1
|
Abstract
ATP-sensitive potassium (K(ATP)) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens K(ATP) channels, leading to membrane hyperpolarization. K(ATP) channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the K(ATP) channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous K(ATP) channels reduces cellular damage resulting from cerebral ischemic stroke. K(ATP) channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future.
Collapse
|
2
|
Hirose M, Takeishi Y, Nakada T, Shimojo H, Kashihara T, Nishio A, Suzuki S, Mende U, Matsumoto K, Matsushita N, Taira E, Sato F, Yamada M. Nicorandil prevents Gαq-induced progressive heart failure and ventricular arrhythmias in transgenic mice. PLoS One 2012; 7:e52667. [PMID: 23285142 PMCID: PMC3527603 DOI: 10.1371/journal.pone.0052667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gα(q)) -coupled receptor (GPCR) signaling still remains unknown. We investigated these inhibitory effects of nicorandil in transgenic mice with transient cardiac expression of activated Gα(q) (Gα(q)-TG). METHODOLOGY/PRINCIPAL FINDINGS Nicorandil (6 mg/kg/day) or vehicle was chronically administered to Gα(q)-TG from 8 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic nicorandil administration prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis in Gα(q)-TG. SUR-2B and SERCA2 gene expression was decreased in vehicle-treated Gα(q)-TG but not in nicorandil-treated Gα(q)-TG. eNOS gene expression was also increased in nicorandil-treated Gα(q)-TG compared with vehicle-treated Gα(q)-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 7 of 10 vehicle-treated Gα(q)-TG but in none of 10 nicorandil-treated Gα(q)-TG. The QT interval was significantly shorter in nicorandil-treated Gα(q)-TG than vehicle-treated Gα(q)-TG. Acute nicorandil administration shortened ventricular monophasic action potential duration and reduced the number of PVCs in Langendorff-perfused Gα(q)-TG mouse hearts. Moreover, HMR1098, a blocker of cardiac sarcolemmal K(ATP) channels, significantly attenuated the shortening of MAP duration induced by nicorandil in the Gα(q)-TG heart. CONCLUSIONS/SIGNIFICANCE These findings suggest that nicorandil can prevent the development of HF and ventricular arrhythmia caused by the activation of GPCR signaling through the shortening of the QT interval, action potential duration, the normalization of SERCA2 gene expression. Nicorandil may also improve the impaired coronary circulation during HF.
Collapse
Affiliation(s)
- Masamichi Hirose
- Department of Molecular and Cellular Pharmacology, Iwate Medical University School of Pharmaceutical Sciences, Shiwa, Iwate, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
4
|
Zhou M, He HJ, Tanaka O, Sekiguchi M, Kawahara K, Abe H. Different Localization of ATP Sensitive K+ Channel Subunits in Rat Testis. Anat Rec (Hoboken) 2011; 294:729-37. [DOI: 10.1002/ar.21348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 12/16/2010] [Accepted: 12/19/2010] [Indexed: 01/21/2023]
|
5
|
Hirose M, Yano S, Nakada T, Horiuchi-Hirose M, Tsujino N, Yamada M. Nicorandil ameliorates impulse conduction disturbances during ischemia in isolated arterially perfused canine atria. Int J Cardiol 2011; 146:37-43. [DOI: 10.1016/j.ijcard.2009.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/30/2009] [Accepted: 06/06/2009] [Indexed: 11/29/2022]
|
6
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1142] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Hirose M, Tsujino N, Nakada T, Yano S, Imamura H, Yamada M. Mechanisms of Preventive Effect of Nicorandil on Ischaemia-Induced Ventricular Tachyarrhythmia in Isolated Arterially Perfused Canine Left Ventricular Wedges. Basic Clin Pharmacol Toxicol 2008; 102:504-14. [DOI: 10.1111/j.1742-7843.2008.00242.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Shi Y, Chen X, Wu Z, Shi W, Yang Y, Cui N, Jiang C, Harrison RW. cAMP-dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel. J Biol Chem 2008; 283:7523-30. [PMID: 18198173 PMCID: PMC2276326 DOI: 10.1074/jbc.m709941200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Indexed: 11/06/2022] Open
Abstract
Vascular ATP-sensitive K(+) channels are activated by multiple vasodilating hormones and neurotransmitters via PKA. A critical PKA phosphorylation site (Ser-1387) is found in the second nucleotide-binding domain (NBD(2)) of the SUR2B subunit. To understand how phosphorylation at Ser-1387 leads to changes in channel activity, we modeled the SUR2B using a newly crystallized ABC protein SAV1866. The model showed that Ser-1387 was located on the interface of NBD2 with TMD1 and physically interacted with Tyr-506 in TMD1. A positively charged residue (Arg-1462) in NBD2 was revealed in the close vicinity of Ser-1387. Mutation of either of these three residues abolished PKA-dependent channel activation. Molecular dynamics simulations suggested that Ser-1387, Tyr-506, and Arg-1462 formed a compact triad upon Ser-1387 phosphorylation, leading to reshaping of the NBD2 interface and movements of NBD2 and TMD1. Restriction of the interdomain movements by engineering a disulfide bond between TMD1 and NBD2 prevented the channel activation in a redox-dependent manner. Thus, a channel-gating mechanism is suggested through enhancing the NBD-TMD coupling efficiency following Ser-1387 phosphorylation, which is shared by multiple vasodilators.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Substitution
- Animals
- Cyclic AMP-Dependent Protein Kinases/chemistry
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Disulfides/chemistry
- Disulfides/metabolism
- KATP Channels/chemistry
- KATP Channels/genetics
- KATP Channels/metabolism
- Models, Molecular
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/metabolism
- Oxidation-Reduction
- Phosphorylation
- Potassium Channels/chemistry
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Protein Structure, Tertiary/physiology
- Rats
- Receptors, Drug/chemistry
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Yun Shi
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang Y, Shi Y, Guo S, Zhang S, Cui N, Shi W, Zhu D, Jiang C. PKA-dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:88-96. [PMID: 17942071 PMCID: PMC2245864 DOI: 10.1016/j.bbamem.2007.08.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 08/13/2007] [Accepted: 08/29/2007] [Indexed: 12/20/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) is a potent vasodilator and has been successfully used to alleviate hypertension. Consistently, disruption of VIP gene in mice leads to hypertension. However, its downstream targets in the vascular regulation are still not well demonstrated. To test the hypothesis that the vascular smooth muscle isoform of KATP channels is a downstream target of the VIP signaling, we performed the studies on the Kir6.1/SUR2B channel expressed in HEK293 cells. We found that the channel was strongly activated by VIP. Through endogenous VIP receptors, the channel activation was reversible and dependent on VIP concentrations with the midpoint-activation concentration approximately 10 nM. The channel activation was voltage-independent and could be blocked by KATP channel blocker glibenclamide. In cell-attached patches, VIP augmented the channel open-state probability with modest suppression of the single channel conductance. The VIP-induced Kir6.1/SUR2B channel activation was blocked by PKA inhibitor RP-cAMP. Forskolin, an adenylyl cyclase activator, activated the channel similarly as VIP. The effect of VIP was further evident in the native tissues. In acutely dissociated mesenteric vascular smooth myocytes, VIP activated the KATP currents in a similar manner as in HEK293 cells. In endothelium-free mesenteric artery rings, VIP produced concentration-dependent vasorelaxation that was attenuated by glibenclamide. These results therefore indicate that the vascular isoform (Kir6.1/SUR2B) of KATP channels is a target of VIP. The channel activation relies on the PKA pathway and produces mesenteric arterial relaxation.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Cell Line
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Humans
- In Vitro Techniques
- Ion Channel Gating/drug effects
- Isoenzymes/metabolism
- KATP Channels/metabolism
- Male
- Mesenteric Arteries/cytology
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/enzymology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
- Vasoactive Intestinal Peptide/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Yang Yang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, Georgia 30302−4010, USA
| | - Yun Shi
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, Georgia 30302−4010, USA
| | - Shouli Guo
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Zhang
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ningren Cui
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, Georgia 30302−4010, USA
| | - Weiwei Shi
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, Georgia 30302−4010, USA
| | - Daling Zhu
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chun Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, Georgia 30302−4010, USA
| |
Collapse
|
10
|
Zhou M, He HJ, Suzuki R, Liu KX, Tanaka O, Sekiguchi M, Itoh H, Kawahara K, Abe H. Localization of sulfonylurea receptor subunits, SUR2A and SUR2B, in rat heart. J Histochem Cytochem 2007; 55:795-804. [PMID: 17438353 DOI: 10.1369/jhc.6a7104.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand the possible functions and subcellular localizations of sulfonylurea receptors (SURs) in cardiac muscle, polyclonal anti-SUR2A and anti-SUR2B antisera were raised. Immunoblots revealed both SUR2A and SUR2B expression in mitochondrial fractions of rat heart and other cellular fractions such as microsomes and cell membranes. Immunostaining detected ubiquitous expression of both SUR2A and SUR2B in rat heart in the atria, ventricles, interatrial and interventricular septa, and smooth muscles and endothelia of the coronary arteries. Electron microscopy revealed SUR2A immunoreactivity in the cell membrane, endoplasmic reticulum (ER), and mitochondria. SUR2B immunoreactivity was mainly localized in the mitochondria as well as in the ER and cell membrane. Thus, SUR2A and SUR2B are not only the regulatory subunits of sarcolemmal K(ATP) channels but may also function as regulatory subunits in mitochondrial K(ATP) channels and play important roles in cardioprotection.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fujita H, Ogura T, Tamagawa M, Uemura H, Sato T, Ishida A, Imamaki M, Kimura F, Miyazaki M, Nakaya H. A key role for the subunit SUR2B in the preferential activation of vascular KATP channels by isoflurane. Br J Pharmacol 2006; 149:573-80. [PMID: 17001304 PMCID: PMC2014679 DOI: 10.1038/sj.bjp.0706891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been postulated that isoflurane, a volatile anaesthetic, produces vasodilatation through activation of ATP-sensitive K+ (KATP) channels. However, there is no direct evidence for the activation of vascular KATP channels by isoflurane. This study was conducted to examine the effect of isoflurane on vascular KATP channels and compare it with that on cardiac KATP channels. EXPERIMENTAL APPROACH Effects of isoflurane on KATP channels were examined in aortic smooth muscle cells and cardiomyocytes of the mouse using patch clamp techniques. Effects of the anaesthetic on the KATP channels with different combinations of the inward rectifier pore subunits (Kir6.1 and Kir6.2) and sulphonylurea receptor subunits (SUR2A and SUR2B) reconstituted in a heterologous expression system were also examined. KEY RESULTS Isoflurane increased the coronary flow in Langendorff-perfused mouse hearts in a concentration-dependent manner, which was abolished by 10 microM glibenclamide. In enzymically-dissociated aortic smooth muscle cells, isoflurane evoked a glibenclamide-sensitive current (i.e. KATP current). In isolated mouse ventricular cells, however, isoflurane failed to evoke the KATP current unless the KATP current was preactivated by the K+ channel opener pinacidil. Although isoflurane readily activated the Kir6.1/SUR2B channels (vascular type), the volatile anesthetic could not activate the Kir6.2/SUR2A channels (cardiac type) expressed in HEK293 cells. Isoflurane activated a glibenclamide-sensitive current in HEK293 cells expressing Kir6.2/SUR2B channels. CONCLUSION AND IMPLICATIONS Isoflurane activates KATP channels in vascular smooth muscle cells and produces coronary vasodilation in mouse hearts. SUR2B may be important for the activation of vascular-type KATP channels by isoflurane.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Anesthetics, Inhalation/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Cell Line
- Cells, Cultured
- Coronary Circulation/drug effects
- Dose-Response Relationship, Drug
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology
- Glyburide/pharmacology
- Humans
- In Vitro Techniques
- Isoflurane/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Patch-Clamp Techniques/methods
- Pinacidil/pharmacology
- Potassium Channels/genetics
- Potassium Channels/physiology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/physiology
- Receptors, Drug/genetics
- Receptors, Drug/physiology
- Sulfonylurea Receptors
- Theophylline/pharmacology
- Transfection/methods
- Vasodilation/drug effects
Collapse
Affiliation(s)
- H Fujita
- Department of Pharmacology, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
- Department of General Surgery, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - T Ogura
- Department of Pharmacology, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - M Tamagawa
- Department of Pharmacology, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - H Uemura
- Department of Pharmacology, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - T Sato
- Department of Pharmacology, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - A Ishida
- Department of General Surgery, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - M Imamaki
- Department of General Surgery, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - F Kimura
- Department of General Surgery, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - M Miyazaki
- Department of General Surgery, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
| | - H Nakaya
- Department of Pharmacology, Chiba University Graduate School of Medicine Chuo-ku, Chiba, Japan
- Author for correspondence:
| |
Collapse
|
12
|
Kurachi Y, Yamada M. [Relationship between function and structure of ATP-sensitive K+ (KATP) channels]. Nihon Yakurigaku Zasshi 2006; 126:311-6. [PMID: 16394574 DOI: 10.1254/fpj.126.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Frelet A, Klein M. Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Lett 2006; 580:1064-84. [PMID: 16442101 DOI: 10.1016/j.febslet.2006.01.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/21/2022]
Abstract
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Collapse
Affiliation(s)
- Annie Frelet
- Zurich Basel Plant Science Center, University of Zurich, Plant Biology, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
14
|
Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MSP, Ford RC, Ashcroft FM. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J 2005; 24:4166-75. [PMID: 16308567 PMCID: PMC1356316 DOI: 10.1038/sj.emboj.7600877] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/15/2005] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.
Collapse
Affiliation(s)
| | - Jeff D Campbell
- Laboratory of Physiology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Heidi de Wet
- Laboratory of Physiology, University of Oxford, Oxford, UK
| | | | - Brittany Zadek
- Laboratory of Physiology, University of Oxford, Oxford, UK
| | | | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Robert C Ford
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Frances M Ashcroft
- Laboratory of Physiology, University of Oxford, Oxford, UK
- Laboratory of Physiology, University of Oxford, Parks Road, OX1 3PT, UK. Tel.: +44 1865 285810; Fax: +44 1865 285813. E-mail:
| |
Collapse
|
15
|
Jahangir A, Terzic A. K(ATP) channel therapeutics at the bedside. J Mol Cell Cardiol 2005; 39:99-112. [PMID: 15953614 PMCID: PMC2743392 DOI: 10.1016/j.yjmcc.2005.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/17/2005] [Accepted: 04/26/2005] [Indexed: 11/22/2022]
Abstract
The family of potassium channel openers regroups drugs that share the property of activating adenosine triphosphate-sensitive potassium (K(ATP)) channels, metabolic sensors responsible for adjusting membrane potential-dependent functions to match cellular energetic demands. K(ATP) channels, widely represented in metabolically-active tissue, are heteromultimers composed of an inwardly rectifying potassium channel pore and a regulatory sulfonylurea receptor subunit, the site of action of potassium channel opening drugs that promote channel activity by antagonizing ATP-induced pore inhibition. The activity of K(ATP) channels is critical in the cardiovascular adaptive response to stress, maintenance of neuronal electrical stability, and hormonal homeostasis. Thereby, K(ATP) channel openers have a unique therapeutic spectrum, ranging from applications in myopreservation and vasodilatation in patients with heart or vascular disease to potential clinical use as bronchodilators, bladder relaxants, islet cell protector, antiepileptics and promoters of hair growth. While the current experience in practice with potassium channel openers remains limited, multitude of ongoing investigations aims at defining the benefit of this emerging family of therapeutics in diverse disease conditions associated with metabolic distress.
Collapse
Affiliation(s)
- A Jahangir
- Division of Cardiovascular Diseases, Departmentof Medicine, Mayo Clinic College of Medicine, Guggenheim 7, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
16
|
Döhr S, Klingenhoff A, Maier H, de Angelis MH, Werner T, Schneider R. Linking disease-associated genes to regulatory networks via promoter organization. Nucleic Acids Res 2005; 33:864-72. [PMID: 15701758 PMCID: PMC549397 DOI: 10.1093/nar/gki230] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pathway- or disease-associated genes may participate in more than one transcriptional co-regulation network. Such gene groups can be readily obtained by literature analysis or by high-throughput techniques such as microarrays or protein-interaction mapping. We developed a strategy that defines regulatory networks by in silico promoter analysis, finding potentially co-regulated subgroups without a priori knowledge. Pairs of transcription factor binding sites conserved in orthologous genes (vertically) as well as in promoter sequences of co-regulated genes (horizontally) were used as seeds for the development of promoter models representing potential co-regulation. This approach was applied to a Maturity Onset Diabetes of the Young (MODY)-associated gene list, which yielded two models connecting functionally interacting genes within MODY-related insulin/glucose signaling pathways. Additional genes functionally connected to our initial gene list were identified by database searches with these promoter models. Thus, data-driven in silico promoter analysis allowed integrating molecular mechanisms with biological functions of the cell.
Collapse
Affiliation(s)
| | - A. Klingenhoff
- Genomatix Software GmbHLandsberger Str. 6, D-80339 München, Germany
| | | | | | - T. Werner
- Genomatix Software GmbHLandsberger Str. 6, D-80339 München, Germany
| | - R. Schneider
- To whom correspondence should be addressed. Tel: +49 89 3187 4060; Fax: +49 89 3187 4400;
| |
Collapse
|
17
|
Yamada M, Kurachi Y. A functional role of the C-terminal 42 amino acids of SUR2A and SUR2B in the physiology and pharmacology of cardiovascular ATP-sensitive K(+) channels. J Mol Cell Cardiol 2005; 39:1-6. [PMID: 15978900 DOI: 10.1016/j.yjmcc.2004.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/19/2004] [Accepted: 11/12/2004] [Indexed: 11/16/2022]
Abstract
The ATP-sensitive K(+) (K(ATP)) channel is composed of four pore-forming Kir6.2 subunits and four sulfonylurea receptors (SUR). Intracellular ATP inhibits K(ATP) channels through Kir6.2. SUR is an ABC protein bearing transmembrane domains and two nucleotide-binding domains (NBD1 and NBD2). SUR increases the open probability of K(ATP) channels by interacting with ATP and ADP through NBDs and with K(+) channel openers such as nicorandil through its transmembrane domain. Because NBDs and the drug receptor allosterically interact with each other, nucleotides and drugs probably activate K(ATP) channels by causing the same conformational change of SUR. SUR2A and SUR2B have the identical drug receptor and NBDs and differ only in the C-terminal 42 amino acids (C42). Nonetheless, nicorandil ~100 times more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Based on our allosteric model, we have analyzed the interaction between NBDs and the drug receptor in SUR2A and SUR2B and found that both nucleotide-bound NBD1 and NBD2 more strongly induce the conformational change in SUR2B than SUR2A. Therefore, C42 modulates the function of not only NBD2 which is close to C42 in a primary structure but NBD1 which is more than 630 amino acid N-terminal to C42. This raises the possibility that in the presence of nucleotides, NBD1 and NBD2 dimerize to induce the conformational change and that the dimerization enables C42 to gain access to both NBDs. Modulation of the nucleotide-NBD1 and -NBD2 interactions by C42 would determine the stability of the nucleotide-dependent dimer and thus, the physiological and pharmacological properties of K(ATP) channels.
Collapse
Affiliation(s)
- Mitsuhiko Yamada
- Department of Pharmacology II, Graduate School of Medicine, Faculty of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
18
|
Yamada M, Ishii M, Hibino H, Kurachi Y. Mutation in nucleotide-binding domains of sulfonylurea receptor 2 evokes Na-ATP-dependent activation of ATP-sensitive K+ channels: implication for dimerization of nucleotide-binding domains to induce channel opening. Mol Pharmacol 2004; 66:807-16. [PMID: 15258252 DOI: 10.1124/mol.104.002717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ATP-sensitive K+ (KATP) channel is composed of a sulfonylurea receptor (SUR) and a pore-forming subunit, Kir6.2. SUR is an ATP-binding cassette (ABC) protein with two nucleotide-binding domains (NBD1 and NBD2). Intracellular ATP inhibits KATP channels through Kir6.2 and activates them through NBDs. However, it is still unknown how ATP-bound NBDs activate KATP channels. A prokaryotic ABC protein, MJ0796, which is entirely NBD, forms a dimer in the presence of Na-ATP when its glutamate at position 171 is substituted with glutamine. Mg2+ or K+ destabilizes the dimer. We made the corresponding mutation in the NBD1 (D834N) and/or NBD2 (E1471Q) of SUR2A and SUR2B. As measured in the inside-out configuration of the patch-clamp method, SUR2x(D834N, E1471)/Kir6.2 channels mediated significantly larger currents in the presence of internal 1 mM Na-ATP than K-ATP alone or Mg-ATP. The response to Na-ATP resulted from an increase in the open probability but not single-channel amplitude of the channels and was abolished by glibenclamide (10(-5) M). In the presence of 1 mM Mg2+ -free ATP, Na+ increased the activity of the channels in a concentration-dependent manner. The Na-ATP-dependent activation was never observed with KATP channels including either the wild-type SUR2x, SUR2x(D834N), or SUR2x(E1471). Nicorandil activated SUR2x(D834N, E1471Q)/Kir6.2 channels more strongly in the presence of Na-ATP than K-ATP alone, whereas the reverse was true for wild-type SUR2x/Kir6.2 channels. Therefore, it is likely that NBDs of SUR2x dimerize in response to ATP and nicorandil. The dimerization induces the opening of the KATP channel, probably by causing a conformational change of SUR2x.
Collapse
Affiliation(s)
- Mitsuhiko Yamada
- Department of Pharmacology II, Graduate School of Medicine Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | | | | | | |
Collapse
|