1
|
Bai T, He X, Liu S, He YZ, Feng J. A comprehensive review of GPR84: A novel player in pathophysiology and treatment. Int J Biol Macromol 2025; 300:140088. [PMID: 39832584 DOI: 10.1016/j.ijbiomac.2025.140088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
G protein-coupled receptor 84 (GPR84), a member of the highly conserved rhodopsin-like superfamily, represents a promising target for therapeutic drug development. Its distinctive expression profiles in adipocytes, gut endocrine cells, and various myeloid immune cells underscore its critical roles in fundamental physiological processes, particularly in metabolic regulation and immune responses. Over the past two decades, emerging research has demonstrated that GPR84 regulates immune cell chemotaxis, phagocytosis, and inflammatory responses, playing a pivotal role in metabolic disorders, inflammatory diseases, and organ fibrosis. However, the precise molecular mechanisms by which GPR84 is involved in these diseases remain largely uncharacterized, highlighting a significant gap in our understanding. Medium-chain fatty acids (MCFAs) are considered potential endogenous ligands for GPR84. Furthermore, the development of synthetic agonists and antagonists have provided valuable pharmacological tools for analyzing the ligand-GPR84 complex structure and investigating the extensive biological functions of GPR84. Ongoing preclinical and clinical studies highlight the potential of targeting GPR84 in molecular therapies, although concerns regarding drug safety and specificity require further investigation.
Collapse
Affiliation(s)
- Tao Bai
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China
| | - Xin He
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China
| | - Shuo Liu
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China; The Fourth People's Hospital of Shenyang, 20 Huanghe South Street, Shenyang, Liaoning Province, China
| | - Yu-Ze He
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China
| | - Juan Feng
- Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Katiyar P, Kalpana, Srivastava A, Singh CM. Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review. Crit Rev Oncog 2025; 30:43-58. [PMID: 39819434 DOI: 10.1615/critrevoncog.2024056541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.
Collapse
Affiliation(s)
- Pratima Katiyar
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Kalpana
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Aditi Srivastava
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Chandra Mohan Singh
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| |
Collapse
|
3
|
Garg P, Singhal G, Kulkarni P, Horne D, Salgia R, Singhal SS. Artificial Intelligence-Driven Computational Approaches in the Development of Anticancer Drugs. Cancers (Basel) 2024; 16:3884. [PMID: 39594838 PMCID: PMC11593155 DOI: 10.3390/cancers16223884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The integration of AI has revolutionized cancer drug development, transforming the landscape of drug discovery through sophisticated computational techniques. AI-powered models and algorithms have enhanced computer-aided drug design (CADD), offering unprecedented precision in identifying potential anticancer compounds. Traditionally, cancer drug design has been a complex, resource-intensive process, but AI introduces new opportunities to accelerate discovery, reduce costs, and optimize efficiency. This manuscript delves into the transformative applications of AI-driven methodologies in predicting and developing anticancer drugs, critically evaluating their potential to reshape the future of cancer therapeutics while addressing their challenges and limitations.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Gargi Singhal
- Department of Medical Sciences, S.N. Medical College, Agra 282002, Uttar Pradesh, India
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Xu C, Zhou Y, Liu Y, Lin L, Liu P, Wang X, Xu Z, Pin JP, Rondard P, Liu J. Specific pharmacological and G i/o protein responses of some native GPCRs in neurons. Nat Commun 2024; 15:1990. [PMID: 38443355 PMCID: PMC10914727 DOI: 10.1038/s41467-024-46177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins and are important drug targets. The discovery of drugs targeting these receptors and their G protein signaling properties are based on assays mainly performed with modified receptors expressed in heterologous cells. However, GPCR responses may differ in their native environment. Here, by using highly sensitive Gi/o sensors, we reveal specific properties of Gi/o protein-mediated responses triggered by GABAB, α2 adrenergic and cannabinoid CB1 receptors in primary neurons, different from those in heterologous cells. These include different profiles in the Gi/o protein subtypes-mediated responses, and differences in the potencies of some ligands even at similar receptor expression levels. Altogether, our results show the importance of using biosensors compatible with primary cells for evaluating the activities of endogenous GPCRs in their native environment.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China
| | - Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yuxuan Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Lin
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomei Wang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengyuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| |
Collapse
|
5
|
Lao H, Chang J, Zhuang H, Song S, Sun M, Yao L, Wang H, Liu Q, Xiong J, Li P, Yu C, Feng T. Novel kokumi peptides from yeast extract and their taste mechanism via an in silico study. Food Funct 2024; 15:2459-2473. [PMID: 38328886 DOI: 10.1039/d3fo04487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Yeast extract, a widely utilized natural substance in the food industry and biopharmaceutical field, holds significant potential for flavor enhancement. Kokumi peptides within yeast extracts were isolated through ultrafiltration and gel chromatography, followed by identification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two peptides, IQGFK and EDFFVR, were identified and synthesized using solid-phase methods based on molecular docking outcomes. Sensory evaluations and electronic tongue analyses conducted with chicken broth solutions revealed taste thresholds of 0.12 mmol L-1 for IQGFK and 0.16 mmol L-1 for EDFFVR, respectively, and both peptides exhibited kokumi properties. Additionally, through molecular dynamics simulations, the binding mechanisms between these peptides and the calcium-sensing receptor (CaSR) were explored. The findings indicated stable binding of both peptides to the receptor. IQGFK primarily interacted through electrostatic interactions, with key binding sites including Asp275, Asn102, Pro274, Trp70, Tyr218, and Ser147. EDFFVR mainly engaged via van der Waals energy and polar solvation free energy, with key binding sites being Asp275, Ile416, Pro274, Arg66, Ala298, and Tyr218. This suggests that both peptides can activate the CaSR, thereby inducing kokumi activity. This study provides a theoretical foundation and reference for the screening and identification of kokumi peptides, successfully uncovering two novel kokumi peptides derived from yeast extract.
Collapse
Affiliation(s)
- Haofeng Lao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jincui Chang
- D.CO International Food Co., Ltd, Jiaozuo, 454850, People's Republic of China.
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, No. 2080, Nanting Road, Shanghai, 201415, People's Republic of China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jian Xiong
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Pei Li
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
6
|
Peña KA, Savransky S, Lewis B. Endosomal signaling via cAMP in parathyroid hormone (PTH) type 1 receptor biology. Mol Cell Endocrinol 2024; 581:112107. [PMID: 37981188 DOI: 10.1016/j.mce.2023.112107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Compartmentalization of GPCR signaling is an emerging topic that highlights the physiological relevance of spatial bias in signaling. The parathyroid hormone (PTH) type 1 receptor (PTH1R) was the first GPCR described to signal via heterotrimeric G-protein and cAMP from endosomes after β-arrestin mediated internalization, challenging the canonical GPCR signaling model which established that signaling is terminated by receptor internalization. More than a decade later, many other GPCRs have been shown to signal from endosomes via cAMP, and recent studies have proposed that location of cAMP generation impacts physiological outcomes of GPCR signaling. Here, we review the extensive literature regarding PTH1R endosomal signaling via cAMP, the mechanisms that regulate endosomal generation of cAMP, and the implications of spatial bias in PTH1R physiological functions.
Collapse
Affiliation(s)
- Karina A Peña
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Sofya Savransky
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Breanna Lewis
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Benke D, Bhat MA, Hleihil M. GABAB Receptors: Molecular Organization, Function, and Alternative Drug Development by Targeting Protein-Protein Interactions. THE RECEPTORS 2024:3-39. [DOI: 10.1007/978-3-031-67148-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Maccioni P, Kaczanowska K, Lobina C, Regonini Somenzi L, Bassareo V, Gessa GL, Lawrence HR, McDonald P, Colombo G. Delving into the reducing effects of the GABA B positive allosteric modulator, KK-92A, on alcohol-related behaviors in rats. Alcohol 2023; 112:61-70. [PMID: 37495087 DOI: 10.1016/j.alcohol.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Recent studies have demonstrated the ability of the positive allosteric modulator (PAM) of the GABAB receptor (GABAB PAM), KK-92A, to suppress operant alcohol self-administration and reinstatement of alcohol seeking in selectively bred Sardinian alcohol-preferring (sP) rats. The present study was designed to scrutinize the suppressing effects of KK-92A on alcohol-related behaviors; to this end, four separate experiments were conducted to address just as many new research questions, some of which bear translational value. Experiment 1 found that 7-day treatment with KK-92A (0, 5, 10, and 20 mg/kg, intraperitoneally [i.p.]) effectively reduced alcohol intake in male sP rats exposed to the home-cage 2-bottle "alcohol (10% v/v) vs. water" choice regimen with 1 hour/day limited access, extending to excessive alcohol drinking the ability of KK-92A to suppress operant alcohol self-administration. Experiment 2 demonstrated that the ability of KK-92A to reduce lever-responding for alcohol was maintained also after acute, intragastric treatment (0, 20, and 40 mg/kg) in female sP rats trained to lever-respond for 15% (v/v) alcohol under the fixed ratio 5 schedule of reinforcement. In Experiment 3, acutely administered KK-92A (0, 5, 10, and 20 mg/kg, i.p.) dampened alcohol-seeking behavior in female sP rats exposed to a single session under the extinction responding schedule. Experiment 4 used a taste reactivity test to demonstrate that acute treatment with KK-92A (0 and 20 mg/kg, i.p.) did not alter either hedonic or aversive reactions to a 15% (v/v) alcohol solution in male sP rats, ruling out that KK-92A-induced reduction of alcohol drinking and self-administration could be due to alterations in alcohol palatability. Together, these results enhance the behavioral pharmacological profile of KK-92A and further strengthen the notion that GABAB PAMs may represent a novel class of ligands with therapeutic potential for treating alcohol use disorder.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | | | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | - Laura Regonini Somenzi
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy.
| |
Collapse
|
9
|
Vunnam N, Yang M, Lo CH, Paulson C, Fiers WD, Huber E, Been M, Ferguson DM, Sachs JN. Zafirlukast Is a Promising Scaffold for Selectively Inhibiting TNFR1 Signaling. ACS BIO & MED CHEM AU 2023; 3:270-282. [PMID: 37363080 PMCID: PMC10288500 DOI: 10.1021/acsbiomedchemau.2c00048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Tumor necrosis factor (TNF) plays an important role in the pathogenesis of inflammatory and autoimmune diseases such as rheumatoid arthritis and Crohn's disease. The biological effects of TNF are mediated by binding to TNF receptors, TNF receptor 1 (TNFR1), or TNF receptor 2 (TNFR2), and this coupling makes TNFR1-specific inhibition by small-molecule therapies essential to avoid deleterious side effects. Recently, we engineered a time-resolved fluorescence resonance energy transfer biosensor for high-throughput screening of small molecules that modulate TNFR1 conformational states and identified zafirlukast as a compound that inhibits receptor activation, albeit at low potency. Here, we synthesized 16 analogues of zafirlukast and tested their potency and specificity for TNFR1 signaling. Using cell-based functional assays, we identified three analogues with significantly improved efficacy and potency, each of which induces a conformational change in the receptor (as measured by fluorescence resonance energy transfer (FRET) in cells). The best analogue decreased NF-κB activation by 2.2-fold, IκBα efficiency by 3.3-fold, and relative potency by two orders of magnitude. Importantly, we showed that the analogues do not block TNF binding to TNFR1 and that binding to the receptor's extracellular domain is strongly cooperative. Despite these improvements, the best candidate's maximum inhibition of NF-κB is only 63%, leaving room for further improvements to the zafirlukast scaffold to achieve full inhibition and prove its potential as a therapeutic lead. Interestingly, while we find that the analogues also bind to TNFR2 in vitro, they do not inhibit TNFR2 function in cells or cause any conformational changes upon binding. Thus, these lead compounds should also be used as reagents to study conformational-dependent activation of TNF receptors.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mu Yang
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chih Hung Lo
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carolyn Paulson
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - William D. Fiers
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Evan Huber
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - MaryJane Been
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M. Ferguson
- Department
of Medicinal Chemistry and Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N. Sachs
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Lorrai I, Shankula C, Marquez Gaytan J, Maccioni R, Lobina C, Maccioni P, Brizzi A, Mugnaini C, Gessa GL, Sanna PP, Corelli F, Colombo G. Development of tolerance upon repeated administration with the GABA B receptor positive allosteric modulator, COR659, on alcohol drinking in rodents. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:662-672. [PMID: 36095322 DOI: 10.1080/00952990.2022.2116713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 01/31/2023]
Abstract
Background: Recent work has demonstrated that acute administration of the novel positive allosteric modulator of the GABAB receptor, COR659, reduces several alcohol-related behaviors in rodents.Objective: To assess whether COR659 continues to lessen alcohol intake after repeated administration, a fundamental feature of drugs with therapeutic potential.Methods: Male C57BL/6J mice (n = 40) were exposed to daily 2-hour drinking sessions (20% (v/v) alcohol) under the 1-bottle "drinking in the dark" protocol and male Sardinian alcohol-preferring rats (n = 40) were exposed to daily 1-hour drinking sessions under the 2-bottle "alcohol (10%, v/v) vs water" choice regimen. COR659 (0, 10, 20, and 40 mg/kg in the mouse experiment; 0, 5, 10, and 20 mg/kg in the rat experiment) was administered intraperitoneally before 7 consecutive drinking sessions.Results: Alcohol intake in vehicle-treated mice and rats averaged 2.5-3.0 and 1.5-1.6 g/kg/session, respectively, indicative of high basal levels. In both experiments, treatment with COR659 resulted in an initial, dose-related suppression of alcohol intake (up to 70-80% compared to vehicle treatment; P < .0005 and P < .0001 in mouse and rat experiments, respectively). The magnitude of the reducing effect of COR659 on alcohol drinking diminished progressively, until vanishing over the subsequent 2-4 drinking sessions.Conclusion: COR659 effectively reduced alcohol intake in two different rodent models of excessive alcohol drinking. However, tolerance to the anti-alcohol effects of COR659 developed rapidly. If theoretically transposed to humans, these data would represent a possible limitation to the clinical use of COR659.
Collapse
Affiliation(s)
- Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Chase Shankula
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jorge Marquez Gaytan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|
11
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
12
|
Peña KA. Endosomal parathyroid hormone receptor signaling. Am J Physiol Cell Physiol 2022; 323:C783-C790. [PMID: 35912987 PMCID: PMC9467467 DOI: 10.1152/ajpcell.00452.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
The canonical model for G protein-coupled receptors (GPCRs) activation assumes that stimulation of heterotrimeric G protein signaling upon ligand binding occurs solely at the cell surface and that duration of the stimulation is transient to prevent overstimulation. In this model, GPCR signaling is turned-off by receptor phosphorylation via GPCR kinases (GRKs) and subsequent recruitment of β-arrestins, resulting in receptor internalization into endosomes. Internalized receptors can then recycle back to the cell surface or be trafficked to lysosomes for degradation. However, over the last decade, this model has been extended by discovering that some internalized GPCRs continue to signal via G proteins from endosomes. This is the case for the parathyroid hormone (PTH) type 1 receptor (PTHR), which engages on sustained cAMP signaling from endosomes upon PTH stimulation. Accumulative evidence shows that the location of signaling has an impact on the physiological effects of GPCR signaling. This mini-review discusses recent insights into the mechanisms of PTHR endosomal signaling and its physiological impact.
Collapse
Affiliation(s)
- Karina A Peña
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Zhou W, Bias K, Lenczewski-Jowers D, Henderson J, Cupp V, Ananga A, Ochieng JW, Tsolova V. Analysis of Protein Sequence Identity, Binding Sites, and 3D Structures Identifies Eight Pollen Species and Ten Fruit Species with High Risk of Cross-Reactive Allergies. Genes (Basel) 2022; 13:genes13081464. [PMID: 36011375 PMCID: PMC9408803 DOI: 10.3390/genes13081464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/30/2022] Open
Abstract
Fruit allergens are proteins from fruits or pollen that cause allergy in humans, an increasing food safety concern worldwide. With the globalization of food trade and changing lifestyles and dietary habits, characterization and identification of these allergens are urgently needed to inform public awareness, diagnosis and treatment of allergies, drug design, as well as food standards and regulations. This study conducted a phylogenetic reconstruction and protein clustering among 60 fruit and pollen allergens from 19 species, and analyzed the clusters, in silico, for cross-reactivity (IgE), 3D protein structure prediction, transmembrane and signal peptides, and conserved domains and motifs. Herein, we wanted to predict the likelihood of their interaction with antibodies, as well as cross-reactivity between the many allergens derived from the same protein families, as the potential for cross-reactivity complicates the management of fruit allergies. Phylogenetic analysis classified the allergens into four clusters. The first cluster (n = 9) comprising pollen allergens showed a high risk of cross-reactivity between eight allergens, with Bet v1 conserved domain, but lacked a transmembrane helix and signal peptide. The second (n = 10) cluster similarly suggested a high risk of cross-reactivity among allergens, with Prolifin conserved domain. However, the group lacked a transmembrane helix and signal peptide. The third (n = 13) and fourth (n = 29) clusters comprised allergens with significant sequence diversity, predicted low risk of cross-reactivity, and showed both a transmembrane helix and signal peptide. These results are critical for treatment and drug design that mostly use transmembrane proteins as targets. The prediction of high risk of cross-reactivity indicates that it may be possible to design a generic drug that will be effective against the wide range of allergens. Therefore, in the past, we may have avoided the array of fruit species if one was allergic to any one member of the cluster.
Collapse
Affiliation(s)
- Wei Zhou
- Food Science Program, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin Luther King Jr. Blvd. Room 305-A Perry Paige South, Tallahassee, FL 32307, USA
- Correspondence: (W.Z.); (A.A.); Tel.: +1-850-599-3249 (W.Z.)
| | - Kaylah Bias
- Food Science Program, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin Luther King Jr. Blvd. Room 305-A Perry Paige South, Tallahassee, FL 32307, USA
| | - Dylan Lenczewski-Jowers
- Food Science Program, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin Luther King Jr. Blvd. Room 305-A Perry Paige South, Tallahassee, FL 32307, USA
| | - Jiliah Henderson
- Food Science Program, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin Luther King Jr. Blvd. Room 305-A Perry Paige South, Tallahassee, FL 32307, USA
| | - Victor Cupp
- Food Science Program, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin Luther King Jr. Blvd. Room 305-A Perry Paige South, Tallahassee, FL 32307, USA
| | - Anthony Ananga
- Food Science Program, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin Luther King Jr. Blvd. Room 305-A Perry Paige South, Tallahassee, FL 32307, USA
- Center for Viticulture and Small Fruits Research, College of Agriculture and Food Sciences, Florida A&M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA
- Correspondence: (W.Z.); (A.A.); Tel.: +1-850-599-3249 (W.Z.)
| | - Joel Winyo Ochieng
- Agricultural Biotechnology Programme, University of Nairobi, P.O. Box 29053, Nairobi 00625, Kenya
| | - Violeta Tsolova
- Food Science Program, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin Luther King Jr. Blvd. Room 305-A Perry Paige South, Tallahassee, FL 32307, USA
- Center for Viticulture and Small Fruits Research, College of Agriculture and Food Sciences, Florida A&M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA
| |
Collapse
|
14
|
Maccioni P, Kaczanowska K, McDonald P, Colombo G. Development of Partial Tolerance to the Suppressing Effect of the Positive Allosteric Modulator of the GABAB Receptor, KK-92A, on Alcohol Self-Administration in Rats. Alcohol Alcohol 2022; 57:706-711. [PMID: 35589119 DOI: 10.1093/alcalc/agac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS A recent study reported how acute treatment with KK-92A, a newly synthesized positive allosteric modulator (PAMs) of the GABAB receptor (GABAB PAMs), suppressed a series of alcohol-related behaviors, including operant oral alcohol self-administration, in selectively bred Sardinian alcohol-preferring (sP) rats. These findings lead to the addition of KK-92A to the long list of GABAB PAMs capable of reducing, after acute treatment, alcohol self-administration in rats. As a further step toward a more complete characterization of the anti-addictive properties of KK-92A, the present study was designed to assess the effect of repeated treatment with the compound on alcohol self-administration. METHODS sP rats were trained to lever-respond for oral alcohol (15%, v/v) under the fixed ratio 5 (FR5) schedule of reinforcement. Once lever-responding behavior had stabilized, KK-92A (0, 5, 10 and 20 mg/kg, i.p.) was administered 30 min prior to 10 consecutive daily self-administration sessions (likewise occurring under the FR5 schedule). RESULTS The first injection of KK-92A produced a dose-related suppression in number of lever-responses for alcohol and amount of self-administered alcohol. Magnitude of the suppressing effect of KK-92A decreased over the following two self-administration sessions and then tended to stabilize on continuation of treatment. Statistical significance at post hoc analysis was maintained only by the highest dose tested (20 mg/kg). CONCLUSIONS These data suggest the development of partial tolerance to the reducing effect of repeatedly administered KK-92A on alcohol self-administration. The agonistic component of the ago-allosteric profile of KK-92A is discussed as the likely key element underlying the observed tolerance.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, Italy
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, Italy
| |
Collapse
|
15
|
Miyaki R, Yamamura A, Kawade A, Fujiwara M, Kondo R, Suzuki Y, Yamamura H. SKF96365 activates calcium-sensing receptors in pulmonary arterial smooth muscle cells. Biochem Biophys Res Commun 2022; 607:44-48. [PMID: 35366542 DOI: 10.1016/j.bbrc.2022.03.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
Abstract
In pulmonary arterial smooth muscle cells (PASMCs), an increase in the cytosolic Ca2+ concentration ([Ca2+]cyt) is involved in many physiological processes such as cell contraction and proliferation. However, chronic [Ca2+]cyt increases cause pulmonary vasoconstriction and vascular remodeling, resulting in pulmonary arterial hypertension (PAH). Therefore, [Ca2+]cyt signaling plays a substantial role in the regulation of physiological and pathological functions in PASMCs. In the present study, the effects of SKF96365 on [Ca2+]cyt were examined in PASMCs from normal subjects and idiopathic pulmonary arterial hypertension (IPAH) patients. SKF96365 is widely used as a blocker of non-selective cation channels. SKF96365 did not affect the resting [Ca2+]cyt in normal-PASMCs. However, SKF96365 increased [Ca2+]cyt in IPAH-PASMCs in a concentration-dependent manner (EC50 = 18 μM). The expression of Ca2+-sensing receptors (CaSRs) was higher in IPAH-PASMCs than in normal-PASMCs. The SKF96365-induced [Ca2+]cyt increase was inhibited by CaSR antagonists, NPS2143 and Calhex 231. The CaSR-mediated [Ca2+]cyt increase was facilitated by SKF96365 and the activation was blocked by NPS2143 or Calhex 231. In addition, the SKF96365-induced [Ca2+]cyt increase was reduced by siRNA knockdown of CaSRs. Taken together, SKF96365 activates CaSRs in IPAH-PASMCs and promotes [Ca2+]cyt signaling.
Collapse
Affiliation(s)
- Riko Miyaki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Akiko Kawade
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Moe Fujiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan.
| |
Collapse
|
16
|
Abstract
Alcohol use disorder (AUD) is a highly prevalent but severely under-treated disorder, with only three widely-approved pharmacotherapies. Given that AUD is a very heterogeneous disorder, it is unlikely that one single medication will be effective for all individuals with an AUD. As such, there is a need to develop new, more effective, and diverse pharmacological treatment options for AUD with the hopes of increasing utilization and improving care. In this qualitative literature review, we discuss the efficacy, mechanism of action, and tolerability of approved, repurposed, and novel pharmacotherapies for the treatment of AUD with a clinical perspective. Pharmacotherapies discussed include: disulfiram, acamprosate, naltrexone, nalmefene, topiramate, gabapentin, varenicline, baclofen, sodium oxybate, aripiprazole, ondansetron, mifepristone, ibudilast, suvorexant, prazosin, doxazosin, N-acetylcysteine, GET73, ASP8062, ABT-436, PF-5190457, and cannabidiol. Overall, many repurposed and novel agents discussed in this review demonstrate clinical effectiveness and promise for the future of AUD treatment. Importantly, these medications also offer potential improvements towards the advancement of precision medicine and personalized treatment for the heterogeneous AUD population. However, there remains a great need to improve access to treatment, increase the menu of approved pharmacological treatments, and de-stigmatize and increase treatment-seeking for AUD.
Collapse
|
17
|
Pant S, Verma S, Pathak RK, Singh DB. Structure-based drug designing. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Abstract
A substantial fraction of the human population suffers from chronic pain states, which often cannot be sufficiently treated with existing drugs. This calls for alternative targets and strategies for the development of novel analgesics. There is substantial evidence that the G protein-coupled GABAB receptor is involved in the processing of pain signals and thus has long been considered a valuable target for the generation of analgesics to treat chronic pain. In this review, the contribution of GABAB receptors to the generation and modulation of pain signals, their involvement in chronic pain states as well as their target suitability for the development of novel analgesics is discussed.
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Symmetric activation and modulation of the human calcium-sensing receptor. Proc Natl Acad Sci U S A 2021; 118:2115849118. [PMID: 34916296 DOI: 10.1073/pnas.2115849118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/14/2023] Open
Abstract
The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.
Collapse
|
20
|
Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int J Mol Sci 2021; 22:ijms222413259. [PMID: 34948055 PMCID: PMC8703488 DOI: 10.3390/ijms222413259] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.
Collapse
|
21
|
Liu L, Fan Z, Rovira X, Xue L, Roux S, Brabet I, Xin M, Pin JP, Rondard P, Liu J. Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface. eLife 2021; 10:70188. [PMID: 34866572 PMCID: PMC8700296 DOI: 10.7554/elife.70188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are among the most promising drug targets. They often form homo- and heterodimers with allosteric cross-talk between receptor entities, which contributes to fine-tuning of transmembrane signaling. Specifically controlling the activity of GPCR dimers with ligands is a good approach to clarify their physiological roles and validate them as drug targets. Here, we examined the mode of action of positive allosteric modulators (PAMs) that bind at the interface of the transmembrane domains of the heterodimeric GABAB receptor. Our site-directed mutagenesis results show that mutations of this interface impact the function of the three PAMs tested. The data support the inference that they act at the active interface between both transmembrane domains, the binding site involving residues of the TM6s of the GABAB1 and the GABAB2 subunit. Importantly, the agonist activity of these PAMs involves a key region in the central core of the GABAB2 transmembrane domain, which also controls the constitutive activity of the GABAB receptor. This region corresponds to the sodium ion binding site in class A GPCRs that controls the basal state of the receptors. Overall, these data reveal the possibility of developing allosteric compounds able to specifically modulate the activity of GPCR homo- and heterodimers by acting at their transmembrane interface.
Collapse
Affiliation(s)
- Lei Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Zhiran Fan
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xavier Rovira
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Li Xue
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Salomé Roux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabelle Brabet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Mingxia Xin
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Maccioni P, Kaczanowska K, Lawrence H, Yun S, Bratzu J, Gessa GL, McDonald P, Colombo G. The Novel Positive Allosteric Modulator of the GABA B Receptor, KK-92A, Suppresses Alcohol Self-Administration and Cue-Induced Reinstatement of Alcohol Seeking in Rats. Front Cell Dev Biol 2021; 9:727576. [PMID: 34778249 PMCID: PMC8585307 DOI: 10.3389/fcell.2021.727576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the GABAB receptor (GABAB PAMs) are of interest in the addiction field due to their ability to suppress several behaviors motivated by drugs of abuse. KK-92A is a novel GABAB PAM found to attenuate intravenous self-administration of nicotine and reinstatement of nicotine seeking in rats. This present study was aimed at extending to alcohol the anti-addictive properties of KK-92A. To this end, Sardinian alcohol-preferring rats were trained to lever-respond for oral alcohol (15% v/v) or sucrose (0.7% w/v) under the fixed ratio (FR) 5 (FR5) schedule of reinforcement. Once lever-responding behavior had stabilized, rats were exposed to tests with acutely administered KK-92A under FR5 and progressive ratio schedules of reinforcement and cue-induced reinstatement of previously extinguished alcohol seeking. KK-92A effect on spontaneous locomotor activity was also evaluated. Treatment with 10 and 20 mg/kg KK-92A suppressed lever-responding for alcohol, amount of self-administered alcohol, and breakpoint for alcohol. Treatment with 20 mg/kg KK-92A reduced sucrose self-administration. Combination of per se ineffective doses of KK-92A (2.5 mg/kg) and the GABAB receptor agonist, baclofen (1 mg/kg), reduced alcohol self-administration. Treatment with 5, 10, and 20 mg/kg KK-92A suppressed reinstatement of alcohol seeking. Only treatment with 80 mg/kg KK-92A affected spontaneous locomotor activity. These results demonstrate the ability of KK-92A to inhibit alcohol-motivated behaviors in rodents and confirm that these effects are common to the entire class of GABAB PAMs. The remarkable efficacy of KK-92A is discussed in terms of its ago-allosteric properties.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Katarzyna Kaczanowska
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Harshani Lawrence
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Sang Yun
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|
23
|
Vlachou S. A Brief History and the Significance of the GABA B Receptor. Curr Top Behav Neurosci 2021; 52:1-17. [PMID: 34595739 DOI: 10.1007/7854_2021_264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABA type B (GABAB) receptors (GABABRs) are the only metabotropic G protein-coupled receptors for GABA and can be found distributed not only in the central nervous system, but also in the periphery. This chapter introduces important, fundamental knowledge related to GABABR function and the various potential therapeutic applications of the development of novel GABABR-active compounds, as documented through extensive studies presented in subsequent chapters of this Current Topic in Behavioral Neurosciences volume on the role of the neurobiology of GABABR function. The compounds that have received increased attention in the last few years compared to GABABR agonists and antagonists - the positive allosteric modulators - exhibit better pharmacological profiles and fewer side effects. As we continue to unveil the mystery of GABABRs at the molecular and cellular levels, we further understand the significance of these receptors. Future directions should aim for developing highly selective GABABR compounds for treating neuropsychiatric disorders and their symptomatology.
Collapse
Affiliation(s)
- Styliani Vlachou
- Neuropsychopharmacology Division, Behavioural Neuroscience Laboratory, School of Psychology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
24
|
Okimoto R, Ino K, Ishizu K, Takamatsu H, Sakamoto K, Yuyama H, Fuji H, Someya A, Ohtake A, Ishigami T, Masuda N, Takeda M, Kajioka S, Yoshimura N. Potentiation of Muscarinic M 3 Receptor Activation through a New Allosteric Site with a Novel Positive Allosteric Modulator ASP8302. J Pharmacol Exp Ther 2021; 379:64-73. [PMID: 34244231 DOI: 10.1124/jpet.121.000709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Muscarinic M3 (M3) receptors mediate a wide range of acetylcholine (ACh)-induced functions, including visceral smooth-muscle contraction and glandular secretion. Positive allosteric modulators (PAMs) can avoid various side effects of muscarinic agonists with their spatiotemporal receptor activation control and potentially better subtype selectivity. However, the mechanism of allosteric modulation of M3 receptors is not fully understood, presumably because of the lack of a potent and selective PAM. In this study, we investigated the pharmacological profile of ASP8302, a novel PAM of M3 receptors, and explored the principal site of amino-acid sequences in the human M3 receptor required for the potentiation of receptor activation. In cells expressing human M3 and M5 receptors, ASP8302 shifted the concentration-response curve (CRC) for carbachol to the lower concentrations with no significant effects on other subtypes. In a binding study with M3 receptor-expressing membrane, ASP8302 also shifted the CRC for ACh without affecting the binding of orthosteric agonists. Similar shifts in the CRC of contractions by multiple stimulants were also confirmed in isolated human bladder strips. Mutagenesis analysis indicated no interaction between ASP8302 and previously reported allosteric sites; however, it identified threonine 230 as the amino acid essential for the PAM effect of ASP8302. These results demonstrate that ASP8302 enhances the activation of human M3 receptors by interacting with a single amino acid distinct from the reported allosteric sites. Our findings suggest not only a novel allosteric site of M3 receptors but also the potential application of ASP8302 to diseases caused by insufficient M3 receptor activation. SIGNIFICANCE STATEMENT: The significance of this study is that the novel M3 receptor positive allosteric modulator ASP8302 enhances the activation of human M3 receptor by interacting with a residue distinct from the reported allosteric sites. The finding of Thr230 as a novel amino acid involved in the allosteric modulation of M3 receptors provides significant insight into further research of the mechanism of allosteric modulation of M3 and other muscarinic receptors.
Collapse
Affiliation(s)
- Risa Okimoto
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Katsutoshi Ino
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Kenichiro Ishizu
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Hajime Takamatsu
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Kazuyuki Sakamoto
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Hironori Yuyama
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Hideyoshi Fuji
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Akiyoshi Someya
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Akiyoshi Ohtake
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Takao Ishigami
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Noriyuki Masuda
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Masahiro Takeda
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Shunichi Kajioka
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| | - Naoki Yoshimura
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan (R.O., K.In., K.Is., H.T., K.S., H.Y., H.F., A.S., A.O., T.I., N.M., M.T.); Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan (S.K.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (N.Y.)
| |
Collapse
|
25
|
Haile CN, Carper BA, Nolen TL, Kosten TA. The GABA B receptor positive allosteric modulator ASP8062 reduces operant alcohol self-administration in male and female Sprague Dawley rats. Psychopharmacology (Berl) 2021; 238:2587-2600. [PMID: 34228136 DOI: 10.1007/s00213-021-05881-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE Pre-clinical evidence implicates the GABAergic system in mediating the reinforcing effects of alcohol and offers a therapeutic target for alcohol use disorder (AUD). The orthosteric GABAB receptor agonist baclofen decreases alcohol self-administration in animals and alcohol use in humans; however side effects limit its utility. Pre-clinical evidence shows positive allosteric GABAB receptor modulators also decrease alcohol self-administration without untoward side effects. OBJECTIVES We assessed the impact of the novel GABAB-positive allosteric modulator ASP8062 and baclofen on operant alcohol self-administration and their potential non-specific effects. METHODS The effects of ASP8062 (1 - 10 mg/kg, PO) and baclofen (0.3 - 3 mg/kg, IP) were evaluated in male and female rats lever pressing for alcohol (10%, w/v) under a fixed ratio 2 schedule of reinforcement. On the fourth consecutive day of vehicle, ASP8062 or baclofen administration, active and inactive lever presses, reinforcers earned, head entries, and estimated alcohol consumed were analyzed. Locomotor activity was assessed in separate groups of rats following dosing. RESULTS Both ASP8062 and baclofen decreased alcohol self-administration and amount consumed (g/kg) in male and female rats. ASP8062 decreased operant alcohol self-administration to a greater extent in male rats, whereas baclofen was more efficacious in female rats. ASP8062 did not alter locomotor activity in either sex, whereas baclofen (3.0 mg/kg) decreased activity in male rats yet (1.0 mg/kg) increased activity in female rats. CONCLUSIONS ASP8062 decreases alcohol reinforcement like baclofen but without non-specific effects which are influenced by sex. Results support further development of ASP8062 as a potential treatment for AUD in humans.
Collapse
Affiliation(s)
- Colin N Haile
- Department of Psychology & TIMES, University of Houston, 4849 Calhoun Rd, Houston, TX, 77204-6022, USA.
| | - Benjamin A Carper
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Tracy L Nolen
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Therese A Kosten
- Department of Psychology & TIMES, University of Houston, 4849 Calhoun Rd, Houston, TX, 77204-6022, USA
| |
Collapse
|
26
|
A nanobody activating metabotropic glutamate receptor 4 discriminates between homo- and heterodimers. Proc Natl Acad Sci U S A 2021; 118:2105848118. [PMID: 34385321 DOI: 10.1073/pnas.2105848118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is growing interest in developing biologics due to their high target selectivity. The G protein-coupled homo- and heterodimeric metabotropic glutamate (mGlu) receptors regulate many synapses and are promising targets for the treatment of numerous brain diseases. Although subtype-selective allosteric small molecules have been reported, their effects on the recently discovered heterodimeric receptors are often not known. Here, we describe a nanobody that specifically and fully activates homodimeric human mGlu4 receptors. Molecular modeling and mutagenesis studies revealed that the nanobody acts by stabilizing the closed active state of the glutamate binding domain by interacting with both lobes. In contrast, this nanobody does not activate the heterodimeric mGlu2-4 but acts as a pure positive allosteric modulator. These data further reveal how an antibody can fully activate a class C receptor and bring further evidence that nanobodies represent an alternative way to specifically control mGlu receptor subtypes.
Collapse
|
27
|
Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol Sin 2021; 42:1354-1367. [PMID: 33122823 PMCID: PMC8285414 DOI: 10.1038/s41401-020-00541-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are promising targets for multiple psychiatric and neurodegenerative disorders. Understanding the subtype selectivity of mGlu1 and mGlu5 allosteric sites is essential for the rational design of novel modulators with single- or dual-target mechanism of action. In this study, starting from the deposited mGlu1 and mGlu5 crystal structures, we utilized computational modeling approaches integrating docking, molecular dynamics simulation, and efficient post-trajectory analysis to reveal the subtype-selective mechanism of mGlu1 and mGlu5 to 10 diverse drug scaffolds representing known negative allosteric modulators (NAMs) in the literature. The results of modeling identified six pairs of non-conserved residues and four pairs of conserved ones as critical features to distinguish the selective NAMs binding to the corresponding receptors. In addition, nine pairs of residues are beneficial to the development of novel dual-target NAMs of group I metabotropic glutamate receptors. Furthermore, the binding modes of a reported dual-target NAM (VU0467558) in mGlu1 and mGlu5 were predicted to verify the identified residues that play key roles in the receptor selectivity and the dual-target binding. The results of this study can guide rational structure-based design of novel NAMs, and the approach can be generally applicable to characterize the features of selectivity for other G-protein-coupled receptors.
Collapse
|
28
|
Zhu JH, Zheng X, Peng X, Xu X, Margolskee R, Zhou XD. Regulation effect of lipopolysaccharide on the alternative splicing and function of sweet taste receptor T1R2. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:469-474. [PMID: 34409805 DOI: 10.7518/hxkq.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify the alternative splicing isoform of mouse sweet taste receptor T1R2, and investigate the effect of lipopolysaccharide (LPS) local injection on T1R2 alternative splicing and the function of sweet taste receptor as one of the bacterial virulence factors. METHODS After mouse taste bud tissue isolation was conducted, RNA extraction and reverse transcription polymerase chain reaction (PCR) were performed to identify the splicing isoform of T1R2. Heterologous expression experiments in vitro were utilized to detect how the T1R2 isoform regulated the function of sweet taste receptors. The effect of local LPS injection on the expression of the T1R2 isoform was measured by real-time fluorescent quantitative PCR. RESULTS T1R2 splicing isoform T1R2_Δe3p formed sweet taste receptors with T1R3, which could not be activated by sweet taste stimuli and significantly downregulated the function of canonical T1R2/T1R3. Local LPS injection significantly increased the expression ratio of T1R2_Δe3p in mouse taste buds. CONCLUSIONS LPS stimulation affects the alternative splicing of mouse sweet taste receptor T1R2 and significantly upregulates the expression of non-functional isoform T1R2_Δe3p, suggesting that T1R2 alternative splicing regulation may be one of the mechanisms by which microbial infection affects host taste perception.
Collapse
Affiliation(s)
- Jian-Hui Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | | | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
30
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
31
|
Porcu A, Mostallino R, Serra V, Melis M, Sogos V, Beggiato S, Ferraro L, Manetti F, Gianibbi B, Bettler B, Corelli F, Mugnaini C, Castelli MP. COR758, a negative allosteric modulator of GABA B receptors. Neuropharmacology 2021; 189:108537. [PMID: 33798546 DOI: 10.1016/j.neuropharm.2021.108537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Beatrice Gianibbi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
32
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
33
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
34
|
Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. Int J Mol Sci 2020; 21:ijms21228710. [PMID: 33218074 PMCID: PMC7698931 DOI: 10.3390/ijms21228710] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a purine nucleoside, responsible for the regulation of multiple physiological and pathological cellular and tissue functions by activation of four G protein-coupled receptors (GPCR), namely A1, A2A, A2B, and A3 adenosine receptors (ARs). In recent years, extensive progress has been made to elucidate the role of adenosine in pain regulation. Most of the antinociceptive effects of adenosine are dependent upon A1AR activation located at peripheral, spinal, and supraspinal sites. The role of A2AAR and A2BAR is more controversial since their activation has both pro- and anti-nociceptive effects. A3AR agonists are emerging as promising candidates for neuropathic pain. Although their therapeutic potential has been demonstrated in diverse preclinical studies, no AR ligands have so far reached the market. To date, novel pharmacological approaches such as adenosine regulating agents and allosteric modulators have been proposed to improve efficacy and limit side effects enhancing the effect of endogenous adenosine. This review aims to provide an overview of the therapeutic potential of ligands interacting with ARs and the adenosinergic system for the treatment of acute and chronic pain.
Collapse
|
35
|
Singh DR, Pandey K, Mishra AK, Pandey P, Vivcharuk V. Glutamate binding triggers monomerization of unliganded mGluR2 dimers. Arch Biochem Biophys 2020; 697:108632. [PMID: 33075300 DOI: 10.1016/j.abb.2020.108632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
The Metabotropic glutamate receptor 2 (mGluR2) is involved in several neurological and psychiatric disorders and is an attractive drug target. It is believed to form a strict dimer and the dimeric assembly is necessary for glutamate induced activation. Although many studies have focused on glutamate induced conformational changes, the dimerization propensity of mGluR2 with and without glutamate has never been investigated. Also, the role of the unstructured loop in dimerization of mGluR2 is not clear. Here, using Forster Resonance Energy Transfer (FRET) based assay in live cells we show that mGluR2 does not form a "strict dimer" rather it exists in a dynamic monomer-dimer equilibrium. The unstructured loop moderately destabilizes the dimers. Furthermore, binding of glutamate to mGluR2 induces conformational change that promotes monomerization of mGluR2. In the absence of an unstructured loop, mGluR2 neither undergoes conformational change nor monomerizes upon binding to glutamate.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Biochemistry, Weill Cornell Medical College, NYC, NY, USA; Department of Cell and Molecular Physiology, Stritch School of Medicine, Maywood, IL, USA; Department of Oncology, University of Wisconsin, Madison, WI, USA.
| | - Kalpana Pandey
- Department of Biochemistry, Weill Cornell Medical College, NYC, NY, USA; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| | - Ashish K Mishra
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pankaj Pandey
- Department of Zoology, Brahmanand College, Kanpur, UP, India
| | - Victor Vivcharuk
- Department of Biochemistry, Weill Cornell Medical College, NYC, NY, USA
| |
Collapse
|
36
|
Vizurraga A, Adhikari R, Yeung J, Yu M, Tall GG. Mechanisms of adhesion G protein-coupled receptor activation. J Biol Chem 2020; 295:14065-14083. [PMID: 32763969 DOI: 10.1074/jbc.rev120.007423] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a thirty-three-member subfamily of Class B GPCRs that control a wide array of physiological processes and are implicated in disease. AGPCRs uniquely contain large, self-proteolyzing extracellular regions that range from hundreds to thousands of residues in length. AGPCR autoproteolysis occurs within the extracellular GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the N terminus of the G protein-coupling seven-transmembrane-spanning bundle. GAIN domain-mediated self-cleavage is constitutive and produces two-fragment holoreceptors that remain bound at the cell surface. It has been of recent interest to understand how AGPCRs are activated in relation to their two-fragment topologies. Dissociation of the AGPCR fragments stimulates G protein signaling through the action of the tethered-peptide agonist stalk that is occluded within the GAIN domain in the holoreceptor form. AGPCRs can also signal independently of fragment dissociation, and a few receptors possess GAIN domains incapable of self-proteolysis. This has resulted in complex theories as to how these receptors are activated in vivo, complicating pharmacological advances. Currently, there is no existing structure of an activated AGPCR to support any of the theories. Further confounding AGPCR research is that many of the receptors remain orphans and lack identified activating ligands. In this review, we provide a detailed layout of the current theorized modes of AGPCR activation with discussion of potential parallels to mechanisms used by other GPCR classes. We provide a classification means for the ligands that have been identified and discuss how these ligands may activate AGPCRs in physiological contexts.
Collapse
Affiliation(s)
- Alexander Vizurraga
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jennifer Yeung
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Mugnaini C, Brizzi A, Mostallino R, Castelli MP, Corelli F. Structure optimization of positive allosteric modulators of GABA B receptors led to the unexpected discovery of antagonists/potential negative allosteric modulators. Bioorg Med Chem Lett 2020; 30:127443. [PMID: 32730942 DOI: 10.1016/j.bmcl.2020.127443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022]
Abstract
Positive allosteric modulators (PAMs) of GABAB receptor represent an interesting alternative to receptor agonists such as baclofen, as they act on the receptor in a more physiological way and thus are devoid of the side effects typically exerted by the agonists. Based on our interest in the identification of new GABAB receptor PAMs, we followed a merging approach to design new chemotypes starting from selected active compounds, such as GS39783, rac-BHFF, and BHF177, and we ended up with the synthesis of four different classes of compounds. The new compounds were tested alone or in the presence of 10 µM GABA using [35S]GTPγS binding assay to assess their functionality at the receptor. Unexpectedly, a number of them significantly inhibited GABA-stimulated GTPγS binding thus revealing a functional switch with respect to the prototype molecules. Further studies on selected compounds will clarify if they act as negative modulators of the receptor or, instead, as antagonists at the orthosteric binding site.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100 Siena, SI, Italy.
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100 Siena, SI, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042 Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042 Monserrato, Italy.
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100 Siena, SI, Italy
| |
Collapse
|
38
|
Meini S, Gado F, Stevenson LA, Digiacomo M, Saba A, Codini S, Macchia M, Pertwee RG, Bertini S, Manera C. PSNCBAM-1 analogs: Structural evolutions and allosteric properties at cannabinoid CB1 receptor. Eur J Med Chem 2020; 203:112606. [PMID: 32682199 DOI: 10.1016/j.ejmech.2020.112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023]
Abstract
Allosteric modulation of the CB1Rs could represent an alternative strategy for the treatment of diseases in which these receptors are involved, without the undesirable effects associated with their orthosteric stimulation. PSNCBAM-1 is a reference diaryl urea derivative that positively affects the binding affinity of orthosteric ligands (PAM) and negatively affects the functional activity of orthosteric ligands (NAM) at CB1Rs. In this work we reported the design, synthesis and biological evaluation of three different series of compounds, derived from structural modifications of PSNCBAM-1 and its analogs reported in the recent literature. Almost all the new compounds increased the percentage of binding affinity of CP55940 at CB1Rs, showing a PAM profile. When tested alone in the [35S]GTPγS functional assay, only a few derivatives lacked detectable activity, so were tested in the same functional assay in the presence of CP55940. Among these, compounds 11 and 18 proved to be functional NAMs at CB1Rs, dampening the orthosteric agonist-induced receptor functionality by approximately 30%. The structural features presented in this work provide new CB1R-allosteric modulators (with a profile similar to the reference compound PSNCBAM-1) and an extension of the structure-activity relationships for this type of molecule at CB1Rs.
Collapse
Affiliation(s)
- Serena Meini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lesley A Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical Pathology, Molecular Medicine and of the Critical Area, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Simone Codini
- Department of Surgical Pathology, Molecular Medicine and of the Critical Area, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| |
Collapse
|
39
|
Tanaka H, Negoro K, Koike T, Tsukamoto I, Yokoyama K, Maeda J, Inagaki Y, Shimoshige Y, Ino K, Ishizu K, Takahashi T. Discovery and structure-activity relationships study of positive allosteric modulators of the M3 muscarinic acetylcholine receptor. Bioorg Med Chem 2020; 28:115531. [DOI: 10.1016/j.bmc.2020.115531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
|
40
|
Saikia S, Bordoloi M, Sarmah R. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Curr Drug Targets 2020; 20:522-539. [PMID: 30394207 DOI: 10.2174/1389450120666181105152439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The largest family of drug targets in clinical trials constitute of GPCRs (G-protein coupled receptors) which accounts for about 34% of FDA (Food and Drug Administration) approved drugs acting on 108 unique GPCRs. Factors such as readily identifiable conserved motif in structures, 127 orphan GPCRs despite various de-orphaning techniques, directed functional antibodies for validation as drug targets, etc. has widened their therapeutic windows. The availability of 44 crystal structures of unique receptors, unexplored non-olfactory GPCRs (encoded by 50% of the human genome) and 205 ligand receptor complexes now present a strong foundation for structure-based drug discovery and design. The growing impact of polypharmacology for complex diseases like schizophrenia, cancer etc. warrants the need for novel targets and considering the undiscriminating and selectivity of GPCRs, they can fulfill this purpose. Again, natural genetic variations within the human genome sometimes delude the therapeutic expectations of some drugs, resulting in medication response differences and ADRs (adverse drug reactions). Around ~30 billion US dollars are dumped annually for poor accounting of ADRs in the US alone. To curb such undesirable reactions, the knowledge of established and currently in clinical trials GPCRs families can offer huge understanding towards the drug designing prospects including "off-target" effects reducing economical resource and time. The druggability of GPCR protein families and critical roles played by them in complex diseases are explained. Class A, class B1, class C and class F are generally established family and GPCRs in phase I (19%), phase II(29%), phase III(52%) studies are also reviewed. From the phase I studies, frizzled receptors accounted for the highest in trial targets, neuropeptides in phase II and melanocortin in phase III studies. Also, the bioapplications for nanoparticles along with future prospects for both nanomedicine and GPCR drug industry are discussed. Further, the use of computational techniques and methods employed for different target validations are also reviewed along with their future potential for the GPCR based drug discovery.
Collapse
Affiliation(s)
- Surovi Saikia
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Manobjyoti Bordoloi
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Rajeev Sarmah
- Allied Health Sciences, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| |
Collapse
|
41
|
Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering Anti-Cancer Drugs via Computational Methods. Front Pharmacol 2020; 11:733. [PMID: 32508653 PMCID: PMC7251168 DOI: 10.3389/fphar.2020.00733] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
New drug discovery has been acknowledged as a complicated, expensive, time-consuming, and challenging project. It has been estimated that around 12 years and 2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug development pipeline. How to reduce the research cost and speed up the development process of new drug discovery has become a challenging, urgent question for the pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a powerful, and promising technology for faster, cheaper, and more effective drug design. Recently, the rapid growth of computational tools for drug discovery, including anticancer therapies, has exhibited a significant and outstanding impact on anticancer drug design, and has also provided fruitful insights into the area of cancer therapy. In this work, we discussed the different subareas of the computer-aided drug discovery process with a focus on anticancer drugs.
Collapse
Affiliation(s)
- Wenqiang Cui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Adnane Aouidate
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shouguo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuliyang Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
42
|
Patel BS, Ravix J, Pabelick C, Prakash YS. Class C GPCRs in the airway. Curr Opin Pharmacol 2020; 51:19-28. [PMID: 32375079 DOI: 10.1016/j.coph.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Understanding and targeting of GPCRs remain a critical aspect of airway pharmacology and therapeutics for diseases such as asthma or COPD. Most attention has been on the large Class A GPCRs towards improved bronchodilation and blunting of remodeling. Better known in the central or peripheral nervous system, there is increasing evidence that Class C GPCRs which include metabotropic glutamate and GABA receptors, the calcium sensing receptor, sweet/umami taste receptors and a number of orphan receptors, can contribute to airway structure and function. In this review, we will summarize current state of knowledge regarding the pharmacology of Class C GPCRs, their expression and potential functions in the airways, and the application of pharmacological agents targeting this group in the context of airway diseases.
Collapse
Affiliation(s)
- Brijeshkumar S Patel
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina Pabelick
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
43
|
Liu G, Wu Y, Gao Y, Ju X, Ozoe Y. Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4760-4768. [PMID: 32243147 DOI: 10.1021/acs.jafc.9b08189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (GABARs) represent an important insecticide target. Currently used GABAR-targeting insecticides are non-competitive antagonists (NCAs) of these receptors. Recent studies have demonstrated that competitive antagonists (CAs) of GABARs have functions of inhibiting insect GABARs similar to NCAs and that they also exhibit insecticidal activity. CAs have different binding sites and different mechanisms of action compared to those of NCAs. Therefore, GABAR CAs should have the potential to be developed into novel insecticides, which could be used to overcome the developed resistance of insect pests to conventional NCA insecticides. Although research on insect GABAR CAs has lagged behind that on mammalian GABAR CAs, research on the CAs of insect ionotropic GABARs has made great progress in recent years, and several series of heterocyclic compounds, such as 3-isoxazolols and 6-iminopyridazines, have been identified as insect GABAR CAs. In this review, we briefly summarize the design strategies, structures, and biological activities of the novel GABAR CAs that have been found in the past decade. Updated information about GABAR CAs may benefit the design and development of novel GABAR-targeting insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yun Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
44
|
Pérez-Benito L, Llinas del Torrent C, Pardo L, Tresadern G. The computational modeling of allosteric modulation of metabotropic glutamate receptors. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:1-33. [DOI: 10.1016/bs.apha.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Li X, Slesinger PA. GABA B Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse. Curr Top Behav Neurosci 2020; 52:119-155. [PMID: 33442842 DOI: 10.1007/7854_2020_187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabotropic GABAB receptors (GABABRs) mediate slow inhibition and modulate synaptic plasticity throughout the brain. Dysfunction of GABABRs has been associated with psychiatric illnesses and addiction. Drugs of abuse alter GABAB receptor (GABABR) signaling in multiple brain regions, which partly contributes to the development of drug addiction. Recently, GABABR ligands and positive allosteric modulators (PAMs) have been shown to attenuate the initial rewarding effect of addictive substances, inhibit seeking and taking of these drugs, and in some cases, ameliorate drug withdrawal symptoms. The majority of the anti-addiction effects seen with GABABR modulation can be localized to ventral tegmental area (VTA) dopamine neurons, which receive complex inhibitory and excitatory inputs that are modified by drugs of abuse. Preclinical research suggests that GABABR PAMs are emerging as promising candidates for the treatment of drug addiction. Clinical studies on drug dependence have shown positive results with GABABR ligands but more are needed, and compounds with better pharmacokinetics and fewer side effects are critically needed.
Collapse
Affiliation(s)
- Xiaofan Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
46
|
Xu X, Chen Y, Fu Q, Ni D, Zhang J, Li X, Lu S. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. J Enzyme Inhib Med Chem 2019; 34:361-374. [PMID: 30734603 PMCID: PMC6327997 DOI: 10.1080/14756366.2018.1553167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphoinositide-dependent protein kinase-1 (PDK1) is an important protein in mediating the PI3K-AKT pathway and is thus identified as a promising target. The catalytic activity of PDK1 is tightly regulated by allosteric modulators, which bind to the PDK1 Interacting Fragment (PIF) pocket of the kinase domain that is topographically distinct from the orthosteric, ATP binding site. Allosteric modulators by attaching to the less conserved PIF-pocket have remarkable advantages such as higher selectivity, less side effect, and lower toxicity. Targeting allosteric PIF-pocket of PDK1 has become the focus of recent attention. In this review, we summarise the current advances in the structure-based discovery of PDK1 allosteric modulators. We will first present the three-dimensional structure of PDK1 and illustrate the allosteric regulatory mechanism of PDK1 through the modulation of the PIF-pocket. Then, the recent advances of PDK1 allosteric modulators targeting the PIF-pocket will be recapitulated detailly according to the structural similarity of allosteric modulators.
Collapse
Affiliation(s)
- Xinyuan Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Orgován Z, Ferenczy GG, Keserű GM. Fragment-Based Approaches for Allosteric Metabotropic Glutamate Receptor (mGluR) Modulators. Curr Top Med Chem 2019; 19:1768-1781. [PMID: 31393248 DOI: 10.2174/1568026619666190808150039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022]
Abstract
Metabotropic glutamate receptors (mGluR) are members of the class C G-Protein Coupled Receptors (GPCR-s) and have eight subtypes. These receptors are responsible for a variety of functions in the central and peripheral nervous systems and their modulation has therapeutic utility in neurological and psychiatric disorders. It was previously established that selective orthosteric modulation of these receptors is challenging, and this stimulated the search for allosteric modulators. Fragment-Based Drug Discovery (FBDD) is a viable approach to find ligands binding at allosteric sites owing to their limited size and interactions. However, it was also observed that the structure-activity relationship of allosteric modulators is often sharp and inconsistent. This can be attributed to the characteristics of the allosteric binding site of mGluRs that is a water channel where ligand binding is accompanied with induced fit and interference with the water network, both playing a role in receptor activation. In this review, we summarize fragment-based drug discovery programs on mGluR allosteric modulators and their contribution identifying of new mGluR ligands with better activity and selectivity.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| |
Collapse
|
48
|
Miguel E, Vekovischeva O, Kuokkanen K, Vesajoki M, Paasikoski N, Kaskinoro J, Myllymäki M, Lainiola M, Janhunen SK, Hyytiä P, Linden A, Korpi ER. GABA B receptor positive allosteric modulators with different efficacies affect neuroadaptation to and self-administration of alcohol and cocaine. Addict Biol 2019; 24:1191-1203. [PMID: 30421860 DOI: 10.1111/adb.12688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
Drugs of abuse induce widespread synaptic adaptations in the mesolimbic dopamine (DA) neurons. Such drug-induced neuroadaptations may constitute an initial cellular mechanism eventually leading to compulsive drug-seeking behavior. To evaluate the impact of GABAB receptors on addiction-related persistent neuroplasticity, we tested the ability of orthosteric agonist baclofen and two positive allosteric modulators (PAMs) of GABAB receptors to suppress neuroadaptations in the ventral tegmental area (VTA) and reward-related behaviors induced by ethanol and cocaine. A novel compound (S)-1-(5-fluoro-2,3-dihydro-1H-inden-2-yl)-4-methyl-6,7,8,9-tetrahydro-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one (ORM-27669) was found to be a GABAB PAM of low efficacy as agonist, whereas the reference compound (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) had a different allosteric profile being a more potent PAM in the calcium-based assay and an agonist, coupled with potent PAM activity, in the [35 S] GTPγS binding assay in rat and human recombinant receptors. Using autoradiography, the high-efficacy rac-BHFF and the low-efficacy ORM-27669 potentiated the effects of baclofen on [35 S] GTPγS binding with identical brain regional distribution. Treatment of mice with baclofen, rac-BHFF, or ORM-27669 failed to induce glutamate receptor neuroplasticity in the VTA DA neurons. Pretreatment with rac-BHFF at non-sedative doses effectively reversed both ethanol- and cocaine-induced plasticity and attenuated cocaine i.v. self-administration and ethanol drinking. Pretreatment with ORM-27669 only reversed ethanol-induced neuroplasticity and attenuated ethanol drinking but had no effects on cocaine-induced neuroplasticity or self-administration. These findings encourage further investigation of GABAB receptor PAMs with different efficacies in addiction models to develop novel treatment strategies for drug addiction.
Collapse
Affiliation(s)
- Elena Miguel
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Olga Vekovischeva
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Katja Kuokkanen
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Marja Vesajoki
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Nelli Paasikoski
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Janne Kaskinoro
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Mikko Myllymäki
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Mira Lainiola
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | | | - Petri Hyytiä
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Anni‐Maija Linden
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Esa R. Korpi
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| |
Collapse
|
49
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
50
|
Hu X, Provasi D, Ramsey S, Filizola M. Mechanism of μ-Opioid Receptor-Magnesium Interaction and Positive Allosteric Modulation. Biophys J 2019; 118:909-921. [PMID: 31676132 DOI: 10.1016/j.bpj.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
In the era of opioid abuse epidemics, there is an increased demand for understanding how opioid receptors can be allosterically modulated to guide the development of more effective and safer opioid therapies. Among the modulators of the μ-opioid (MOP) receptor, which is the pharmacological target for the majority of clinically used opioid drugs, are monovalent and divalent cations. Specifically, the monovalent sodium cation (Na+) has been known for decades to affect MOP receptor signaling by reducing agonist binding, whereas the divalent magnesium cation (Mg2+) has been shown to have the opposite effect, notwithstanding the presence of sodium chloride. Although ultra-high-resolution opioid receptor crystal structures have revealed a specific Na+ binding site and molecular dynamics (MD) simulation studies have supported the idea that this monovalent ion reduces agonist binding by stabilizing the receptor inactive state, the putative binding site of Mg2+ on the MOP receptor, as well as the molecular determinants responsible for its positive allosteric modulation of the receptor, are unknown. In this work, we carried out tens of microseconds of all-atom MD simulations to investigate the simultaneous binding of Mg2+ and Na+ cations to inactive and active crystal structures of the MOP receptor embedded in an explicit lipid-water environment and confirmed adequate sampling of Mg2+ ion binding with a grand canonical Monte Carlo MD method. Analyses of these simulations shed light on 1) the preferred binding sites of Mg2+ on the MOP receptor, 2) details of the competition between Mg2+ and Na+ cations for specific sites, 3) estimates of binding affinities, and 4) testable hypotheses of the molecular mechanism underlying the positive allosteric modulation of the MOP receptor by the Mg2+ cation.
Collapse
Affiliation(s)
- Xiaohu Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven Ramsey
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|