1
|
Tillman TS, Choi Z, Xu Y, Tang P. Functional Tolerance to Cysteine Mutations in Human α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2020; 11:242-247. [PMID: 31951367 DOI: 10.1021/acschemneuro.9b00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in various intracellular signaling pathways that mediate addiction, chronic pain, and other diseases, but its intracellular domain structures remain undetermined. The presence of 17 native cysteines in α7 nAChR provides opportunities for extracting structural information through site-directed labeling of chemical probes in strategic locations, but it also creates uncertainties in channel function when those native cysteines must be mutated. Using site-directed mutagenesis and two-electrode voltage clamp electrophysiology measurements, we found that α7 nAChR's function was well tolerated for mutations of all 13 cysteines as long as two pairs of disulfide-bond cysteines remained in the extracellular domain. Furthermore, surface plasmon resonance measurements showed that the cysteine mutations did not affect α7 nAChR binding to the intracellular protein PICK1. The study suggests that a high native cysteine content does not necessarily preclude the use of single cysteine labeling for acquiring structural information on functional proteins.
Collapse
Affiliation(s)
- Tommy S. Tillman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary Choi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pei Tang
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Kucukkal TG, Alsaiari F, Stuart SJ. Modeling ion permeation in wild-type and mutant human α7 nachr ion channels. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations of wild type and two mutant (T248F and L251T) human [Formula: see text]7 nicotinic acetylcholine receptors (nAChR) have been performed. The channel transmembrane domains were modeled from the closed channel structure from torpedo ray (PDB ID 2BG9) and embedded in DPPC lipid bilayers, surrounded by physiological saline solution. An external electric field was used to obtain stable open channel structures. The adaptive biasing force (ABF) method was used to obtain potential of mean force (PMF) profiles for Na[Formula: see text] ion translocation through the wild type and mutant receptors. Based on the geometry and PMF profiles, the channel gate was found to be at one of the two hydrophobic conserved regions (V249-L251) near the lower end of the channel. The L251T mutation reduced the energetic barrier by 1.9[Formula: see text]kcal/mol, consistent with a slight increase in the channel radius in the bottleneck region. On the other hand, the T248F mutation caused a significant decrease in the channel radius (0.4 Å) and a substantial increase of 3.9[Formula: see text]kcal/mol in the energetic barrier. Ion permeation in all three structures was compared and found to be consistent with barrier height values. Using an external field in an incrementally increasing manner was found to be an effective way to obtain stable open, conducting channel structures.
Collapse
Affiliation(s)
- Tugba G Kucukkal
- Department of Science, Technology and Mathematics, Gallaudet University, 800 Florida Ave North East Washington, District of Columbia 20002, USA
| | - Feras Alsaiari
- Park View High School, 400 West Laurel Avenue, Sterling, Virginia 20164, USA
| | - Steven J Stuart
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
3
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
4
|
Andersen ND, Nielsen BE, Corradi J, Tolosa MF, Feuerbach D, Arias HR, Bouzat C. Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective. Neuropharmacology 2016; 107:189-200. [PMID: 26926428 DOI: 10.1016/j.neuropharm.2016.02.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 12/30/2022]
Abstract
Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds.
Collapse
Affiliation(s)
- Natalia D Andersen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Beatriz E Nielsen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Jeremías Corradi
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - María F Tolosa
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Dominik Feuerbach
- Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | - Cecilia Bouzat
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina.
| |
Collapse
|
5
|
Vohra S, Biggin PC. Mutationmapper: a tool to aid the mapping of protein mutation data. PLoS One 2013; 8:e71711. [PMID: 23951226 PMCID: PMC3739722 DOI: 10.1371/journal.pone.0071711] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/01/2013] [Indexed: 12/25/2022] Open
Abstract
There has been a rapid increase in the amount of mutational data due to, amongst other things, an increase in single nucleotide polymorphism (SNP) data and the use of site-directed mutagenesis as a tool to help dissect out functional properties of proteins. Many manually curated databases have been developed to index point mutations but they are not sustainable with the ever-increasing volume of scientific literature. There have been considerable efforts in the automatic extraction of mutation specific information from raw text involving use of various text-mining approaches. However, one of the key problems is to link these mutations with its associated protein and to present this data in such a way that researchers can immediately contextualize it within a structurally related family of proteins. To aid this process, we have developed an application called MutationMapper. Point mutations are extracted from abstracts and are validated against protein sequences in Uniprot as far as possible. Our methodology differs in a fundamental way from the usual text-mining approach. Rather than start with abstracts, we start with protein sequences, which facilitates greatly the process of validating a potential point mutation identified in an abstract. The results are displayed as mutations mapped on to the protein sequence or a multiple sequence alignment. The latter enables one to readily pick up mutations performed at equivalent positions in related proteins. We demonstrate the use of MutationMapper against several examples including a single sequence and multiple sequence alignments. The application is available as a web-service at http://mutationmapper.bioch.ox.ac.uk.
Collapse
Affiliation(s)
- Shabana Vohra
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, Oxford, United Kingdom
| | - Philip C. Biggin
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Liu L, Min S, Li W, Wei K, Luo J, Wu G, Ao L, Cao J, Wang B, Wang Z. Pharmacodynamic changes with vecuronium in sepsis are associated with expression of α7- and γ-nicotinic acetylcholine receptor in an experimental rat model of neuromyopathy. Br J Anaesth 2013; 112:159-68. [PMID: 23903895 DOI: 10.1093/bja/aet253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Resistance to non-depolarizing neuromuscular blocking agents induced by sepsis is associated with the qualitative change in the nicotinic acetylcholine receptor (nAChR). This study aims to investigate the effects of sepsis on the neuromuscular block properties of vecuronium in relation to the expression of fetal and neuronal α7 type nAChR. METHODS Male Sprague-Dawley rats were randomly divided into sham and sepsis groups. Sepsis was induced by caecal ligation and puncture (CLP). The rats were injected i.v. with ulinastatin or normal saline on Day 10. Neuromuscular block properties of vecuronium were evaluated and neuromuscular function was assessed by electromyography on Days 1, 3, 7, and 14 after CLP. Expression of fetal and neuronal type α7-nAChR on the tibialis anterior muscle was assessed using immunohistochemistry and western blot. The mRNA encoding for γ- and α7 subunits was evaluated by real-time polymerase chain reaction. RESULTS The half maximal inhibitory response of vecuronium in the sepsis group significantly increased, peaked on Day 7, and then declined on Day 14 (P<0.05). The neuromuscular function decreased with increasing postoperation time in the sepsis group (P<0.05). Sepsis significantly increased the expression of γ- and α7-nAchR along with expression of γ- and α7 subunits mRNA, peaked on Day 7, and declined on Day 14 (P<0.05). Ulinastatin suppressed the expression of receptor protein and mRNA encoding for γ- and α7 subunits (P<0.05). CONCLUSIONS Pharmacodynamic changes with vecuronium seem to be associated with the expression of γ- and α7-nAChR in the skeletal muscle. Ulinastatin can improve this effect by inhibiting the expression of these receptors.
Collapse
Affiliation(s)
- L Liu
- Department of Anesthesiology, First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Yuan Jia Gang, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang J, Xue F, Whiteaker P, Li C, Wu W, Shen B, Huang Y, Lukas RJ, Chang Y. Desensitization of alpha7 nicotinic receptor is governed by coupling strength relative to gate tightness. J Biol Chem 2011; 286:25331-40. [PMID: 21610071 DOI: 10.1074/jbc.m111.221754] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Binding of a neurotransmitter to its membrane receptor opens an integral ion conducting pore. However, prolonged exposure to the neurotransmitter drives the receptor to a refractory state termed desensitization, which plays an important role in shaping synaptic transmission. Despite intensive research in the past, the structural mechanism of desensitization is still elusive. Using mutagenesis and voltage clamp in an oocyte expression system, we provide several lines of evidence supporting a novel hypothesis that uncoupling between binding and gating machinery is the underlying mechanism for α7 nicotinic receptor (nAChR) desensitization. First, the decrease in gate tightness was highly correlated to the reduced desensitization. Second, nonfunctional mutants in three important coupling loops (loop 2, loop 7, and the M2-M3 linker) could be rescued by a gating mutant. Furthermore, the decrease in coupling strength in these rescued coupling loop mutants reversed the gating effect on desensitization. Finally, coupling between M1 and hinge region of the M2-M3 linker also influenced the receptor desensitization. Thus, the uncoupling between N-terminal domain and transmembrane domain, governed by the balance of coupling strength and gate tightness, underlies the mechanism of desensitization for the α7 nAChR.
Collapse
Affiliation(s)
- Jianliang Zhang
- Division of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Importance of M2-M3 loop in governing properties of genistein at the α7 nicotinic acetylcholine receptor inferred from α7/5-HT3A chimera. Eur J Pharmacol 2010; 647:37-47. [PMID: 20816816 DOI: 10.1016/j.ejphar.2010.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/04/2010] [Accepted: 08/21/2010] [Indexed: 11/20/2022]
Abstract
Genistein and 5-hydroxyindole (5-HI) potentiate the α7 nicotinic acetylcholine receptor current by primarily increasing peak amplitude, a property of type I α7 positive allosteric modulation. In this study, the effects of these two compounds were investigated at two different α7/5-HT(3) chimeras (chimera 1, comprising of extracellular α7 N-terminus fused to the remainder of 5-HT(3A), and chimera 2 containing an additional α7 encoded M2-M3 loop), and wild-type α7 and 5-HT(3A) receptors. Agonist-evoked responses, examined by expression of the chimeras in Xenopus laevis oocytes or HEK-293 cells, revealed that currents decayed slower and compounds {rank order: N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)~2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-phenyl-1,3,4-oxadiazole (NS6784)>acetylcholine>choline} were more potent in chimera 2 than chimera 1 or α7 receptors. In chimera 2, genistein and 5-HI potentiated agonist-evoked responses (EC(50): 4-5 μM for genistein and 300-500 μM for 5-HI) and at higher concentrations evoked current directly consistent with ago-allosteric modulation. At chimera 1 and 5-HT(3A) receptors, neither compound directly evoked any current and 5-HI, only at chimera 1, was able to potentiate agonist-evoked responses. Genistein and 5-HI did not inhibit the binding of the α7 agonist [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1] heptane ([(3)H]A-585539) to rat brain or chimera 2. In summary, this study supports the role of the M2-M3 loop being critical for the positive allosteric effect of genistein, but not 5-HI, and in agonist-evoked response fine-tuning. The identification of distinct α7 receptor modulatory sites offers unique opportunities for developing CNS therapeutics and understanding its pharmacology.
Collapse
|
9
|
Millar NS. A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:766-76. [PMID: 19540210 DOI: 10.1016/j.bcp.2009.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop family of neurotransmitter-gated ion channels, a family that also includes receptors for gamma-aminobutyric acid, glycine and 5-hydroxytryptamine. In humans, nAChRs have been implicated in several neurological and psychiatric disorders and are major targets for pharmaceutical drug discovery. In addition, nAChRs are important targets for neuroactive pesticides in insects and in other invertebrates. Historically, nAChRs have been one of the most intensively studied families of neurotransmitter receptors. They were the first neurotransmitter receptors to be biochemically purified and the first to be characterized by molecular cloning and heterologous expression. Although much has been learnt from studies of native nAChRs, the expression of recombinant nAChRs has provided dramatic advances in the characterization of these important receptors. This review will provide a brief history of the characterization of nAChRs by heterologous expression. It will focus, in particular, upon studies of recombinant nAChRs, work that has been conducted by many hundreds of scientists during a period of almost 30 years since the molecular cloning of nAChR subunits in the early 1980s.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Abstract
Voltage-clamp techniques are typically used to study the plasma membrane proteins, such as ion channels and transporters that control bioelectrical signals. Many of these proteins have been cloned and can now be studied as potential targets for drug development. The two approaches most commonly used for heterologous expression of cloned ion channels and transporters involve either transfection of the genes into small cells grown in tissue culture or the injection of the genetic material into larger cells. The standard large cells used for the expression of cloned cDNA or synthetic RNA are the egg progenitor cells (oocytes) of the African frog, Xenopus laevis. Until recently, cellular electrophysiology was performed manually by a single operator, one cell at a time. However, methods of high throughput electrophysiology have been developed which are automated and permit data acquisition and analysis from multiple cells in parallel. These methods are breaking a bottleneck in drug discovery, useful in some cases for primary screening as well as for thorough characterization of new drugs. Increasing throughput of high-quality functional data greatly augments the efficiency of academic research and pharmaceutical drug development. Some examples of studies that benefit most from high throughput electrophysiology include pharmaceutical screening of targeted compound libraries, secondary screening of identified compounds for subtype selectivity, screening mutants of ligand-gated channels for changes in receptor function, scanning mutagenesis of protein segments, and mutant-cycle analysis. We describe here the main features and potential applications of OpusXpress, an efficient commercially available system for automated recording from Xenopus oocytes. We show some types of data that have been gathered by this system and review realized and potential applications.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA.
| | | |
Collapse
|
11
|
Steinlein OK, Bertrand D. Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol 2008; 76:1175-83. [PMID: 18691557 DOI: 10.1016/j.bcp.2008.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated channels that mediate, in the peripheral nervous system, fast neurotransmission at the neuromuscular junction and in ganglia. Widely expressed in the central nervous system neuronal nAChRs are thought to contribute both to neurotransmission and modulation of neuronal activity. To date, eleven genes encoding for these receptors have been identified in the mammalian genome and their structure is well conserved throughout evolution. Progresses made in the field of genetics and the identification of a large number of small genetic variants such as single nucleotide polymorphisms raise new questions about the physiologic and pharmacologic consequences of such variations. The finding of associations between polymorphisms in the genes encoding for the neuronal nAChRs and neurological disorders such as schizophrenia and Alzheimer disease illustrate the importance of getting a better understanding of these receptors from the gene to function. In this work we present an overview over the progress that has been made in understanding the role of nAChR genes in monogenic disorders such as familial epilepsy, and review the latest knowledge about genetic variants of the nAChR genes and their relationship with common disorders and behavioural traits of complex etiology.
Collapse
Affiliation(s)
- O K Steinlein
- Institute of Human Genetics, University Hospital, Ludwig Maximilians University, Munich, Germany
| | | |
Collapse
|
12
|
The L293 residue in transmembrane domain 2 of the 5-HT3A receptor is a molecular determinant of allosteric modulation by 5-hydroxyindole. Neuropharmacology 2008; 54:1153-65. [PMID: 18436267 DOI: 10.1016/j.neuropharm.2008.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/10/2008] [Accepted: 03/14/2008] [Indexed: 11/22/2022]
Abstract
Allosteric modulation of ligand-gated ion channels can play important roles in shaping synaptic transmission. The function of the 5-hydroxytryptamine (serotonin) type 3 (5-HT(3)) receptor, a member of the Cys-loop ligand-gated ion channel superfamily, is modulated by a variety of compounds such as alcohols, anesthetics and 5-hydroxyindole (5-HI). In this study, the molecular determinants of allosteric modulation by 5-HI were explored in N1E-115 neuroblastoma cells expressing the native 5-HT(3) receptor and HEK 293 cells transfected with the recombinant 5-HT(3A) receptor using molecular biology and whole-cell patch-clamp techniques. 5-HI potentiated 5-HT-activated currents in both N1E-115 cells and HEK 293 cells, and significantly decreased current desensitization and deactivation. Substitution of Leu293 (L293, L15') in the second transmembrane domain (TM2) with cysteine (L293C) or serine (L293S) abolished 5-HI modulation. Other mutations in the TM2 domain, such as D298A and T284F, failed to alter 5-HI modulation. The L293S mutation enhanced dopamine efficacy and converted 5-HI into a partial agonist at the mutant receptor. These data suggest that 5-HI stabilizes the 5-HT(3A) receptor in the open state by decreasing both desensitization and 5-HT unbinding/channel closing; and L293 is a common site for both channel gating and allosteric modulation by 5-HI. Our observations also indicate existence of a second 5-HI recognition site on the 5-HT(3A) receptor, which may overlap with the 5-HT binding site and is not involved in the positive modulation by 5-HI. These findings support the idea that there are two discrete sites for 5-HI allosteric modulation and direct activation in the 5-HT(3A) receptor.
Collapse
|
13
|
Carland JE, Johnston GAR, Chebib M. Relative impact of residues at the intracellular and extracellular ends of the human GABAC rho1 receptor M2 domain on picrotoxinin activity. Eur J Pharmacol 2008; 580:27-35. [PMID: 18031737 DOI: 10.1016/j.ejphar.2007.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/18/2022]
Abstract
The relative impact on picrotoxinin activity of residues at the intracellular (2' and 6' residues) and extracellular (15' and 17' residues) ends of the second transmembrane (M2) domain of the human gamma-aminobutyric acid-C (GABA(C)) rho1 receptor was investigated. A series of GABA(C) rho1 subunits were produced containing either single or multiple mutations at the positions of interest. Wild-type and mutant subunits (containing one or more of the following mutations: P2'S, T6'M, I15'N, G17'H) were expressed in Xenopus oocytes and characterized using agonists, partial agonists and antagonists. Changes in agonist activity were observed for mutant receptors. Most notably, mutation at the 2' position resulted in decreased agonist potency, while mutation at the 15' and 17' residues increased agonist potency. The affinity of the competitive antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA) was unchanged compared to wild-type at all mutant receptors. Of the four residues studied, mutation of residues at the 2' and 6' positions had the greatest impact on picrotoxinin activity. Inclusion of the P2'S mutation typically produced receptors with increased picrotoxinin potency, while the T6'M mutation reduced picrotoxinin potency. Picrotoxinin is a mixed antagonist at wild-type and all mutant receptors, with the exception of the double mutant rho1P2'S/T6'M receptors at which the non-competitive component was isolated. It is proposed that the contribution of M2 domain residues to picrotoxinin activity is potentially two-fold: (1) their role as a potential picrotoxinin binding site within the pore; and (2) they are critical for receptor activation properties of the receptor, thus may alter the allosteric mechanism of picrotoxinin.
Collapse
Affiliation(s)
- Jane E Carland
- Faculty of Pharmacy, A15, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
14
|
Stoichiometric analysis of the TM2 6' phenylalanine mutation on desensitization in alpha1beta2 and alpha1beta2gamma2 GABA A receptors. Neurosci Lett 2007; 431:184-9. [PMID: 18162311 DOI: 10.1016/j.neulet.2007.11.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/28/2007] [Accepted: 11/29/2007] [Indexed: 11/22/2022]
Abstract
The presence of phenylalanine (F) at the 6' position of transmembrane domain 2 (TM2) in the alpha4 subunit of alpha4beta2 nicotinic receptors enhances desensitization. As the GABA A receptor affords the ability to study the influence of as few as one and as many as five Fs at this position, we have used it to investigate potential subunit- and stoichiometry-dependent effects of the TM2 6'F mutation on desensitization. Whereas the presence of one F at this position decreased extent of desensitization, desensitization was increased in all configurations that included two or more Fs at the TM2 6' position; desensitization was particularly rapid with 3 or 4 F residues present. Our results demonstrate the ability of F residues at the TM2 6' position to modulate desensitization is likely conserved in the cys-loop family of ligand-gated ion channels. Moreover, our findings demonstrate both stoichiometric- and subunit-dependent effects of the ability of this mutation to regulate desensitization in GABA A receptors.
Collapse
|
15
|
Nieves-Cintrón M, Caballero-Rivera D, Navedo MF, Lasalde-Dominicci JA. Contribution of valine 7' of TMD2 to gating of neuronal alpha3 receptor subtypes. J Neurosci Res 2006; 84:1778-88. [PMID: 17044037 DOI: 10.1002/jnr.21085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The second transmembrane domain (TMD2) of the Cys-loop family of ligand-gated ion channels forms the channel pore. The functional role of the amino acid residues contributing to the channel pore in neuronal nicotinic alpha3 receptors is not well understood. We characterized the contribution of TMD2 position V7' to channel gating in neuronal nicotinic alpha3 receptors. Site-directed mutagenesis was used to substitute position alpha3 (V7') with four different amino acids (A, F, S, or Y) and coexpressed each mutant subunit with wild-type (WT) beta2 or beta4 subunits in Xenopus oocytes. Whole-cell voltage clamp experiments show that substitution for an alanine, serine, or phenylalanine decreased by 2.3-6.2-fold the ACh-EC(50) for alpha3beta2 and alpha3beta4 receptor subtypes. Interestingly, mutation V7'Y did not produce a significant change in ACh-EC(50) when coexpressed with the beta2 subunit but showed a significant approximately two-fold increase with beta4. Similar responses were obtained with nicotine as the agonist. The antagonist sensitivity of the mutant channels was assessed by using dihydro-beta-erythroidine (DHbetaE) and methyllycaconitine (MLA). The apparent potency of DHbetaE as an antagonist increased by approximately 3.7- and 11-fold for the alpha3beta2 V7'S and V7'F mutants, respectively, whereas no evident changes in antagonist potency were observed for the V7'A and V7'Y mutants. The V7'S and V7'F mutations increase MLA antagonist potency for the alpha3beta4 receptor by approximately 6.2- and approximately 9.3-fold, respectively. The V7'A mutation selectively increases the MLA antagonist potency for the alpha3beta4 receptor by approximately 18.7-fold. These results indicate that position V7' contributes to channel gating kinetics and pharmacology of the neuronal nicotinic alpha3 receptors.
Collapse
|
16
|
Jeevendra Martyn JA, Fukushima Y, Chon JY, Yang HS. Muscle relaxants in burns, trauma, and critical illness. Int Anesthesiol Clin 2006; 44:123-43. [PMID: 16849960 DOI: 10.1097/00004311-200604420-00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Papke RL. Estimation of both the potency and efficacy of alpha7 nAChR agonists from single-concentration responses. Life Sci 2005; 78:2812-9. [PMID: 16343553 DOI: 10.1016/j.lfs.2005.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 11/02/2005] [Indexed: 11/27/2022]
Abstract
The assessment of functional properties is a crucial step in the screening of potential new drug candidates. The development of moderate to high throughput electrophysiological recording systems such as OpusXpress (Molecular Devices) has facilitated the process of testing new drugs to a large degree. However, while the simple screening of multiple drugs at a single concentration identifies "hits" and "misses", the generation of full concentration-response studies is still a bottleneck in drug development. The alpha7 nicotinic acetylcholine receptor displays a unique concentration dependence of response kinetics which permits estimates of EC50 and Imax values for experimental drugs to be generated from single-concentration responses. This method is based on the analysis of 13 different concentration-response studies utilizing either human or rat alpha7 nAChR. Each experimental response was first normalized to an ACh control, and then a transformation of the pooled data was generated which, based on the relationship between the net charge and peak current to their respective EC50 values defined the "functional concentration" (the test concentration relative to the EC50 for the given agonist). At low functional concentrations, net charge is large relative to peak current amplitude and at higher functional concentration this relationship reverses. For any single-concentration response, the ratio of net charge to peak current can be used to estimate functional concentration. Efficacy can then be estimated by comparing the observed (net charge) response to the expected value for a full agonist at the estimated functional concentration. This extended analysis, combined with automated recording methods, should greatly increase the efficiency with which promising new drug candidates can be characterized.
Collapse
Affiliation(s)
- Roger L Papke
- Pharmacology and Therapeutics 100267 JHMHSC, 1600 SW Archer Rd. University of Florida, College of Medicine Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Placzek AN, Grassi F, Meyer EM, Papke RL. An alpha7 nicotinic acetylcholine receptor gain-of-function mutant that retains pharmacological fidelity. Mol Pharmacol 2005; 68:1863-76. [PMID: 16186249 DOI: 10.1124/mol.105.016402] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The alpha7-type nicotinic acetylcholine receptor (nAChR) has been recognized as a potential therapeutic target for the treatment of a variety of pathologic conditions, including schizophrenia, Alzheimer's disease, and peripheral inflammation. A unique feature of alpha7 nAChRs that tends to complicate functional assays intended to identify selective drugs for these receptors is the strong concentration-dependent desensitization of their agonist-evoked responses. At low agonist concentrations, voltage-clamp responses are small but tend to closely follow the solution exchange profile, whereas higher agonist concentrations produce responses that peak and then decay very rapidly, usually before the full drug concentration has been achieved. In this article, we report that an alpha7 T245S mutant, which has a point mutation at the sixth position in the alpha7 second transmembrane domain (T6'S), demonstrates a significant gain of function, sustaining current when exposed to relatively high agonist concentrations when expressed in Xenopus laevis oocytes and larger peak currents when expressed in mammalian GH4C1 cells. At the single-channel level, the T6'S mutant has a unitary conductance of 61.7 +/- 5.8 pS, similar to that reported for wild-type alpha7, but a vastly longer average open duration. In addition, channel burst activity indicates a greater than 40% probability of channel re-opening in the sustained presence of 30 muM acetylcholine, consistent with a greater overall open probability relative to wild-type alpha7. Unlike the alpha7 L248T gain-of-function mutant, the T6'S mutant exhibits a pharmacological profile that is remarkably similar to the wild-type alpha7 receptor, implicating it as a potentially useful tool for identifying therapeutic agents.
Collapse
Affiliation(s)
- Andon N Placzek
- Department of Pharmacology and Therapeutics, P. O. Box 100267, University of Florida, Gainesville, Florida 32610-0267, USA
| | | | | | | |
Collapse
|
19
|
Xiu X, Hanek AP, Wang J, Lester HA, Dougherty DA. A Unified View of the Role of Electrostatic Interactions in Modulating the Gating of Cys Loop Receptors. J Biol Chem 2005; 280:41655-66. [PMID: 16216879 DOI: 10.1074/jbc.m508635200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the Cys loop superfamily of ligand-gated ion channels, a global conformational change, initiated by agonist binding, results in channel opening and the passage of ions across the cell membrane. The detailed mechanism of channel gating is a subject that has lent itself to both structural and electrophysiological studies. Here we defined a gating interface that incorporates elements from the ligand binding domain and transmembrane domain previously reported as integral to proper channel gating. An overall analysis of charged residues within the gating interface across the entire superfamily showed a conserved charging pattern, although no specific interacting ion pairs were conserved. We utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study extensively the gating interface of the mouse muscle nicotinic acetylcholine receptor. We found that charge reversal, charge neutralization, and charge introduction at the gating interface are often well tolerated. Furthermore, based on our data and a reexamination of previously reported data on gamma-aminobutyric acid, type A, and glycine receptors, we concluded that the overall charging pattern of the gating interface, and not any specific pairwise electrostatic interactions, controls the gating process in the Cys loop superfamily.
Collapse
MESH Headings
- Acetylcholine/chemistry
- Amino Acid Sequence
- Amino Acids/chemistry
- Animals
- Biochemistry/methods
- Blotting, Western
- Bungarotoxins/chemistry
- Cations
- Cell Membrane/metabolism
- Cysteine/chemistry
- Cystine/chemistry
- Databases, Protein
- Dose-Response Relationship, Drug
- Electrodes
- Electrophysiology
- Glycine/chemistry
- Ions
- Kinetics
- Ligands
- Mice
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Mutation
- Oocytes/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Nicotinic/chemistry
- Sequence Homology, Amino Acid
- Static Electricity
- Torpedo
- Xenopus laevis
- gamma-Aminobutyric Acid/chemistry
Collapse
Affiliation(s)
- Xinan Xiu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|