1
|
Christou M, Sargiannidou I, Papacharalambous R, Richter J, Tryfonos C, Christodoulou C, Kagiava A, Kleopa KA. A dose escalation and safety study of AAVrh10-mediated Schwann cell-targeted gene therapy for CMT1X. Neurotherapeutics 2025; 22:e00568. [PMID: 40055046 PMCID: PMC12047477 DOI: 10.1016/j.neurot.2025.e00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited demyelinating neuropathy caused by loss-of-function mutations in the GJB1 gene, encoding the gap junction protein connexin32 (Cx32). Cx32 plays a critical role in Schwann cell function and myelin formation in the peripheral nervous system. We have developed a gene replacement therapeutic approach using a humanized AAVrh10 vector construct expressing GJB1 under the control of the Schwann cell-specific human myelin protein zero (MPZ) promoter. Lumbar intrathecal injection of increasing AAVrh10-hMPZ.GJB1 doses (low: 1 × 1011 vg, standard: 2 × 1011 vg and high: 1 × 1012 vg) into Gjb1-null mice resulted in adequate, dose-dependent biodistribution of the vector in anterior lumbar roots and peripheral nerves, as well as high rates of Schwann cell-specific Cx32 expression in the standard- and high-dose groups. Both standard and high vector doses provided significant therapeutic benefit evaluated by behavioural, electrophysiological and morphological outcomes. Intrathecal delivery of AAVrh10-hMPZ.GJB1 induced the production of anti-AAVrh10 antibodies at 6 weeks post-injection. However, no histopathological or inflammatory changes were observed in neural or peripheral tissues, besides a mild increase in inflammatory cell numbers in sciatic nerves of mice treated with the high dose only. This study provides proof of concept for a clinically translatable AAVrh10-mediated gene therapy approach for CMT1X.
Collapse
Affiliation(s)
- Melina Christou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Revekka Papacharalambous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus; Centre for Neuromuscular Disorders and Neuropathology Lab, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Jan Richter
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Christina Tryfonos
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Christina Christodoulou
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus; Centre for Neuromuscular Disorders and Neuropathology Lab, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| |
Collapse
|
2
|
Huang Y, Wang J, Yang W, Hou F, Feng X. Precision therapeutic targets for HPV-positive cancers: an overview and new insights. Infect Agent Cancer 2025; 20:17. [PMID: 40069817 PMCID: PMC11900425 DOI: 10.1186/s13027-025-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing incidence and mortality rates of HPV-positive cancers, particularly HPV-positive head and neck cancer, in recent years have emphasized the pressing need for more efficacious treatment options. Recent studies have elucidated the molecular distinctions between HPV-positive and HPV-negative cancers, which are crucial for developing precise and effective therapeutic strategies. This review updates the most recent findings on the molecular variances between HPV-positive and HPV-negative cancers, evaluates current treatments for HPV-positive cancers, and summarizes emerging frontiers in HPV-targeted therapies aimed at developing more effective and precise interventions against these cancers.
Collapse
Affiliation(s)
- Yixi Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofaical Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Feifei Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Nair NN, Kline RA, Boyd I, Anikumar M, Thomson A, Lamont DJ, Gray GA, Wishart TM, Murray LM. Alterations in cardiac function correlate with a disruption in fatty acid metabolism in a mouse model of SMA. Hum Mol Genet 2025; 34:547-562. [PMID: 39810393 PMCID: PMC11891873 DOI: 10.1093/hmg/ddaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Spinal Muscular Atrophy is an autosomal dominant disease caused by mutations and deletions within the SMN1 gene, with predominantly childhood onset. Although primarily a motor neuron disease, defects in non-neuronal tissues are described in both patients and mouse models. Here, we have undertaken a detailed study of the heart in the Smn2B/- mouse models of SMA, and reveal a thinning of the ventriclar walls as previously described in more severe mouse models of SMA. However most structural changes are resolved by accounting for the smaller body size of the SMA mouse, as was also confirmed in the SMN∆7 model. Echocardiography revealed increased systolic function, which was particularly pronounced in subsets of mice and an increase in global longitudinal strain, collectively indicative of increased cardiac stress in the Smn2B/- mouse model. We have used TMT proteomics to perform a longitudinal study of the proteome of the hearts of Smn2B/- mice and reveal a progressive dysregulation of LXR/RXR signalling which is a regulator of lipid metabolism. We further show consistent perturbations in lipid metabolism in the Smn2B/-, Smn-/-;SMN2;SmnΔ7and SmnΔ7/Δ7;SMN2 mouse models of SMA on the day of birth. This work indicates that although structural changes in the heart can be overstated by failing to account for body size, there are functional defects which could predispose the heart to subsequent failure. We identify a common molecular signature across mouse models pointing to a dysregulation in lipid metabolism, and suggest that manipulation of LXR/RXR signalling offers an opportunity to impact upon these pathways.
Collapse
Affiliation(s)
- Nithya N Nair
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Euan McDonald Centre for Motor Neuron Disease Research, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Rachel A Kline
- Euan McDonald Centre for Motor Neuron Disease Research, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
| | - Imogen Boyd
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Meenakshi Anikumar
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Adrian Thomson
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, Dow Street, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Gillian A Gray
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Thomas M Wishart
- Euan McDonald Centre for Motor Neuron Disease Research, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
- Centre for Systems Health and Integrated Metabolic Research, Clifton Boulevard, Nottingham Trent University, Nottingham NG1 4GG, United Kingdom
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Euan McDonald Centre for Motor Neuron Disease Research, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
4
|
Vendredy L, De Winter V, Van Lent J, Orije J, Authier TDS, Katona I, Asselbergh B, Adriaenssens E, Weis J, Verhoye M, Timmerman V. RNA Interference Targeting Small Heat Shock Protein B8 Failed to Improve Distal Hereditary Motor Neuropathy in the Mouse Model. J Gene Med 2025; 27:e70013. [PMID: 39972648 DOI: 10.1002/jgm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Missense mutations in the HSPB8 gene, encoding the small heat shock protein B8, cause distal hereditary motor neuropathy (dHMN) or an axonal form of Charcot-Marie-Tooth disease (CMT subtype 2L). Mice expressing mutant Hspb8 (Lys141Asn) mimic the human disease, whereas mice lacking Hspb8 show no overt phenotype. We aimed to design an RNA interference treatment strategy that rescues the mutant HSPB8 neuronal and muscle phenotype in patient-derived motor neurons and in a knock-in mouse model of CMT2L/dHMN. METHODS We optimized RNA interference sequences targeting both human HSPB8 and mouse HspB8 transcripts with the aim to alleviate disease symptoms. We used human induced pluripotent stem cells and the Hspb8 knock-in mouse model. We designed lenti- and adeno-associated viral vectors that contained the short-hairpin RNA constructs. We performed expression and microscopy studies, magnetic resonance imaging, behaviour analysis and electrophysiology. RESULTS In CMT2L patient-derived induced pluripotent stem cells differentiated towards motor neurons, reducing the HSPB8 expression with a short-hairpin RNA (shRNA), directed towards the 3' untranslated region (3'UTR), ameliorated the morphology and fragmentation of mitochondria. The AAV9-mediated treatment of the 3'UTR shRNA construct, under neuron-specific regulation, in Hspb8 knock-in mice showed inconclusive results towards functional improvement upon expression studies, magnetic resonance imaging and neuropathological findings. CONCLUSIONS Given the limited beneficial effect of the treatment, the RNA interference-mediated reduction of HSPB8/Hspb8 expression might not be the best therapeutic strategy to treat dHMN/CMT2L, unless a higher viral load and earlier treatment can be applied to the mouse model.
Collapse
Affiliation(s)
- Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jasmien Orije
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Bio-Imaging, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tatiana Da Silva Authier
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Neurology, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marleen Verhoye
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Bio-Imaging, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth (CMT) neuropathies are rare, genetically heterogeneous and progressive diseases for which there are no approved treatments and their management remains mostly supportive and symptomatic. This review is intended to provide an update on recent developments in gene therapies for different CMT neuropathies. RECENT FINDINGS Increasing knowledge of disease pathomechanisms underlying several CMT types has facilitated the development of promising viral and nonviral gene therapy approaches. Some of these therapies are currently approaching the crucial step of moving from the bench to the clinic, having passed the proof-of-concept stage in rodent models and some also in larger animals. However, questions of optimal delivery route and dose, off-target effects, and possible payload toxicity remain to be clarified for several of these approaches. Furthermore, limited resources, the rarity of most CMT subtypes, and issues of safety and regulatory requirements, create the need for consensus guidelines and optimal clinical trial design. SUMMARY Promising gene therapies have been developed for several CMT neuropathies, with proof-of-principle demonstrated in relevant disease models. Advantages and drawbacks of each approach are discussed and remaining challenges are highlighted. Furthermore, we suggest important parameters that should be considered in order to successfully translate them into the clinic.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
6
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
7
|
Rzepnikowska W, Kaminska J, Kochański A. The molecular mechanisms that underlie IGHMBP2-related diseases. Neuropathol Appl Neurobiol 2024; 50:e13005. [PMID: 39119929 DOI: 10.1111/nan.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
8
|
Jablonka S, Yildirim E. Disease Mechanisms and Therapeutic Approaches in SMARD1-Insights from Animal Models and Cell Models. Biomedicines 2024; 12:845. [PMID: 38672198 PMCID: PMC11048220 DOI: 10.3390/biomedicines12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal childhood motoneuron disease caused by mutations in the IGHMBP2 gene. It is characterized by muscle weakness, initially affecting the distal extremities due to the degeneration of spinal α-motoneurons, and respiratory distress, due to the paralysis of the diaphragm. Infantile forms with a severe course of the disease can be distinguished from juvenile forms with a milder course. Mutations in the IGHMBP2 gene have also been found in patients with peripheral neuropathy Charcot-Marie-Tooth type 2S (CMT2S). IGHMBP2 is an ATP-dependent 5'→3' RNA helicase thought to be involved in translational mechanisms. In recent years, several animal models representing both SMARD1 forms and CMT2S have been generated to initially study disease mechanisms. Later, the models showed very well that both stem cell therapies and the delivery of the human IGHMBP2 cDNA by AAV9 approaches (AAV9-IGHMBP2) can lead to significant improvements in disease symptoms. Therefore, the SMARD1 animal models, in addition to the cellular models, provide an inexhaustible source for obtaining knowledge of disease mechanisms, disease progression at the cellular level, and deeper insights into the development of therapies against SMARD1.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany;
| | | |
Collapse
|
9
|
Rizzo F, Bono S, Ruepp MD, Salani S, Ottoboni L, Abati E, Melzi V, Cordiglieri C, Pagliarani S, De Gioia R, Anastasia A, Taiana M, Garbellini M, Lodato S, Kunderfranco P, Cazzato D, Cartelli D, Lonati C, Bresolin N, Comi G, Nizzardo M, Corti S. Combined RNA interference and gene replacement therapy targeting MFN2 as proof of principle for the treatment of Charcot-Marie-Tooth type 2A. Cell Mol Life Sci 2023; 80:373. [PMID: 38007410 PMCID: PMC10676309 DOI: 10.1007/s00018-023-05018-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.
Collapse
Affiliation(s)
- Federica Rizzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Bono
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marc David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sabrina Salani
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Ottoboni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Di Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy
| | - Serena Pagliarani
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta De Gioia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Anastasia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Taiana
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy
| | - Paolo Kunderfranco
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy
| | - Daniele Cazzato
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy.
| |
Collapse
|
10
|
Fay A. Spinal Muscular Atrophy: A (Now) Treatable Neurodegenerative Disease. Pediatr Clin North Am 2023; 70:963-977. [PMID: 37704354 DOI: 10.1016/j.pcl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Spinal muscular atrophy (SMA) is a progressive disease of the lower motor neurons associated with recessive loss of the SMN1 gene, and which leads to worsening weakness and disability, and is fatal in its most severe forms. Over the past six years, three treatments have emerged, two drugs that modify exon splicing and one gene therapy, which have transformed the management of this disease. When treated pre-symptomatically, many children show normal early motor development, and the benefits extend from the newborn period to adulthood. Similar treatment approaches are now under investigation for rare types of SMA associated with genes beyond SMN1.
Collapse
Affiliation(s)
- Alex Fay
- University of California, San Francisco, 1875 4th Street., Suite 5A, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Sierra-Delgado JA, Sinha-Ray S, Kaleem A, Ganjibakhsh M, Parvate M, Powers S, Zhang X, Likhite S, Meyer K. In Vitro Modeling as a Tool for Testing Therapeutics for Spinal Muscular Atrophy and IGHMBP2-Related Disorders. BIOLOGY 2023; 12:867. [PMID: 37372153 DOI: 10.3390/biology12060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Spinal Muscular Atrophy (SMA) is the leading genetic cause of infant mortality. The most common form of SMA is caused by mutations in the SMN1 gene, located on 5q (SMA). On the other hand, mutations in IGHMBP2 lead to a large disease spectrum with no clear genotype-phenotype correlation, which includes Spinal Muscular Atrophy with Muscular Distress type 1 (SMARD1), an extremely rare form of SMA, and Charcot-Marie-Tooth 2S (CMT2S). We optimized a patient-derived in vitro model system that allows us to expand research on disease pathogenesis and gene function, as well as test the response to the AAV gene therapies we have translated to the clinic. We generated and characterized induced neurons (iN) from SMA and SMARD1/CMT2S patient cell lines. After establishing the lines, we treated the generated neurons with AAV9-mediated gene therapy (AAV9.SMN (Zolgensma) for SMA and AAV9.IGHMBP2 for IGHMBP2 disorders (NCT05152823)) to evaluate the response to treatment. The iNs of both diseases show a characteristic short neurite length and defects in neuronal conversion, which have been reported in the literature before with iPSC modeling. SMA iNs respond to treatment with AAV9.SMN in vitro, showing a partial rescue of the morphology phenotype. For SMARD1/CMT2S iNs, we were able to observe an improvement in the neurite length of neurons after the restoration of IGHMBP2 in all disease cell lines, albeit to a variable extent, with some lines showing better responses to treatment than others. Moreover, this protocol allowed us to classify a variant of uncertain significance on IGHMBP2 on a suspected SMARD1/CMT2S patient. This study will further the understanding of SMA, and SMARD1/CMT2S disease in particular, in the context of variable patient mutations, and might further the development of new treatments, which are urgently needed.
Collapse
Affiliation(s)
| | - Shrestha Sinha-Ray
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Meysam Ganjibakhsh
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mohini Parvate
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Samantha Powers
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
12
|
Martin PB, Holbrook SE, Hicks AN, Hines TJ, Bogdanik LP, Burgess RW, Cox GA. Clinically relevant mouse models of Charcot-Marie-Tooth type 2S. Hum Mol Genet 2023; 32:1276-1288. [PMID: 36413117 PMCID: PMC10077500 DOI: 10.1093/hmg/ddac283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Charcot-Marie-Tooth disease is an inherited peripheral neuropathy that is clinically and genetically heterogenous. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause the infantile motor neuron disease spinal muscular atrophy with respiratory distress type 1 (SMARD1), and, more recently, juvenile-onset Charcot-Marie-Tooth disease type 2S (CMT2S). Using CRISPR-cas9 mutagenesis, we developed the first mouse models of CMT2S [p.Glu365del (E365del) and p.Tyr918Cys (Y918C)]. E365del is the first CMT2S mouse model to be discovered and Y918C is the first human CMT2S allele knock-in model. Phenotypic characterization of the homozygous models found progressive peripheral motor and sensory axonal degeneration. Neuromuscular and locomotor assays indicate that both E365del and Y918C mice have motor deficits, while neurobehavioral characterization of sensory function found that E365del mutants have mechanical allodynia. Analysis of femoral motor and sensory nerves identified axonal degeneration, which does not impact nerve conduction velocities in E365del mice, but it does so in the Y918C model. Based on these results, the E365del mutant mouse, and the human allele knock-in, Y918C, represent mouse models with the hallmark phenotypes of CMT2S, which will be critical for understanding the pathogenic mechanisms of IGHMBP2. These mice will complement existing Ighmbp2 alleles modeling SMARD1 to help understand the complex phenotypic and genotypic heterogeneity that is observed in patients with IGHMBP2 variants.
Collapse
Affiliation(s)
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
13
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
14
|
Beloribi-Djefaflia S, Attarian S. Treatment of Charcot-Marie-Tooth neuropathies. Rev Neurol (Paris) 2023; 179:35-48. [PMID: 36588067 DOI: 10.1016/j.neurol.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/31/2022]
Abstract
Charcot-Marie-Tooth (CMT) is a heterogeneous group of inherited neuropathies that affect the peripheral nerves and slowly cause progressive disability. Currently, there is no effective therapy. Patients' management is based on rehabilitation and occupational therapy, fatigue, and pain treatment with regular follow-up according to the severity of the disease. In the last three decades, much progress has been made to identify mutations involved in the different types of CMT, decipher the pathophysiology of the disease, and identify key genes and pathways that could be targeted to propose new therapeutic strategies. Genetic therapy is one of the fields of interest to silence genes such as PMP22 in CMT1A or to express GJB1 in CMT1X. Among the most promising molecules, inhibitors of the NRG-1 axis and modulators of UPR or the HDACs enzyme family could be used in different types of CMT.
Collapse
Affiliation(s)
- S Beloribi-Djefaflia
- Reference center for neuromuscular disorders and ALS, AP-HM, CHU La Timone, Marseille, France
| | - S Attarian
- Reference center for neuromuscular disorders and ALS, AP-HM, CHU La Timone, Marseille, France; FILNEMUS, European Reference Network for Rare Diseases (ERN), Marseille, France; Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005 Marseille, France.
| |
Collapse
|
15
|
Egan ME. Non-Modulator Therapies: Developing a Therapy for Every Cystic Fibrosis Patient. Clin Chest Med 2022; 43:717-725. [PMID: 36344076 DOI: 10.1016/j.ccm.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy brings hope to most patients with cystic fibrosis (CF), but not all. For approximately 12% of CF patients with premature termination codon mutations, large deletions, insertions, and frameshifts, the CFTR modulator therapy is not effective. Many believe that genetic-based therapies such as RNA therapies, DNA therapies, and gene editing technologies will be needed to treat mutations that are not responsive to modulator therapy. Delivery of these therapeutic agents to affected cells is the major challenge that will need to be overcome if we are to harness the power of these emerging therapies for the treatment of CF.
Collapse
Affiliation(s)
- Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, Pediatric Pulmonary Allergy Immunology and Sleep Medicine, Yale Cystic Fibrosis Center, School of Medicine, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Mendonça RH, Zanoteli E. Gene therapy in neuromuscular disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:249-256. [PMID: 35976325 PMCID: PMC9491441 DOI: 10.1590/0004-282x-anp-2022-s135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Monogenic neuromuscular disorders are potentially treatable through gene therapy. Using viral vectors, a therapeutic transgene aims to restore normal levels of a protein not produced by the defective gene, or to silence a gene whose expression leads to toxic effects. Spinal Muscular Atrophy (SMA) is a good example of a monogenic disease that currently has an AAV9-based vector gene therapy as a therapeutic option. In this review, we intend to discuss the viral vectors and their mechanisms of action, in addition to reviewing the clinical trials that supported the approval of gene therapy (AVXS-101) for SMA as well as neuromuscular diseases that are potentially treatable with gene replacement therapy.
Collapse
Affiliation(s)
- Rodrigo Holanda Mendonça
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | - Edmar Zanoteli
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Smith CE, Lorson MA, Ricardez Hernandez SM, Al Rawi Z, Mao J, Marquez J, Villalón E, Keilholz AN, Smith CL, Garro-Kacher MO, Morcos T, Davis DJ, Bryda EC, Nichols NL, Lorson CL. The Ighmbp2D564N mouse model is the first SMARD1 model to demonstrate respiratory defects. Hum Mol Genet 2022; 31:1293-1307. [PMID: 34726235 PMCID: PMC9029233 DOI: 10.1093/hmg/ddab317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type I (SMARD1) is a neurodegenerative disease defined by respiratory distress, muscle atrophy and sensory and autonomic nervous system defects. SMARD1 is a result of mutations within the IGHMBP2 gene. We have generated six Ighmbp2 mouse models based on patient-derived mutations that result in SMARD1 and/or Charcot-Marie Tooth Type 2 (CMT2S). Here we describe the characterization of one of these models, Ighmbp2D564N (human D565N). The Ighmbp2D564N/D564N mouse model mimics important aspects of the SMARD1 disease phenotype, including motor neuron degeneration and muscle atrophy. Ighmbp2D564N/D564N is the first SMARD1 mouse model to demonstrate respiratory defects based on quantified plethysmography analyses. SMARD1 disease phenotypes, including the respiratory defects, are significantly diminished by intracerebroventricular (ICV) injection of ssAAV9-IGHMBP2 and the extent of phenotypic restoration is dose-dependent. Collectively, this model provides important biological insight into SMARD1 disease development.
Collapse
Affiliation(s)
- Caley E Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Monique A Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sara M Ricardez Hernandez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zayd Al Rawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jiude Mao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jose Marquez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Amy N Keilholz
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Catherine L Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mona O Garro-Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Toni Morcos
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, MO 65211, USA
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Animal Modeling Core, University of Missouri, Columbia, MO 65211, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Shababi M, Smith CE, Ricardez Hernandez SM, Marquez J, Al Rawi Z, Villalón E, Farris KD, Garro-Kacher MO, Lorson CL. Defining the optimal dose and therapeutic window in SMA with respiratory distress type I model mice, FVB/NJ- Ighmpb2 nmd-2J. Mol Ther Methods Clin Dev 2021; 23:23-32. [PMID: 34553000 PMCID: PMC8426477 DOI: 10.1016/j.omtm.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disorder that develops in infancy and arises from mutation of the immunoglobulin helicase μ-binding protein 2 (IGHMBP2) gene. Whereas IGHMBP2 is ubiquitously expressed, loss or reduction of function leads to alpha motor neuron loss and skeletal muscle atrophy. We previously developed a gene therapy strategy for SMARD1 using a single-stranded AAV9-IGHMBP2 vector and compared two different delivery methods in a validated SMARD1 mouse model. An important question in the field relates to the temporal requirements for this or any potential treatment. To examine the therapeutic window, we utilized our recently developed SMARD1 model, FVB/NJ-Ighmpb2 nmd-2J , to deliver AAV9-IGHMBP2 at four different time points starting at post-natal day 2 (P2) through P8. At each time point, significant improvements were observed in survival, weight gain, and motor function. Similarly, treatment improved important hallmarks of disease, including motor unit pathology. Whereas improvements were more pronounced in the early-treatment groups, even the later-treatment groups displayed significant phenotypic improvements. This work suggests that an effective gene therapy strategy could provide benefits to pre-symptomatic and early-symptomatic individuals, thereby expanding the potential therapeutic window for SMARD1.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Caley E. Smith
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | - Jose Marquez
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zayd Al Rawi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - K. David Farris
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Mona O. Garro-Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Rzepnikowska W, Kochański A. Models for IGHMBP2-associated diseases: an overview and a roadmap for the future. Neuromuscul Disord 2021; 31:1266-1278. [PMID: 34785121 DOI: 10.1016/j.nmd.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Models are practical tools with which to establish the basic aspects of a diseases. They allow systematic research into the significance of mutations, of cellular and molecular pathomechanisms, of therapeutic options and of functions of diseases associated proteins. Thus, disease models are an integral part of the study of enigmatic proteins such as immunoglobulin mu-binding protein 2 (IGHMBP2). IGHMBP2 has been well defined as a helicase, however there is little known about its role in cellular processes. Notably, it is unclear why changes in such an abundant protein lead to specific neuronal disorders including spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S). SMARD1 is caused by a loss of motor neurons in the spinal cord that results in muscle atrophy and is accompanied by rapid respiratory failure. In contrast, CMT2S manifests as a severe neuropathy, but typically without critical breathing problems. Here, we present the clinical manifestation of IGHMBP2 mutations, function of protein and models that may be used for the study of IGHMBP2-associated disorders. We highlight the strengths and weaknesses of specific models and discuss the orthologs of IGHMBP2 that are found in different systems with regard to their similarity to human IGHMBP2.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
20
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
21
|
Egan ME. Emerging technologies for cystic fibrosis transmembrane conductance regulator restoration in all people with CF. Pediatr Pulmonol 2021; 56 Suppl 1:S32-S39. [PMID: 32681713 PMCID: PMC8114183 DOI: 10.1002/ppul.24965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Although effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy has the potential to change the lives of many patients with cystic fibrosis (CF), it is unlikely that these drugs will be a game changing therapy for all. There are about 10% of patients with CF who don't produce a mutant protein tomodulate, potentiate, or optimize and for these patients such therapies are unlikely to be of significant benefit. There is a need to develop new therapeutic approaches that can work for this patient population and can advance CF therapies. These new therapies will be genetic-based therapies and each approach will result in functional CFTR protein inpreviously affected CF cells. In this review we will examine the potential of RNA therapies, gene transfer therapies, and gene editing therapies for the treatment of CF as well as the challenges that will need to be facedas we harness the power of these emerging therapies towards a one-time cure.
Collapse
Affiliation(s)
- Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
22
|
Perego MGL, Galli N, Nizzardo M, Govoni A, Taiana M, Bresolin N, Comi GP, Corti S. Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cell Mol Life Sci 2020; 77:3351-3367. [PMID: 32123965 PMCID: PMC11104977 DOI: 10.1007/s00018-020-03492-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease that is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, infants with the severe form of the disease die before 2 years of age. SMARD1 is caused by mutations in the IGHMBP2 gene that determine a deficiency in the encoded IGHMBP2 protein, which plays a critical role in motor neuron survival because of its functions in mRNA processing and maturation. Although it is rare, SMARD1 is the second most common motor neuron disease of infancy, and currently, treatment is primarily supportive. No effective therapy is available for this devastating disease, although multidisciplinary care has been an essential element of the improved quality of life and life span extension in these patients in recent years. The objectives of this review are to discuss the current understanding of SMARD1 through a summary of the presently known information regarding its clinical presentation and pathogenesis and to discuss emerging therapeutic approaches. Advances in clinical care management have significantly extended the lives of individuals affected by SMARD1 and research into the molecular mechanisms that lead to the disease has identified potential strategies for intervention that target the underlying causes of SMARD1. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to halt or possibly prevent neurodegenerative disease in SMARD1 patients. The recent approval of the first gene therapy approach for SMA associated with mutations in the SMN1 gene may be a turning point for the application of this strategy for SMARD1 and other genetic neurological diseases.
Collapse
Affiliation(s)
- Martina G L Perego
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Noemi Galli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michela Taiana
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
23
|
Rzepnikowska W, Kaminska J, Kabzińska D, Binięda K, Kochański A. A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases. Int J Mol Sci 2020; 21:ijms21124277. [PMID: 32560077 PMCID: PMC7352270 DOI: 10.3390/ijms21124277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps. In this review, we discuss the advantages and disadvantages of yeast as a model system in which to study CMT diseases. We show how this single-cell organism may be used to discriminate between pathogenic variants, to uncover the mechanism of pathogenesis, and to discover new therapies for CMT disease.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Katarzyna Binięda
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
- Correspondence:
| |
Collapse
|
24
|
Morelli KH, Hatton CL, Harper SQ, Burgess RW. Gene therapies for axonal neuropathies: Available strategies, successes to date, and what to target next. Brain Res 2020; 1732:146683. [PMID: 32001243 DOI: 10.1016/j.brainres.2020.146683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Nearly one-hundred loci in the human genome have been associated with different forms of Charcot-Marie-Tooth disease (CMT) and related inherited neuropathies. Despite this wealth of gene targets, treatment options are still extremely limited, and clear "druggable" pathways are not obvious for many of these mutations. However, recent advances in gene therapies are beginning to circumvent this challenge. Each type of CMT is a monogenic disorder, and the cellular targets are usually well-defined and typically include peripheral neurons or Schwann cells. In addition, the genetic mechanism is often also clear, with loss-of-function mutations requiring restoration of gene expression, and gain-of-function or dominant-negative mutations requiring silencing of the mutant allele. These factors combine to make CMT a good target for developing genetic therapies. Here we will review the state of relatively established gene therapy approaches, including viral vector-mediated gene replacement and antisense oligonucleotides for exon skipping, altering splicing, and gene knockdown. We will also describe earlier stage approaches for allele-specific knockdown and CRIPSR/Cas9 gene editing. We will next describe how these various approaches have been deployed in clinical and preclinical studies. Finally, we will evaluate various forms of CMT as candidates for gene therapy based on the current understanding of their genetics, cellular/tissue targets, validated animal models, and availability of patient populations and natural history data.
Collapse
Affiliation(s)
- Kathryn H Morelli
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
25
|
Saladini M, Nizzardo M, Govoni A, Taiana M, Bresolin N, Comi GP, Corti S. Spinal muscular atrophy with respiratory distress type 1: Clinical phenotypes, molecular pathogenesis and therapeutic insights. J Cell Mol Med 2019; 24:1169-1178. [PMID: 31802621 PMCID: PMC6991628 DOI: 10.1111/jcmm.14874] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/14/2019] [Accepted: 11/10/2019] [Indexed: 01/17/2023] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disorder caused by mutations in the IGHMBP2 gene, which encodes immunoglobulin μ‐binding protein 2, leading to progressive spinal motor neuron degeneration. We review the data available in the literature about SMARD1. The vast majority of patients show an onset of typical symptoms in the first year of life. The main clinical features are distal muscular atrophy and diaphragmatic palsy, for which permanent supportive ventilation is required. No effective treatment is available yet, but novel therapeutic approaches, such as gene therapy, have shown encouraging results in preclinical settings and thus represent possible methods for treating SMARD1. Significant advancements in the understanding of both the SMARD1 clinical spectrum and its molecular mechanisms have allowed the rapid translation of preclinical therapeutic strategies to human patients to improve the poor prognosis of this devastating disease.
Collapse
Affiliation(s)
- Matteo Saladini
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Alessandra Govoni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Michela Taiana
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and rare diseases unit, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
26
|
Shababi M, Smith CE, Kacher M, Alrawi Z, Villalon E, Davis D, Bryda EC, Lorson CL. Development of a novel severe mouse model of spinal muscular atrophy with respiratory distress type 1: FVB-nmd. Biochem Biophys Res Commun 2019; 520:341-346. [PMID: 31604525 PMCID: PMC6936219 DOI: 10.1016/j.bbrc.2019.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
Spinal Muscular Atrophy with Respiratory Distress type 1 (SMARD1) is an autosomal recessive disease that develops early during infancy. The gene responsible for disease development is immunoglobulin helicase μ-binding protein 2 (IGHMBP2). IGHMBP2 is a ubiquitously expressed gene but its mutation results in the loss of alpha-motor neurons and subsequent muscle atrophy initially of distal muscles. The current SMARD1 mouse model arose from a spontaneous mutation originally referred to as neuromuscular degeneration (nmd). The nmd mice have the C57BL/6 genetic background and contain an A to G mutation in intron 4 of the endogenous Ighmbp2 gene. This mutation causes aberrant splicing, resulting in only 20-25% of full-length functional protein. Several congenital conditions including hydrocephalus are common in the C57BL/6 background, consistent with our previous observations when developing a gene therapy approach for SMARD1. Additionally, a modifier allele exists on chromosome 13 in nmd mice that can partially suppress the phenotype, resulting in some animals that have extended life spans (up to 200 days). To eliminate the intrinsic complications of the C57BL/6 background and the variation in survival due to the genetic modifier effect, we created a new SMARD1 mouse model that contains the same intron 4 mutation in Ighmbp2 as nmd mice but is now on a FVB congenic background. FVB-nmd are consistently more severe than the original nmd mice with respect to survival, weigh and motor function. The relatively short life span (18-21 days) of FVB-nmd mice allows us to monitor therapeutic efficacy for a variety of novel therapeutics in a timely manner without the complication of the small percentage of longer-lived animals that were observed in our colony of nmd mice.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Caley E. Smith
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Mona Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Zayd Alrawi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Eric Villalon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Daniel Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Elizabeth C. Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
27
|
CSF transplantation of a specific iPSC-derived neural stem cell subpopulation ameliorates the disease phenotype in a mouse model of spinal muscular atrophy with respiratory distress type 1. Exp Neurol 2019; 321:113041. [DOI: 10.1016/j.expneurol.2019.113041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
28
|
Tadenev ALD, Burgess RW. Model validity for preclinical studies in precision medicine: precisely how precise do we need to be? Mamm Genome 2019; 30:111-122. [PMID: 30953144 PMCID: PMC6606658 DOI: 10.1007/s00335-019-09798-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
The promise of personalized medicine is that each patient’s treatment can be optimally tailored to their disease. In turn, their disease, as well as their response to the treatment, is determined by their genetic makeup and the “environment,” which relates to their general health, medical history, personal habits, and surroundings. Developing such optimized treatment strategies is an admirable goal and success stories include examples such as switching chemotherapy agents based on a patient’s tumor genotype. However, it remains a challenge to apply precision medicine to diseases for which there is no known effective treatment. Such diseases require additional research, often using experimentally tractable models. Presumably, models that recapitulate as much of the human pathophysiology as possible will be the most predictive. Here we will discuss the considerations behind such “precision models.” What sort of precision is required and under what circumstances? How can the predictive validity of such models be improved? Ultimately, there is no perfect model, but our continually improving ability to genetically engineer a variety of systems allows the generation of more and more precise models. Furthermore, our steadily increasing awareness of risk alleles, genetic background effects, multifactorial disease processes, and gene by environment interactions also allows increasingly sophisticated models that better reproduce patients’ conditions. In those cases where the research has progressed sufficiently far, results from these models appear to often be translating to effective treatments for patients.
Collapse
Affiliation(s)
- Abigail L D Tadenev
- The Center for Precision Genetics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert W Burgess
- The Center for Precision Genetics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
29
|
Barbullushi K, Abati E, Rizzo F, Bresolin N, Comi GP, Corti S. Disease Modeling and Therapeutic Strategies in CMT2A: State of the Art. Mol Neurobiol 2019; 56:6460-6471. [DOI: 10.1007/s12035-019-1533-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
|
30
|
Comparative AAV-eGFP Transgene Expression Using Vector Serotypes 1-9, 7m8, and 8b in Human Pluripotent Stem Cells, RPEs, and Human and Rat Cortical Neurons. Stem Cells Int 2019; 2019:7281912. [PMID: 30800164 PMCID: PMC6360060 DOI: 10.1155/2019/7281912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/30/2018] [Accepted: 11/16/2018] [Indexed: 01/03/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ across in vitro and ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.
Collapse
|
31
|
Villalón E, Shababi M, Kline R, Lorson ZC, Florea KM, Lorson CL. Selective vulnerability in neuronal populations in nmd/SMARD1 mice. Hum Mol Genet 2019; 27:679-690. [PMID: 29272405 DOI: 10.1093/hmg/ddx434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease causing distal limb muscle atrophy that progresses proximally and is accompanied by diaphragmatic paralysis. Neuromuscular junction (NMJ) alterations have been reported in muscles of SMARD1 model mice, known as nmd mice, with varying degrees of severity, suggesting that different muscles are specifically and selectively resistant or susceptible to denervation. To evaluate the extent of NMJ pathology in a broad range of muscles, a panel of axial and appendicular muscles were isolated and immunostained from nmd mice. These analyses revealed that selective distal appendage muscles were highly vulnerable to denervation. Susceptibility to pathology was not limited to NMJ alterations, but included defects in myelination within those neurons innervating susceptible muscles. Interestingly, end plate fragmentation was present within all muscles independent of the extent of NMJ alterations, suggesting that end plate fragmentation is an early hallmark of SMARD1 pathogenesis. Expressing the full-length IGHMBP2 cDNA using an adeno-associated virus (AAV9) significantly decreased all aspects of muscle and nerve disease pathology. These results shed new light onto the pathogenesis of SMARD1 by identifying specific motor units that are resistant and susceptible to neurodegeneration in an important model of SMARD1.
Collapse
Affiliation(s)
- Eric Villalón
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Monir Shababi
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Rachel Kline
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Zachary C Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kyra M Florea
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
32
|
Castiglioni C, Lozano-Arango A. Atrofias musculares espinales no asociadas a SMN1. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Shababi M, Villalón E, Kaifer KA, DeMarco V, Lorson CL. A Direct Comparison of IV and ICV Delivery Methods for Gene Replacement Therapy in a Mouse Model of SMARD1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:348-360. [PMID: 30202772 PMCID: PMC6127875 DOI: 10.1016/j.omtm.2018.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/13/2018] [Indexed: 01/22/2023]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an infantile autosomal recessive disease caused by the loss of the ubiquitously expressed IGHMBP2 gene. SMARD1 causes degeneration of alpha-motor neurons, resulting in distal muscle weakness, diaphragm paralysis, and respiratory malfunction. We have reported that delivery of a low dose of AAV9-IGHMBP2 to the CNS results in a significant rescue of the SMARD1 mouse model (nmd). To examine how a delivery route can impact efficacy, a direct comparison of intravenous (IV) and intracerebroventricular (ICV) delivery of AAV9-IGHMBP2 was performed. Using a low-dose, both IV and ICV delivery routes led to a significant extension in survival and increased body weight. Conversely, only ICV-treated animals demonstrated improvements in the hindlimb muscle, neuromuscular junction, and motor function. The hindlimb phenotype of IV-treated mice resembled the untreated nmd mice. We investigated whether the increased survival of IV-treated nmd mice was the result of a positive impact on the cardiac function. Our results revealed that cardiac function and pathology were similarly improved in IV- and ICV-treated mice. We concluded that while IV delivery of a low dose does not improve the hindlimb phenotype and motor function, partial restoration of cardiac performance is sufficient to significantly extend survival.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kevin A Kaifer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Vince DeMarco
- Department of Medicine, Division of Endocrinology, Diabetes and Cardiovascular Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
34
|
An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. J Virol 2018; 92:JVI.02213-17. [PMID: 29343568 DOI: 10.1128/jvi.02213-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Determinants and mechanisms of cell attachment and entry steer adeno-associated virus (AAV) in its utility as a gene therapy vector. Thus far, a systematic assessment of how diverse AAV serotypes engage their proteinaceous receptor AAVR (KIAA0319L) to establish transduction has been lacking, despite potential implications for cell and tissue tropism. Here, a large set of human and simian AAVs as well as in silico-reconstructed ancestral AAV capsids were interrogated for AAVR usage. We identified a distinct AAV capsid lineage comprised of AAV4 and AAVrh32.33 that can bind and transduce cells in the absence of AAVR, independent of the multiplicity of infection. Virus overlay assays and rescue experiments in nonpermissive cells demonstrate that these AAVs are unable to bind to or use the AAVR protein for entry. Further evidence for a distinct entry pathway was observed in vivo, as AAVR knockout mice were equally as permissive to transduction by AAVrh32.33 as wild-type mice upon systemic injection. We interestingly observe that some AAV capsids undergo a low level of transduction in the absence of AAVR, both in vitro and in vivo, suggesting that some capsids may have a multimodal entry pathway. In aggregate, our results demonstrate that AAVR usage is conserved among all primate AAVs except for those of the AAV4 lineage, and a non-AAVR pathway may be available to other serotypes. This work furthers our understanding of the entry of AAV, a vector system of broad utility in gene therapy.IMPORTANCE Adeno-associated virus (AAV) is a nonpathogenic virus that is used as a vehicle for gene delivery. Here, we have identified several situations in which transduction is retained in both cell lines and a mouse model in the absence of a previously defined entry receptor, AAVR. Defining the molecular determinants of the infectious pathway of this highly relevant viral vector system can help refine future applications and therapies with this vector.
Collapse
|
35
|
Govoni A, Gagliardi D, Comi GP, Corti S. Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy. Mol Neurobiol 2018; 55:6307-6318. [DOI: 10.1007/s12035-017-0831-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
36
|
Derevyanko A, Whittemore K, Schneider RP, Jiménez V, Bosch F, Blasco MA. Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell 2017; 16:1353-1368. [PMID: 28944611 PMCID: PMC5676056 DOI: 10.1111/acel.12677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
The shelterin complex protects telomeres by preventing them from being degraded and recognized as double‐strand DNA breaks. TRF1 is an essential component of shelterin, with important roles in telomere protection and telomere replication. We previously showed that TRF1 deficiency in the context of different mouse tissues leads to loss of tissue homeostasis owing to impaired stem cell function. Here, we show that TRF1 levels decrease during organismal aging both in mice and in humans. We further show that increasing TRF1 expression in both adult (1‐year‐old) and old (2‐year‐old) mice using gene therapy can delay age‐associated pathologies. To this end, we used the nonintegrative adeno‐associated serotype 9 vector (AAV9), which transduces the majority of mouse tissues allowing for moderate and transient TRF1 overexpression. AAV9‐TRF1 gene therapy significantly prevented age‐related decline in neuromuscular function, glucose tolerance, cognitive function, maintenance of subcutaneous fat, and chronic anemia. Interestingly, although AAV9‐TRF1 treatment did not significantly affect median telomere length, we found a lower abundance of short telomeres and of telomere‐associated DNA damage in some tissues. Together, these findings suggest that rescuing naturally decreased TRF1 levels during mouse aging using AAV9‐TRF1 gene therapy results in an improved mouse health span.
Collapse
Affiliation(s)
- Aksinya Derevyanko
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| | - Kurt Whittemore
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| | - Ralph P. Schneider
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| | - Verónica Jiménez
- Center of Animal Biotechnology and Gene Therapy Department of Biochemistry and Molecular Biology School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra 08193 Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid Spain
| | - Fàtima Bosch
- Center of Animal Biotechnology and Gene Therapy Department of Biochemistry and Molecular Biology School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra 08193 Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| |
Collapse
|
37
|
Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9. J Control Release 2016; 241:94-109. [PMID: 27637390 DOI: 10.1016/j.jconrel.2016.09.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Several attempts have been made to discover the ideal vector for gene therapy in central nervous system (CNS). Adeno-associated viruses (AAVs) are currently the preferred vehicle since they exhibit stable transgene expression in post-mitotic cells, neuronal tropism, low risk of insertional mutagenesis and diminished immune responses. Additionally, the discovery that a particular serotype, AAV9, bypasses the blood-brain barrier has raised the possibility of intravascular administration as a non-invasive delivery route to achieve widespread CNS gene expression. AAV9 intravenous delivery has already shown promising results for several diseases in animal models, including lysosomal storage disorders and motor neuron diseases, opening the way to the first clinical trial in the field. This review presents an overview of clinical trials for CNS disorders using AAVs and will focus on preclinical studies based on the systemic gene delivery using AAV9.
Collapse
Affiliation(s)
- Joana Saraiva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal
| | - Luis Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
38
|
Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 2016; 4:70. [PMID: 27400686 PMCID: PMC4940869 DOI: 10.1186/s40478-016-0340-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| | - Paul N Valdmanis
- Departments of Pediatrics and Genetics, Stanford University, 269 Campus Drive, CCSR 2110, Stanford, CA, 94305-5164, USA
| | - Peter V Gould
- Division of Anatomic Pathology and Neuropathology, Department of Medical Biology, CHU de Québec, Hôpital de l'Enfant-Jésus, 1401, 18th street, Québec, QC, Canada, G1J 1Z4
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Nicolas Dupré
- Axe Neurosciences & The Department of Medicine, Faculty of Medicine, CHU de Québec, Laval University, 1401, 18th street, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
39
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
40
|
Rescue of a Mouse Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-IGHMBP2 Is Dose Dependent. Mol Ther 2016; 24:855-66. [PMID: 26860981 DOI: 10.1038/mt.2016.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/17/2016] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease occurring during childhood. The gene responsible for disease development is a ubiquitously expressed protein, IGHMBP2. Mutations in IGHMBP2 result in the loss of α-motor neurons leading to muscle atrophy in the distal limbs accompanied by respiratory complications. Although genetically and clinically distinct, proximal SMA is also caused by the loss of a ubiquitously expressed gene (SMN). Significant preclinical success has been achieved in proximal SMA using viral-based gene replacement strategies. We leveraged the technologies employed in SMA to demonstrate gene replacement efficacy in an SMARD1 animal model. Intracerebroventricular (ICV) injection of single-stranded AAV9 expressing the full-length cDNA of IGHMBP2 in a low dose led to a significant level of rescue in treated SMARD1 animals. Consistent with drastically increased survival, weight gain, and strength, the rescued animals demonstrated a significant improvement in muscle, NMJ, motor neurons, and axonal pathology. In addition, increased levels of IGHMBP2 in lumbar motor neurons verified the efficacy of the virus to transduce the target tissues. Our results indicate that AAV9-based gene replacement is a viable strategy for SMARD1, although dosing effects and potential negative impacts of high dose and ICV injection should be thoroughly investigated.
Collapse
|