease-2 is induced by several extra cellular signals including pro-inflammatory and growth-promoting stimuli. All signals converge to the activation of mitogen-activated protein kinases (MAPK) that regulate cyclooxygenease-2 mRNA levels both at the transcriptional and post-transcriptional level. The machinery appears to be highly specialized involving activation of distinct signalling molecules depending on the type of extracellular stimulus. Expression of cyclooxygenease-2 mRNA is regulated by several transcription factors including the cyclic-AMP response element binding protein (CREB), nuclear factor kappa B (NFkB) and the CCAAT-enhancer binding protein (C/EBP). Cyclooxygenease-2 is also affected post-transcriptionaly, at the level of mRNA stability. Finally, cyclooxygenease-2 can be affected directly at its enzymatic activity by nitric oxide and nitric oxide synthase (iNOS). Each step of cyclooxygenease-2 regulation can be used as potential therapeutic target.
Collapse
Affiliation(s)
- Christos Tsatsanis
- Department of Clinical Chemistry-Biochemistry, School of Medicine, University of Crete, Heraklion, Crete GR-710 03, Greece.
| | | | | | | |
Collapse
|
39
|
Rösch S, Ramer R, Brune K, Hinz B. R(+)-methanandamide and other cannabinoids induce the expression of cyclooxygenase-2 and matrix metalloproteinases in human nonpigmented ciliary epithelial cells. J Pharmacol Exp Ther 2006; 316:1219-28. [PMID: 16330497 DOI: 10.1124/jpet.105.092858] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandins (PGs) and matrix metalloproteinases (MMP) have been implicated in lowering intraocular pressure (IOP) by facilitating aqueous humor outflow. A possible role of cyclooxygenase-2 (COX-2) in this process was emphasized by findings showing an impaired COX-2 expression in the nonpigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. Using human NPE cells, the present study therefore investigated the effect of the IOP-lowering cannabinoid R(+)-methanandamide [R(+)-MA] on the expression of COX-2 and different MMPs and tissue inhibitors of MMPs (TIMPs). R(+)-MA led to a concentration- and time-dependent increase of COX-2 mRNA expression. R(+)-MA-induced COX-2 expression was accompanied by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK and was abrogated by inhibitors of both pathways. Moreover, R(+)-MA increased the mRNA and protein expression of MMP-1, MMP-3, MMP-9, and TIMP-1 but not that of MMP-2 and TIMP-2. Inhibition of COX-2 activity with NS-398 [N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide] was associated with a virtually complete suppression of R(+)-MA-induced MMP-9 and TIMP-1 expression. Consistent with these data, MMP-9 and TIMP-1 expression was also induced by PGE2, a major COX-2 product. Two other COX-2-inducing cannabinoids, anandamide and Delta9-tetrahydrocannabinol, caused the same pattern of MMP and TIMP expression as R(+)-MA both in the absence and presence of NS-398. Altogether, cannabinoids induce the production of several outflow-facilitating mediators in the human NPE. Our results further imply an involvement of COX-2-dependent PGs in MMP-9 and TIMP-1 expression. In conclusion, stimulation of intraocular COX-2 and MMP expression may represent a potential mechanism contributing to the IOP-lowering action of different cannabinoids.
Collapse
Affiliation(s)
- Susanne Rösch
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
40
|
Wascholowski V, Giannis A. Sphingolactones: Selective and Irreversible Inhibitors of Neutral Sphingomyelinase. Angew Chem Int Ed Engl 2006; 45:827-30. [PMID: 16365835 DOI: 10.1002/anie.200501983] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veit Wascholowski
- University of Leipzig, Institute of Organic Chemistry, 04103 Leipzig, Germany
| | | |
Collapse
|
41
|
Wascholowski V, Giannis A. Sphingolactone: selektive und irreversibel wirkende Inhibitoren der neutralen Sphingomyelinase. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200501983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Velasco G, Galve-Roperh I, Sánchez C, Blázquez C, Haro A, Guzmán M. Cannabinoids and ceramide: two lipids acting hand-by-hand. Life Sci 2006; 77:1723-31. [PMID: 15958274 DOI: 10.1016/j.lfs.2005.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cannabinoids, the active components of Cannabis sativa (marijuana) and their endogenous counterparts, exert their effects by binding to specific G-protein-coupled receptors that modulate adenylyl cyclase and ion channels. Recent research has shown that the CB1 cannabinoid receptor is also coupled to the generation of the lipid second messenger ceramide via two different pathways: sphingomyelin hydrolysis and ceramide synthesis de novo. Sustained ceramide accumulation in tumor cells mediates cannabinoid-induced apoptosis, as evidenced by in vitro and in vivo studies. This effect seems to be due to the impact of ceramide on key cell signalling systems such as the extracellular signal-regulated kinase cascade and the Akt pathway. These findings provide a new conceptual view on how cannabinoids act, and raise interesting physiological and therapeutic questions.
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Rösch S, Ramer R, Brune K, Hinz B. Prostaglandin E2 induces cyclooxygenase-2 expression in human non-pigmented ciliary epithelial cells through activation of p38 and p42/44 mitogen-activated protein kinases. Biochem Biophys Res Commun 2005; 338:1171-8. [PMID: 16256948 DOI: 10.1016/j.bbrc.2005.10.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Prostaglandins (PGs) have been implicated in lowering intraocular pressure (IOP). A possible role of cyclooxygenase-2 (COX-2) in this process was emphasized by findings showing impaired COX-2 expression in the non-pigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. The present study investigates the effect of the major COX-2 product, PGE(2), on the expression of its synthesizing enzyme in human NPE cells (ODM-2). PGE(2) led to an increase of COX-2 mRNA and protein expression, whereas the expression of COX-1 remained unchanged. Upregulation of COX-2 expression by PGE(2) was accompanied by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, and was abrogated by inhibitors of both pathways. Moreover, PGE(2)-induced COX-2 expression was suppressed by the intracellular calcium chelator, BAPTA/AM, and the protein kinase C inhibitor bisindolylmaleimide II, whereas the protein kinase A inhibitor H-89 was inactive in this respect. Induction of COX-2 expression was also elicited by butaprost (EP(2) receptor agonist) and 11-deoxy PGE(1) (EP(2)/EP(4) receptor agonist), but not by EP(1)/EP(3) receptor agonists (17-phenyl-omega-trinor PGE(2), sulprostone). Consistent with these findings, the EP(1)/EP(2) receptor antagonist, AH-6809, and the selective EP(4) receptor antagonist, ONO-AE3-208, significantly reduced PGE(2)-induced COX-2 expression. Collectively, our results demonstrate that PGE(2) at physiologically relevant concentrations induces COX-2 expression in human NPE cells via activation of EP(2)- and EP(4) receptors and phosphorylation of p38 and p42/44 MAPKs. Positive feedback regulation of COX-2 may contribute to the production of outflow-facilitating PGs and consequently to regulation of IOP.
Collapse
Affiliation(s)
- Susanne Rösch
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
44
|
Grether-Beck S, Timmer A, Felsner I, Brenden H, Brammertz D, Krutmann J. Ultraviolet A-induced signaling involves a ceramide-mediated autocrine loop leading to ceramide de novo synthesis. J Invest Dermatol 2005; 125:545-53. [PMID: 16117797 DOI: 10.1111/j.0022-202x.2005.23782.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure of human keratinocytes to ultraviolet A (UVA) radiation at physiological doses leads to a biphasic activation of transcription factor activator protein-2 (AP-2) and subsequently to a biphasic increase in gene expression of, e.g. intercellular adhesion molecule-1 (ICAM-1). Both kinetics follow a pattern with a first peak between 0.5 and 2 h and a second, more sustained activation between 16 and 48 h. We have previously reported on a non-enzymatic triggering of the ceramide signaling cascade as the initiating step in UVA radiation-induced signaling. In this study, we report that this early (0.5-1 h) peak in ceramide content is followed by a second peak that (i) was associated with an increased expression and activity of serine palmitoyltransferase, the key enzyme of ceramide synthesis, (ii) could be prevented by inhibitors of this enzyme, and (iii) was of functional relevance because its inhibition abrogated the second, but not the first peak in UVA radiation-induced ICAM-1 gene expression. We hypothesize that this second peak most likely resulted from a ceramide-mediated autocrine loop, for (i) inhibition of the first ceramide peak resulted in inhibition of the second peak and (ii) cell-permeable ceramides-induced serine palmitoyltransferase expression, activity, and subsequently ceramide content.
Collapse
Affiliation(s)
- Susanne Grether-Beck
- Institut fuer Umweltmedizinische Forschung at the Heinrich-Heine-University Duesseldorf gGmbH, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Chen P, Hu S, Yao J, Moore SA, Spector AA, Fang X. Induction of cyclooxygenase-2 by anandamide in cerebral microvascular endothelium. Microvasc Res 2005; 69:28-35. [PMID: 15797258 DOI: 10.1016/j.mvr.2005.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 02/03/2023]
Abstract
Anandamide (AEA), an endogenous cannabinoid receptor agonist, is a potent vasodilator in the cerebral microcirculation. AEA is converted to arachidonic acid (AA) by fatty acid amidohydrolase (FAAH), and the conversion of AA to prostaglandins has been proposed as a potential mechanism for the vasodilation. Although AEA stimulated prostaglandin production by mouse cerebral microvascular endothelial cells, no [(3)H]prostaglandins were produced when these cells were incubated with [3H]AEA. Incubation with R(+)-methanandamide (MAEA), a stable analogue of AEA that is not a substrate for FAAH, produced a similar increase in PGE2 production as AEA. The PGE2 production induced by either AEA or MAEA was completely inhibited by NS-398, a selective cyclooxygenase (COX)-2 inhibitor, suggesting that COX-2 was induced. AEA and MAEA increased the expression of COX-2 protein in a time-dependent manner. This increase occurred as early as 1 h and reached maximum at 2 h. Induction of COX-2 protein by AEA was partially inhibited by AM-251, a selective cannabinoid receptor-1 antagonist. Furthermore, AEA increased COX-2 promoter activity approximately twofold above baseline in a fragment ranging from -1432 to +59, the full-length of the COX-2 promoter, and the increase in COX-2 promoter activity produced by AEA was partially inhibited by AM-251. These results indicate that AEA increased COX-2 expression at the transcriptional level through, at least in part, a cannabinoid receptor-1-mediated mechanism in cerebral microvascular endothelium.
Collapse
Affiliation(s)
- Ping Chen
- Department of Biochemistry, 4-403 BSB, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hinz B, Rösch S, Ramer R, Tamm ER, Brune K. Latanoprost induces matrix metalloproteinase‐1 expression in human nonpigmented ciliary epithelial cells through a cyclooxygenase‐2‐dependent mechanism. FASEB J 2005; 19:1929-31. [PMID: 16076963 DOI: 10.1096/fj.04-3626fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prostaglandins (PGs) have been implicated in the regulation of intraocular pressure (IOP) by facilitating the remodeling of tissues involved in aqueous humor outflow. A contribution of cyclooxygenase-2 (COX-2)-dependent PGs to this process was emphasized by a recent study showing an impaired COX-2 expression in the nonpigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. With the use of human NPE cells (ODM-2), the present study therefore investigated the effect of the antiglaucomatous drug latanoprost (PGF2alpha analog) on the expression of COX-2 and its association with the induction of matrix metalloproteinases (MMPs). In NPE cells, latanoprost led to a concentration- and time-dependent increase of COX-2 mRNA levels. Up-regulation of COX-2 expression was accompanied by phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK and was abrogated by specific inhibitors of both pathways. PGE2 formation by latanoprost was abolished by the selective COX-2 inhibitor NS-398 and by the F-prostaglandin receptor antagonist AL-8810. Moreover, latanoprost led to a delayed up-regulation of MMP-1 mRNA, whereas the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 remained unchanged. Latanoprost-induced MMP-1 mRNA and protein expression was abolished by NS-398 and by COX-2-silencing small-interfering RNA. In line with this finding, MMP-1 expression was also induced by PGE2, a major COX-2 product. As a whole, our results show that MMP-1 expression by latanoprost requires prior up-regulation of COX-2. Induction of COX-2- and subsequent MMP-1 expression in the NPE may represent a potential mechanism underlying the IOP-lowering and antiglaucomatous action of latanoprost.
Collapse
Affiliation(s)
- Burkhard Hinz
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
47
|
Lambert DM, Fowler CJ. The Endocannabinoid System: Drug Targets, Lead Compounds, and Potential Therapeutic Applications. J Med Chem 2005; 48:5059-87. [PMID: 16078824 DOI: 10.1021/jm058183t] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Didier M Lambert
- Unité de Chimie Pharmaceutique et de Radiopharmacie, Université Catholique de Louvain, 73 Avenue Mounier, UCL-CMFA 73.40, B-1200 Brussels, Belgium.
| | | |
Collapse
|
48
|
Erdreich-Epstein A, Tran LB, Cox OT, Huang EY, Laug WE, Shimada H, Millard M. Endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 involves ceramide metabolic pathways. Blood 2005; 105:4353-61. [PMID: 15705795 PMCID: PMC1895032 DOI: 10.1182/blood-2004-08-3098] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Matrix ligation of integrins alphavbeta3/alphavbeta5 is critical for endothelial survival and angiogenesis. We have previously shown that ceramide, a proapoptotic lipid second messenger, increases during endothelial anoikis (detachment-induced apoptosis). We now show that RGDfV, an integrin alphavbeta3/alphavbeta5 cyclic function-blocking peptide, increased ceramide and decreased sphingomyelin in human brain microvascular endothelial cells (HBMECs) plated on vitronectin, suggesting that sphingomyelin hydrolysis contributes to RGDfV-induced ceramide increase. Desipramine and imipramine, inhibitors of acid sphingomyelinase (ASMase), suppressed RGDfV-induced ceramide increase. Importantly, desipramine, imipramine, and a third ASMase inhibitor, SR33557, but not inhibitors of neutral sphingomyelinase, suppressed RGDfV-induced apoptosis, suggesting that ASMase was required for integrin-mediated apoptosis. Myriocin, an inhibitor of de novo ceramide synthesis, had no effect on RGDfV-induced HBMEC apoptosis. Interestingly, ASMase inhibitors also suppressed the RGDfV-induced loss of spreading on vitronectin. RGDfV induced a similar increase in ceramide and apoptosis in HBMECs on poly-l-lysine or vitronectin, although cells detached only from vitronectin, indicating that cell detachment was not required for RGDfV-induced apoptosis. Our results suggest involvement of ASMase and ceramide in endothelial apoptosis induced by inhibition of integrins alphavbeta3/alphavbeta5, and propose a novel molecular mechanism for the antiangiogenic effect of RGDfV.
Collapse
Affiliation(s)
- Anat Erdreich-Epstein
- Division of Hematology-Oncology, Department of Pediatrics, The Saban Research Institute at Childrens Hospital Los Angeles, 4650 Sunset Blvd, Mailstop No. 57, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hinz B, Ramer R, Eichele K, Weinzierl U, Brune K. Up-regulation of cyclooxygenase-2 expression is involved in R(+)-methanandamide-induced apoptotic death of human neuroglioma cells. Mol Pharmacol 2004; 66:1643-51. [PMID: 15361550 DOI: 10.1124/mol.104.002618] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cannabinoids have been implicated in the reduction of glioma growth. The present study investigated a possible relationship between the recently shown induction of cyclooxygenase (COX)-2 expression by the endocannabinoid analog R(+)methanandamide [R(+)-MA] and its effect on the viability of H4 human neuroglioma cells. Incubation with R(+)-MA for up to 72 h decreased the cellular viability and enhanced accumulation of cytoplasmic DNA fragments in a time-dependent manner. Suppression of R(+)-MA-induced prostaglandin (PG) E2 synthesis with the selective COX-2 inhibitor celecoxib (0.01-1 microM) or inhibition of COX-2 expression by COX-2-silencing small-interfering RNA was accompanied by inhibition of R(+)-MA-mediated DNA fragmentation and cell death. In contrast, the selective COX-1 inhibitor SC-560 was inactive in this respect. Cells were also protected from apoptotic cell death by other COX-2 inhibitors (NS-398 [[N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide]] and diclofenac) and by the ceramide synthase inhibitor fumonisin B1, which interferes with COX-2 expression by R(+)-MA. Moreover, the proapoptotic action of R(+)-MA was mimicked by the major COX-2 product PGE2. Apoptosis and cell death by R(+)-MA were not affected by antagonists of cannabinoid receptors (CB1, CB2) and vanilloid receptor 1. In further experiments, celecoxib was demonstrated to suppress apoptotic cell death elicited by anandamide, which is structurally similar to R(+)-MA. As a whole, this study defines COX-2 as a hitherto unknown target by which a cannabinoid induces apoptotic death of glioma cells. Furthermore, our data show that pharmacological concentrations of celecoxib may interfere with the proapoptotic action of R(+)-MA and anandamide, suggesting that cotreatment with COX-2 inhibitors could diminish glioma regression induced by these compounds.
Collapse
Affiliation(s)
- Burkhard Hinz
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Hinz B, Ramer R, Eichele K, Weinzierl U, Brune K. R(+)-methanandamide-induced cyclooxygenase-2 expression in H4 human neuroglioma cells: possible involvement of membrane lipid rafts. Biochem Biophys Res Commun 2004; 324:621-6. [PMID: 15474472 DOI: 10.1016/j.bbrc.2004.09.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 11/20/2022]
Abstract
Cannabinoids induce the expression of the cyclooxygenase-2 (COX-2) isoenzyme in H4 human neuroglioma cells via a pathway independent of cannabinoid- or vanilloid receptor activation. The underlying mechanism was recently shown to involve increased synthesis of ceramide, which in turn leads to activation of p38 and p42/44 mitogen-activated protein kinases (MAPKs). The present study investigates a possible contribution of membrane lipid rafts to cannabinoid-induced COX-2 expression. To address this issue, we tested the influence of methyl-beta-cyclodextrin (MCD), a membrane cholesterol depletor, on COX-2 expression by the endocannabinoid analogue R(+)-methanandamide (R(+)-MA). Incubation of H4 cells with MCD was associated with a loss of lipid raft integrity and a substantial inhibition of R(+)-MA-induced COX-2 expression and subsequent formation of prostaglandin E2. Moreover, MCD was shown to suppress signal transduction steps upstream to COX-2 induction by R(+)-MA. Accordingly, the cholesterol depletor suppressed R(+)-MA-induced formation of ceramide as well as phosphorylation of p38 and p42/44 MAPKs. Together, our results suggest that R(+)-MA induces COX-2 expression in human neuroglioma cells via a pathway linked to lipid raft microdomains.
Collapse
Affiliation(s)
- Burkhard Hinz
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|