1
|
Combe M, Gozlan RE. When the Blue Marble Health concept challenges our current understanding of One Health. One Health 2024; 19:100935. [PMID: 39640907 PMCID: PMC11617403 DOI: 10.1016/j.onehlt.2024.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
We address the issue of reconciling the hygienist and dilutionist (H&D) perspectives for a global understanding of health as envisioned in the One Health framework. Rich and poor countries share pockets of poverty on the outskirts of urban centres, known as 'infectious bubbles', which remain high-risk areas for disease emergence due to a common failure of both the H&D perspectives. People living in these IBs are exposed to infectious microbes on a daily basis due to inadequate hygiene infrastructure, while at the same time lacking a heathy nature to act as a buffer through a dilution effect. The Blue Marble Health approach shows that the burden of neglected diseases has also been neglected in rich countries. We argue for a single health framework that incorporates a mixed model of H&D views and addresses the issue of IB in the distribution and endemicity of emerging infectious diseases in large developed cities.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
2
|
Xie A, Zhang Y, Breed MF, An X, Yao H, Huang Q, Su J, Sun X. Terrestrial invertebrate hosts of human pathogens in urban ecosystems. ECO-ENVIRONMENT & HEALTH 2024; 3:369-380. [PMID: 39281069 PMCID: PMC11399638 DOI: 10.1016/j.eehl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 09/18/2024]
Abstract
Terrestrial invertebrates in urban ecosystems are extremely species-rich, have many important roles in material flow and energy circulation, and are host to many human pathogens that pose threats to human health. These invertebrates are widely distributed in urban areas, including both out- and in-door environments. Consequently, humans are frequently in contact with them, which provides many opportunities for them to pose human health risks. However, comprehensive knowledge on human pathogen transfer via invertebrates is lacking, with research to date primarily focused on dipterans (e.g., mosquitoes, flies). Here, we take a broad taxonomic approach and review terrestrial invertebrate hosts (incl. mosquitoes, flies, termites, cockroaches, mites, ticks, earthworms, collembola, fleas, snails, and beetles) of human pathogens, with a focus on transmission pathways. We also discuss how urbanization and global warming are likely to influence the communities of invertebrate hosts and have flow-on risks to human health. Finally, we identify current research gaps and provide perspectives on future directions.
Collapse
Affiliation(s)
- An Xie
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yiyue Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Martin F Breed
- College of Science & Engineering, Flinders University, SA 5042, Australia
| | - Xinli An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
3
|
Olagunju EA. Is the presence of mosquitoes an indicator of poor environmental sanitation? JOURNAL OF WATER AND HEALTH 2023; 21:385-401. [PMID: 37338318 PMCID: wh_2023_280 DOI: 10.2166/wh.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The World Health Organization has designated mosquitoes as the most lethal animal since they are known to spread pathogen-transmitting organisms. Understanding the many environmental elements that contribute to the spread of these vectors is one of the many strategies used to stop them. If there are mosquitoes around people, it may indicate that there is not an appropriate environmental sanitation program in place in the community or region. Environmental sanitation involves improving any elements of the physical environment that could have a negative impact on a person's survival, health, or physical environment. Keywords containing 'Aedes,' 'Culex,' 'Anopheles,' 'dengue,' 'malaria,' 'yellow fever,' 'Zika,' 'West Nile,' 'chikungunya,' 'resident,' 'environment,' 'sanitation,' 'mosquito control,' and 'breeding sites' of published articles on PubMed, Google Scholar, and ResearchGate were reviewed. It was discovered that the general population should be involved in mosquito and mosquito-borne disease control. Collaboration between health professionals and the general population is essential. The purpose of this paper is to increase public awareness of environmental health issues related to diseases carried by mosquitoes.
Collapse
Affiliation(s)
- Emmanuel Ajibola Olagunju
- Department of Crop and Environmental Protection, Faculty of Agricultural Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria E-mail:
| |
Collapse
|
4
|
Alp M, Cucherousset J. Food webs speak of human impact: Using stable isotope-based tools to measure ecological consequences of environmental change. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2021.e00218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Receveur JP, Bauer A, Pechal JL, Picq S, Dogbe M, Jordan HR, Rakestraw AW, Fast K, Sandel M, Chevillon C, Guégan JF, Wallace JR, Benbow ME. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol Rev 2022; 46:fuab045. [PMID: 34468735 PMCID: PMC8767449 DOI: 10.1093/femsre/fuab045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.
Collapse
Affiliation(s)
- Joseph P Receveur
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra Bauer
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Alex W Rakestraw
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Kayla Fast
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Michael Sandel
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Christine Chevillon
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
- UMR Animal, santé, territoires, risques et écosystèmes, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de coopération internationale en recherche agronomique pour le développement (Cirad), Université de Montpellier (UM), Montpellier, France
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- AgBioResearch, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
7
|
Mazamay S, Guégan JF, Diallo N, Bompangue D, Bokabo E, Muyembe JJ, Taty N, Vita TP, Broutin H. An overview of bacterial meningitis epidemics in Africa from 1928 to 2018 with a focus on epidemics "outside-the-belt". BMC Infect Dis 2021; 21:1027. [PMID: 34592937 PMCID: PMC8485505 DOI: 10.1186/s12879-021-06724-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bacterial meningitis occurs worldwide but Africa remains the most affected continent, especially in the "Meningitis belt" that extends from Senegal to Ethiopia. Three main bacteria are responsible for causing bacterial meningitis, i.e., N. meningitidis (Nm), S. pneumoniae and H. influenzae type b. Among Nm, serogroup A used to be responsible for up to 80 to 85% of meningococcal meningitis cases in Africa. Since 2000, other Nm serogroups including W, X and C have also been responsible for causing epidemics. This overview aims to describe the main patterns of meningitis disease cases and pathogens from 1928 to 2018 in Africa with a special focus on disease conditions “out-of-the-belt” area that is still usually unexplored. Based on basic spatio-temporal methods, and a 90-years database of reported suspected meningitis cases and death from the World Health Organization, we used both geographic information system and spatio-temporal statistics to identify the major localizations of meningitis epidemics over this period in Africa. Results Bacterial meningitis extends today outside its historical limits of the meningitis belt. Since the introduction of MenAfrivac vaccine in 2010, there has been a dramatic decrease in NmA cases while other pathogen species and Nm variants including NmW, NmC and Streptococcus pneumoniae have become more prevalent reflecting a greater diversity of bacterial strains causing meningitis epidemics in Africa today. Conclusion Bacterial meningitis remains a major public health problem in Africa today. Formerly concentrated in the region of the meningitis belt with Sub-Saharan and Sudanian environmental conditions, the disease extends now outside these historical limits to reach more forested regions in the central parts of the continent. With global environmental changes and massive vaccination targeting a unique serogroup, an epidemiological transition of bacterial meningitis is ongoing, requiring both a better consideration of the etiological nature of the responsible agents and of their proximal and distal determinants. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06724-1.
Collapse
Affiliation(s)
- Serge Mazamay
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo. .,MIVEGEC, Université de Montpellier, IRD, CNRS, 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Jean-François Guégan
- MIVEGEC, Université de Montpellier, IRD, CNRS, 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.,ASTRE, INRAE, Cirad, Université de Montpellier, Campus international de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Neby Diallo
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Didier Bompangue
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo.,Chrono-Environnement, UMR CNRS 6249 Université de Franche-Comté, Besançon, France
| | - Eric Bokabo
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean-Jacques Muyembe
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Nadège Taty
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Tonton Paul Vita
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Hélène Broutin
- MIVEGEC, Université de Montpellier, IRD, CNRS, 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.,Département de Parasitologie-Mycologie, Faculté de Médecine, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal.,Centre de Recherche en Ecologie et Evolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
8
|
Muleta AJ, Lappan R, Stinear TP, Greening C. Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer. PLoS Negl Trop Dis 2021; 15:e0009678. [PMID: 34437549 PMCID: PMC8389476 DOI: 10.1371/journal.pntd.0009678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rare but chronic debilitating skin and soft tissue disease found predominantly in West Africa and Southeast Australia. While a moderate body of research has examined the distribution of M. ulcerans, the specific route(s) of transmission of this bacterium remain unknown, hindering control efforts. M. ulcerans is considered an environmental pathogen given it is associated with lentic ecosystems and human-to-human spread is negligible. However, the pathogen is also carried by various mammals and invertebrates, which may serve as key reservoirs and mechanical vectors, respectively. Here, we examine and review recent evidence from these endemic regions on potential transmission pathways, noting differences in findings between Africa and Australia, and summarising the risk and protective factors associated with Buruli ulcer transmission. We also discuss evidence suggesting that environmental disturbance and human population changes precede outbreaks. We note five key research priorities, including adoption of One Health frameworks, to resolve transmission pathways and inform control strategies to reduce the spread of Buruli ulcer. Buruli ulcer is a debilitating skin and soft tissue disease characterised by large ulcerative wounds that are treated with antibiotics or with adjunctive surgery for advanced cases. Found predominantly in West Africa and Southeast Australia, the causative agent is the environmental bacterial pathogen Mycobacterium ulcerans. Lack of understanding of transmission pathways, combined with the absence of a vaccine, has hindered efforts to control the spread of M. ulcerans. Here, in order to identify probable transmission pathways and inform future studies, we review literature linking M. ulcerans to environmental reservoirs, mammalian hosts, and potential invertebrate vectors. We also summarise factors and behaviours that reduce the risk of developing Buruli ulcer, to inform effective prevention strategies and further shed light on transmission pathways.
Collapse
Affiliation(s)
- Anthony J. Muleta
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Lappan
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
9
|
de Thoisy B, Duron O, Epelboin L, Musset L, Quénel P, Roche B, Binetruy F, Briolant S, Carvalho L, Chavy A, Couppié P, Demar M, Douine M, Dusfour I, Epelboin Y, Flamand C, Franc A, Ginouvès M, Gourbière S, Houël E, Kocher A, Lavergne A, Le Turnier P, Mathieu L, Murienne J, Nacher M, Pelleau S, Prévot G, Rousset D, Roux E, Schaub R, Talaga S, Thill P, Tirera S, Guégan JF. Ecology, evolution, and epidemiology of zoonotic and vector-borne infectious diseases in French Guiana: Transdisciplinarity does matter to tackle new emerging threats. INFECTION GENETICS AND EVOLUTION 2021; 93:104916. [PMID: 34004361 DOI: 10.1016/j.meegid.2021.104916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
French Guiana is a European ultraperipheric region located on the northern Atlantic coast of South America. It constitutes an important forested region for biological conservation in the Neotropics. Although very sparsely populated, with its inhabitants mainly concentrated on the Atlantic coastal strip and along the two main rivers, it is marked by the presence and development of old and new epidemic disease outbreaks, both research and health priorities. In this review paper, we synthetize 15 years of multidisciplinary and integrative research at the interface between wildlife, ecosystem modification, human activities and sociodemographic development, and human health. This study reveals a complex epidemiological landscape marked by important transitional changes, facilitated by increased interconnections between wildlife, land-use change and human occupation and activity, human and trade transportation, demography with substantial immigration, and identified vector and parasite pharmacological resistance. Among other French Guianese characteristics, we demonstrate herein the existence of more complex multi-host disease life cycles than previously described for several disease systems in Central and South America, which clearly indicates that today the greater promiscuity between wildlife and humans due to demographic and economic pressures may offer novel settings for microbes and their hosts to circulate and spread. French Guiana is a microcosm that crystallizes all the current global environmental, demographic and socioeconomic change conditions, which may favor the development of ancient and future infectious diseases.
Collapse
Affiliation(s)
- Benoît de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana.
| | - Olivier Duron
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé, Montpellier, France
| | - Loïc Epelboin
- Infectious Diseases Department, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Lise Musset
- Laboratoire de Parasitologie, Centre Collaborateur OMS Pour La Surveillance Des Résistances Aux Antipaludiques, Centre National de Référence du Paludisme, Pôle zones Endémiques, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Philippe Quénel
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France
| | - Benjamin Roche
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé, Montpellier, France
| | - Florian Binetruy
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France
| | - Sébastien Briolant
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, IRD, SSA, AP-HM, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), France; IHU Méditerranée Infection, Marseille, France
| | | | - Agathe Chavy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Pierre Couppié
- Dermatology Department, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Magalie Demar
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Maylis Douine
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Isabelle Dusfour
- Département de Santé Globale, Institut Pasteur, Paris, France; Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Yanouk Epelboin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Claude Flamand
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Alain Franc
- UMR BIOGECO, INRAE, Université de Bordeaux, Cestas, France; Pleiade, EPC INRIA-INRAE-CNRS, Université de Bordeaux Talence, France
| | - Marine Ginouvès
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Sébastien Gourbière
- UMR 5096 Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
| | - Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Cayenne, France
| | - Arthur Kocher
- Transmission, Infection, Diversification & Evolution Group, Max-Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Laboratoire Evolution et Diversité Biologique (UMR 5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Paul Le Turnier
- Service de Maladies Infectieuses et Tropicales, Hôtel Dieu - INSERM CIC 1413, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Luana Mathieu
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (UMR 5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Stéphane Pelleau
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France; Malaria: Parasites and Hosts, Institut Pasteur, Paris, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Dominique Rousset
- Laboratoire de Virologie, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Emmanuel Roux
- ESPACE-DEV (Institut de Recherche pour le Développement, Université de la Réunion, Université des Antilles, Université de Guyane, Université de Montpellier, Montpellier, France; International Joint Laboratory "Sentinela" Fundação Oswaldo Cruz, Universidade de Brasília, Institut de Recherche pour le Développement, Rio de Janeiro RJ-21040-900, Brazil
| | - Roxane Schaub
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Stanislas Talaga
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Pauline Thill
- Service Universitaire des Maladies Infectieuses et du Voyageur, Centre Hospitalier Dron, Tourcoing, France
| | - Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Jean-François Guégan
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; UMR ASTRE, INRAE, CIRAD, Université de Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Investigation of skin microbiota reveals Mycobacterium ulcerans-Aspergillus sp. trans-kingdom communication. Sci Rep 2021; 11:3777. [PMID: 33580189 PMCID: PMC7881091 DOI: 10.1038/s41598-021-83236-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium ulcerans secrete a series of non-ribosomal-encoded toxins known as mycolactones that are responsible for causing a disabling ulceration of the skin and subcutaneous tissues named Buruli ulcer. The disease is the sole non-contagion among the three most common mycobacterial diseases in humans. Direct contact with contaminated wetlands is a risk factor for Buruli ulcer, responsible for M. ulcerans skin carriage before transcutaneous inoculation with this opportunistic pathogen. In this study, we analysed the bacterial and fungal skin microbiota in individuals exposed to M. ulcerans in Burkina Faso. We showed that M. ulcerans-specific DNA sequences were detected on the unbreached skin of 6/52 (11.5%) asymptomatic farmers living in Sindou versus 0/52 (0%) of those living in the non-endemic region of Tenkodogo. Then, we cultured the skin microbiota of asymptomatic M. ulcerans carriers and negative control individuals, all living in the region of Sindou. A total of 84 different bacterial and fungal species were isolated, 21 from M. ulcerans-negative skin samples, 31 from M. ulcerans-positive samples and 32 from both. More specifically, Actinobacteria, Aspergillus niger and Aspergillus flavus were significantly associated with M. ulcerans skin carriage. We further observed that in vitro, mycolactones induced spore germination of A. flavus, attracting the fungal network. These unprecedented observations suggest that interactions with fungi may modulate the outcome of M. ulcerans skin carriage, opening new venues to the understanding of Buruli ulcer pathology, prophylaxis and treatment of this still neglected tropical infection.
Collapse
|
11
|
Kalbus A, de Souza Sampaio V, Boenecke J, Reintjes R. Exploring the influence of deforestation on dengue fever incidence in the Brazilian Amazonas state. PLoS One 2021; 16:e0242685. [PMID: 33411795 PMCID: PMC7790412 DOI: 10.1371/journal.pone.0242685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 11/07/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Dengue fever is the most prevalent arboviral disease in the Brazilian Amazon and places a major health, social and economic burden on the region. Its association with deforestation is largely unknown, yet the clearing of tropical rainforests has been linked to the emergence of several infectious diseases, including yellow fever and malaria. This study aimed to explore potential drivers of dengue emergence in the Brazilian Amazon with a focus on deforestation. METHODS An ecological study design using municipality-level secondary data from the Amazonas state between 2007 and 2017 (reported rural dengue cases, incremental deforestation, socioeconomic characteristics, healthcare and climate factors) was employed. Data were transformed according to the year with the most considerable deforestation. Associations were explored using bivariate analysis and a multivariate generalised linear model. RESULTS During the study period 2007-2017, both dengue incidence and deforestation increased. Bivariate analysis revealed increased incidences for some years after deforestation (e.g. mean difference between dengue incidence before and three years after deforestation was 55.47 cases per 100,000, p = 0.002), however, there was no association between the extent of deforestation and dengue incidence. Using a negative binomial regression model adjusted for socioeconomic, climate and healthcare factors, deforestation was not found to be related to dengue incidence. Access to healthcare was found to be the only significant predictor of dengue incidence. DISCUSSION Previous research has shown that deforestation facilitates the emergence of vector-borne diseases. However, no significant dose-response relationships between dengue incidence and deforestation in the Brazilian Amazonas state were found in this study. The finding that access to healthcare was the only significant predictor of dengue incidence suggests that incidence may be more dependent on surveillance than transmission. Further research and public attention are needed to better understand environmental effects on human health and to preserve the world's largest rainforest.
Collapse
Affiliation(s)
- Alexandra Kalbus
- Department of Health Sciences, Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany
| | - Vanderson de Souza Sampaio
- Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Amazonas, Manaus, Brazil
| | - Juliane Boenecke
- Department of Health Sciences, Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany
| | - Ralf Reintjes
- Department of Health Sciences, Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany
| |
Collapse
|
12
|
The evolution of bacterial pathogens in the Anthropocene. INFECTION GENETICS AND EVOLUTION 2020; 86:104611. [PMID: 33130070 DOI: 10.1016/j.meegid.2020.104611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Humankind has become a primary driver of global environmental and climate change. The extent of planetary change is such that it has been proposed to classify the current geological age as the 'Anthropocene'. Anthropogenic environmental degradation presents numerous threats to human health and wellbeing, including an increased risk of infectious disease. This review focuses on how processes such as pollution, climate change and human-mediated dispersal could affect the evolution of bacterial pathogens. Effects of environmental change on the 'big five' of evolution: mutation rate, recombination (horizontal gene transfer), migration, selection and drift are discussed. Microplastic pollution is used as a case study to highlight the combined effects of some of these processes on the evolutionary diversification of human pathogens. Although the evidence is still incomplete, a picture is emerging that environmental pathogens could evolve at increased rates in the Anthropocene, with potential consequences for human infection.
Collapse
|
13
|
Gao JG, Liu H, Wang N, Yang J, Zhang XL. Plant extinction excels plant speciation in the Anthropocene. BMC PLANT BIOLOGY 2020; 20:430. [PMID: 32938403 PMCID: PMC7493330 DOI: 10.1186/s12870-020-02646-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the past several millenniums, we have domesticated several crop species that are crucial for human civilization, which is a symbol of significant human influence on plant evolution. A pressing question to address is if plant diversity will increase or decrease in this warming world since contradictory pieces of evidence exit of accelerating plant speciation and plant extinction in the Anthropocene. RESULTS Comparison may be made of the Anthropocene with the past geological times characterised by a warming climate, e.g., the Palaeocene-Eocene Thermal Maximum (PETM) 55.8 million years ago (Mya)-a period of "crocodiles in the Arctic", during which plants saw accelerated speciation through autopolyploid speciation. Three accelerators of plant speciation were reasonably identified in the Anthropocene, including cities, polar regions and botanical gardens where new plant species might be accelerating formed through autopolyploid speciation and hybridization. CONCLUSIONS However, this kind of positive effect of climate warming on new plant species formation would be thoroughly offset by direct and indirect intensive human exploitation and human disturbances that cause habitat loss, deforestation, land use change, climate change, and pollution, thus leading to higher extinction risk than speciation in the Anthropocene. At last, four research directions are proposed to deepen our understanding of how plant traits affect speciation and extinction, why we need to make good use of polar regions to study the mechanisms of dispersion and invasion, how to maximize the conservation of plant genetics, species, and diverse landscapes and ecosystems and a holistic perspective on plant speciation and extinction is needed to integrate spatiotemporally.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, China.
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ling Zhang
- Department of Public Policy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Variations in temperatures and the incidence of Buruli ulcer in Africa. Travel Med Infect Dis 2020; 36:101472. [DOI: 10.1016/j.tmaid.2019.101472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/24/2022]
|
15
|
|
16
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread. ECOHEALTH 2019; 16:594-610. [PMID: 30675676 DOI: 10.1007/s10393-019-01395-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/10/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.
Collapse
Affiliation(s)
- Gael Davidson
- CENRM and School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | | | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
Jagadesh S, Combe M, Couppié P, Le Turnier P, Epelboin L, Nacher M, Gozlan RE. Emerging human infectious diseases of aquatic origin: a comparative biogeographic approach using Bayesian spatial modelling. Int J Health Geogr 2019; 18:23. [PMID: 31694656 PMCID: PMC6833193 DOI: 10.1186/s12942-019-0188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the increase in unprecedented and unpredictable disease outbreaks due to human-driven environmental changes in recent years, we need new analytical tools to map and predict the spatial distribution of emerging infectious diseases and identify the biogeographic drivers underpinning their emergence. The aim of the study was to identify and compare the local and global biogeographic predictors such as landscape and climate that determine the spatial structure of leptospirosis and Buruli Ulcer (BU). METHODS We obtained 232 hospital-confirmed leptospirosis (2007-2017) cases and 236 BU cases (1969-2017) in French Guiana. We performed non-spatial and spatial Bayesian regression modeling with landscape and climate predictor variables to characterize the spatial structure and the environmental drivers influencing the distribution of the two diseases. RESULTS Our results show that the distribution of both diseases is spatially dependent on environmental predictors such as elevation, topological wetness index, proximity to cropland and increasing minimum temperature at the month of potential infection. However, the spatial structure of the two diseases caused by bacterial pathogens occupying similar aquatic niche was different. Leptospirosis was widely distributed across the territory while BU was restricted to the coastal riverbeds. CONCLUSIONS Our study shows that a biogeographic approach is an effective tool to identify, compare and predict the geographic distribution of emerging diseases at an ecological scale which are spatially dependent to environmental factors such as topography, land cover and climate.
Collapse
Affiliation(s)
- Soushieta Jagadesh
- ISEM, UMR226, CNRS, Université de Montpellier, IRD, EPHE, 34090, Montpellier, France.
- Equipe EPAT 3593 Ecosystèmes amazoniens et pathologie tropicale, Université de Guyane, Cayenne, French Guiana.
| | - Marine Combe
- ISEM, UMR226, CNRS, Université de Montpellier, IRD, EPHE, 34090, Montpellier, France
| | - Pierre Couppié
- Equipe EPAT 3593 Ecosystèmes amazoniens et pathologie tropicale, Université de Guyane, Cayenne, French Guiana
- Service de Dermatologie, Centre hospitalier Andrée Rosemon, av des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Paul Le Turnier
- Unité des maladies infectieuses et tropicales, Centre hospitalier Andrée Rosemon, av des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Loïc Epelboin
- Unité des maladies infectieuses et tropicales, Centre hospitalier Andrée Rosemon, av des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Mathieu Nacher
- Equipe EPAT 3593 Ecosystèmes amazoniens et pathologie tropicale, Université de Guyane, Cayenne, French Guiana
- Centre d'investigation clinique (CIC Inserm 1424), Centre hospitalier Andrée Rosemon, Avenue des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Rodolphe Elie Gozlan
- ISEM, UMR226, CNRS, Université de Montpellier, IRD, EPHE, 34090, Montpellier, France
| |
Collapse
|
18
|
Guégan JF, de Thoisy B, Ayouba A, Cappelle J. [Tropical forests, changes in land uses and emerging infectious hazards]. SANTE PUBLIQUE 2019; S1:91-106. [PMID: 31210496 DOI: 10.3917/spub.190.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tropical forests have the greatest biodiversity in macroorganisms on the planet, and they are also the richest in myriads of microorganisms for which so little is known today. Over the last 50 years, many of these microbial forms, that are naturally embedded into wildlife or the environment, e.g. soil, water, have revealed to be more or less dangerous pathogens for people exposed to these new natural threats, i.e. emerging infectious diseases. Here, we discuss about the extraordinary diversity of microorganisms that are present in tropical rainforests. We first present the main global distribution patterns for microbial forms at the interface between tropical wildlife and human, and second we provide an epidemiological picture on how microbial transmission from wild animals or the environment to people operates in tropical areas through four case-studies. We examine the animal hosts or environment, and transmission mechanisms involved in spillover of zoonotic or environmentally-persistent microbes, and identify land-use changes through deforestation for the development of agriculture, and contacts with wildlife notably through bush meat hunting as major drivers that facilitate mixing of diverse animal hosts and their microbial communities with human during practices. With an increase of deforestation in the tropics and more contacts between wildlife and people, new emerging disease events with high epidemic and pandemic potential will happen, that should guide new health policies and strategies at the global scale.
Collapse
|
19
|
Min KD, Lee JY, So Y, Cho SI. Deforestation Increases the Risk of Scrub Typhus in Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1518. [PMID: 31035715 PMCID: PMC6539434 DOI: 10.3390/ijerph16091518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/05/2022]
Abstract
Background: Scrub typhus is an important public health issue in Korea. Risk factors for scrub typhus include both individual-level factors and environmental drivers, and some are related to the increased density of vector mites and rodents, the natural hosts of the mites. In this regard, deforestation is a potential risk factor, because the deforestation-induced secondary growth of scrub vegetation may increase the densities of mites and rodents. To examine this hypothesis, this study investigated the association between scrub typhus and deforestation. Methods: We acquired district-level data for 2006-2017, including the number of cases of scrub typhus reported annually, deforestation level, and other covariates. Deforestation was assessed using preprocessed remote-sensing satellite data. Bayesian regression models, including Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models, were examined, and spatial autocorrelation was considered in hierarchical models. A sensitivity analysis was conducted using different accumulation periods for the deforestation level to examine the robustness of the association. Results: The final models showed a significant association between deforestation and the incidence of scrub typhus (relative risk = 1.20, 95% credible interval = 1.15-1.24). The sensitivity analysis gave consistent results, and a potential long-term effect of deforestation for up to 5 years was shown. Conclusion: The results support the potential public health benefits of forest conservation by suppressing the risk of scrub typhus, implying the need for strong engagement of public health sectors in conservation issues from a One Health perspective.
Collapse
Affiliation(s)
- Kyung-Duk Min
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Ju-Yeun Lee
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Yeonghwa So
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Sung-Il Cho
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
20
|
Chakraborty S, Andrade FCD, Ghosh S, Uelmen J, Ruiz MO. Historical Expansion of Kyasanur Forest Disease in India From 1957 to 2017: A Retrospective Analysis. GEOHEALTH 2019; 3:44-55. [PMID: 32159030 PMCID: PMC7007137 DOI: 10.1029/2018gh000164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 06/10/2023]
Abstract
A highly infectious tick-borne virus causes Kyasanur Forest disease (KFD), which has been expanding in recent decades in India. Current studies do not provide an updated understanding of the disease trends and its expansion in India. We address this gap in the literature through a detailed review to reveal the annual historic expansion of KFD cases across the span of years from 1957 to 2017. In addition, we explore the factors that may have led to the geographic expansion of KFD. The annual numbers of cases of KFD among humans are estimated using peer-reviewed journal articles, Pro-MED database, historical and archived newspapers, and government reports, technical reports, publications, and medical websites. From 1957 to 2017, there were an estimated 9,594 cases of KFD within 16 districts in India. The most significant human outbreaks of the disease were in the years 1957-1958 (681 cases), 1983-1984 (2,589 cases), 2002-2003 (1,562 cases), and 2016-2017 (809 cases). In 2015, KFD appeared in Goa. In 2016, new cases emerged in Belgaum, a district in Karnataka state, and in the Sindhudurg district in Maharashtra state. The processes by which KFD persists and spreads are not clear, but demographic, socioeconomic, political, and environmental factors seem to play a role.
Collapse
Affiliation(s)
- S. Chakraborty
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - F. C. D. Andrade
- School of Social WorkUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - S. Ghosh
- Entomology Laboratory, Parasitology Division, ICAR‐ Indian Veterinary Research InstituteIzatnagarUPIndia
| | - J. Uelmen
- College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - M. O. Ruiz
- College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
21
|
Combe M, Gozlan RE, Jagadesh S, Velvin CJ, Ruffine R, Demar MP, Couppié P, Djossou F, Nacher M, Epelboin L. Comparison of Mycobacterium ulcerans (Buruli ulcer) and Leptospira sp. (Leptospirosis) dynamics in urban and rural settings. PLoS Negl Trop Dis 2019; 13:e0007074. [PMID: 30615683 PMCID: PMC6336349 DOI: 10.1371/journal.pntd.0007074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/17/2019] [Accepted: 12/13/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Zoonotic pathogens respond to changes in host range and/or pathogen, vector and host ecology. Environmental changes (biodiversity, habitat changes, variability in climate), even at a local level, lead to variability in environmental pathogen dynamics and can facilitate their transmission from natural reservoirs to new susceptible hosts. Whilst the environmental dynamics of aquatic bacteria are directly linked to seasonal changes of their habitat they also rely on the ecological processes underpining their transmission. However data allowing the comparison of these ecological processes are lacking. Here we compared the environmental dynamics of generalist and vector-borne aquatic bacterial pathogens in the same unit of time and space, and across rural and urban habitats in French Guiana (South America). PRINCIPAL FINDINGS Using Leptospira sp. and Mycobacterium ulcerans we performed an environmental survey that allowed the detection of both pathogens in urban vs. rural areas, and during rainy vs. dry weather conditions. All samples were subjected to qPCR amplifications of LipL32 (Leptospira sp.) and IS2404 and KR (M. ulcerans) genetic markers. We found (i) a greater presence of M. ulcerans in rural areas compared with Leptospira sp., (ii) that modified urban environments were more favourable to the establishment of both pathogens, (iii) that Leptospira sp. presence was enhanced during the rainy season and M. ulcerans during the dry period, and (iv) differences in the spatial distribution of both bacteria across urban sites, probably due to the mode of dissemination of each pathogen in the environment. CONCLUSIONS We propose that in French Guiana simplified and modified urban ecosystems might favour leptospirosis and Buruli ulcer emergence and transmission. Moreover, disease risk was also constrained by seasonality. We suggest that the prevention of aquatic bacterial disease emergence in impoverished urban areas of developing countries would benefit from seasonal diseases targeted surveys, which would maximise limited budgets from cash-strapped health agencies.
Collapse
Affiliation(s)
- Marine Combe
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | - Soushieta Jagadesh
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | - Rolland Ruffine
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, Centre IRD de Cayenne, Guyane française
| | - Magalie Pierre Demar
- Equipe EA 3593, Ecosystèmes amazoniens et pathologie tropicale, Université de la Guyane, Cayenne, Guyane française
- Laboratoire hospitalo-universitaire de parasitologie mycologie, Centre hospitalier Andrée Rosemon, Guyane française
| | - Pierre Couppié
- Equipe EA 3593, Ecosystèmes amazoniens et pathologie tropicale, Université de la Guyane, Cayenne, Guyane française
- Service de Dermatologie, Cayenne Hospital, rue des Flamboyant, Cayenne, French Guiana, France
| | - Felix Djossou
- Equipe EA 3593, Ecosystèmes amazoniens et pathologie tropicale, Université de la Guyane, Cayenne, Guyane française
- Unité des maladies infectieuses et tropicales, Centre hospitalier Andrée Rosemon, av des Flamboyants, Guyane française
| | - Mathieu Nacher
- Centre d’investigation clinique (CIC Inserm 1424), Centre hospitalier Andrée Rosemon, Guyane française
| | - Loïc Epelboin
- Equipe EA 3593, Ecosystèmes amazoniens et pathologie tropicale, Université de la Guyane, Cayenne, Guyane française
- Unité des maladies infectieuses et tropicales, Centre hospitalier Andrée Rosemon, av des Flamboyants, Guyane française
| |
Collapse
|
22
|
Li Y, Jiang L, Lv W, Cui S, Zhang L, Wang Q, Meng F, Li B, Liu P, Suonan J, Renzeng W, Li X, Luo C, Zhang Z, Dorji T, Wang Y, Wang S. Fungal pathogens pose a potential threat to animal and plant health in desertified and pika-burrowed alpine meadows on the Tibetan Plateau. Can J Microbiol 2018; 65:365-376. [PMID: 30566369 DOI: 10.1139/cjm-2018-0338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intact Tibetan meadows provide significant defense against soil-borne pathogen dispersal. However, dramatic meadow degradation has been observed due to climate change and pika damage, but their impacts on soil-borne pathogens are still unclear. With approximately 40% of the world's population living in Tibetan Plateau and its downstream watersheds, this lack of knowledge should be of great concern. Here, we used Illumina amplicon sequencing to characterize the changes in potential human, domestic animal, plant, and zoonotic bacterial and fungal pathogens in nondegraded, desertified, and pika-burrowed meadows. The relative abundance of bacterial domestic animal pathogens and zoonotic pathogens were significantly increased by desertification. Pika burrowing significantly increased the relative abundance of bacterial human pathogens and zoonotic pathogens. The species richness and relative abundance of fungal pathogens was significantly increased by desertification and pika burrowing. Accordingly, fungal plant and animal pathogens categorized by FUNGuid significantly increased in desertified and pika-burrowed meadows. Soil chemical and plant properties explained 38% and 64% of the bacterial and fungal pathogen community variance, respectively. Therefore, our study indicates for the first time that both alpine meadow desertification and pika burrowing could potentially increase infectious disease risks in the alpine ecosystem, especially for fungal diseases.
Collapse
Affiliation(s)
- Yaoming Li
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Lili Jiang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wangwang Lv
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shujuan Cui
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lirong Zhang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Qi Wang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fandong Meng
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Bowen Li
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Peipei Liu
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ji Suonan
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wangmu Renzeng
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xine Li
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Caiyun Luo
- c Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, P.R. China
| | - Zhenhua Zhang
- c Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, P.R. China
| | - Tsechoe Dorji
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,d CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, P.R. China.,e Naqu Integrated Observation and Research Station of Ecology and Environment, Tibet University and Institute of Tibetan Plateau Research of the Chinese Academy of Sciences, Lasa 850012, P.R. China
| | - Yanfen Wang
- b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shiping Wang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,d CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, P.R. China.,e Naqu Integrated Observation and Research Station of Ecology and Environment, Tibet University and Institute of Tibetan Plateau Research of the Chinese Academy of Sciences, Lasa 850012, P.R. China
| |
Collapse
|
23
|
Abstract
Mycobacterium ulcerans is recognised as the third most common mycobacterial infection worldwide. It causes necrotising infections of skin and soft tissue and is classified as a neglected tropical disease by the World Health Organization (WHO). However, despite extensive research, the environmental reservoir of the organism and mode of transmission of the infection to humans remain unknown. This limits the ability to design and implement public health interventions to effectively and consistently prevent the spread and reduce the incidence of this disease. In recent years, the epidemiology of the disease has changed. In most endemic regions of the world, the number of cases reported to the WHO are reducing, with a 64% reduction in cases reported worldwide in the last 9 years. Conversely, in a smaller number of countries including Australia and Nigeria, reported cases are increasing at a rapid rate, new endemic areas continue to appear, and in Australia cases are becoming more severe. The reasons for this changing epidemiology are unknown. We review the epidemiology of M. ulcerans disease worldwide, and document recent changes. We also outline and discuss the current state of knowledge on the ecology of M. ulcerans, possible transmission mechanisms to humans and what may be enabling the spread of M. ulcerans into new endemic areas.
Collapse
|
24
|
A protocol for culturing environmental strains of the Buruli ulcer agent, Mycobacterium ulcerans. Sci Rep 2018; 8:6778. [PMID: 29712992 PMCID: PMC5928104 DOI: 10.1038/s41598-018-25278-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022] Open
Abstract
Contaminations and fastidiousness of M. ulcerans may have both hamper isolation of strains from environmental sources. We aimed to optimize decontamination and culture of environmental samples to circumvent both limitations. Three strains of M. ulcerans cultured onto Middlebrook 7H10 at 30 °C for 20 days yielded a significantly higher number of colonies in micro-aerophilic atmosphere compared to ambient atmosphere, 5% CO2 and anaerobic atmosphere. In a second step, we observed that M. ulcerans genome uniquely encoded chitinase, fucosidase and A-D-GlcNAc-diphosphoryl polyprenol A-3-L-rhamnosyl transferase giving M. ulcerans the potential to metabolize chitine, fucose and N-acetyl galactosamine (NAG), respectively. A significant growth-promoting effect of 0.2 mg/mL chitin (p < 0.05), 0.01 mg/mL N-acetyl galactosamine (p < 0.05), 0.01 mg/mL fucose (p < 0.05) was observed with M. ulcerans indicating that NAG alone or combined with fucose and chitin could complement Middlebrook 7H10. Finally, the protocol combining 1% chlorhexidine decontamination with micro-aerophilic incubation on Middlebrook 7H10 medium containing chitin (0.2%), NAG (0.01%) and fucose (0.01%) medium and auto-fluorescence detection of colonies allowed for the isolation of one mycolactone-encoding strain from Thryonomys swinderianus (aulacode) feces specimens collected near the Kossou Dam, Côte d'Ivoire. We propose that incubation of chlorhexidine-decontaminated environmental specimens on Middlebrook 7H10-enriched medium under micro-aerophilic atmosphere at 30 °C may be used for the tentative isolation of M. ulcerans strains from potential environmental sources.
Collapse
|
25
|
Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, Dobson AP, Plowright RK. Pathogen spillover during land conversion. Ecol Lett 2018; 21:471-483. [DOI: 10.1111/ele.12904] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christina L. Faust
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
- Institute of Biodiversity, Animal Health and Comparative Medicine; Universtiy of Glasgow; Glasgow UK
| | - Hamish I. McCallum
- Environmental Futures Research Institute and Griffith School of Environment; Griffith University; Griffith Qld. Australia
| | - Laura S. P. Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources; Stanford University; Stanford CA USA
| | - Nicole L. Gottdenker
- Department of Veterinary Pathology; College of Veterinary Medicine; University of Georgia; Athens GA USA
| | - Thomas R. Gillespie
- Department of Environmental Sciences; Department of Environmental Health; Rollins School of Public Health; Program In Population; Biology, Ecology and Evolution; Emory University; Athens GA USA
| | - Colin J. Torney
- School of Mathematics and Statistics; University of Glasgow; Glasgow UK
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
| |
Collapse
|
26
|
Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2017; 31:31/1/e00045-17. [PMID: 29237707 DOI: 10.1128/cmr.00045-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Buruli ulcer is a noncontagious disabling cutaneous and subcutaneous mycobacteriosis reported by 33 countries in Africa, Asia, Oceania, and South America. The causative agent, Mycobacterium ulcerans, derives from Mycobacterium marinum by genomic reduction and acquisition of a plasmid-borne, nonribosomal cytotoxin mycolactone, the major virulence factor. M. ulcerans-specific sequences have been readily detected in aquatic environments in food chains involving small mammals. Skin contamination combined with any type of puncture, including insect bites, is the most plausible route of transmission, and skin temperature of <30°C significantly correlates with the topography of lesions. After 30 years of emergence and increasing prevalence between 1970 and 2010, mainly in Africa, factors related to ongoing decreasing prevalence in the same countries remain unexplained. Rapid diagnosis, including laboratory confirmation at the point of care, is mandatory in order to reduce delays in effective treatment. Parenteral and potentially toxic streptomycin-rifampin is to be replaced by oral clarithromycin or fluoroquinolone combined with rifampin. In the absence of proven effective primary prevention, avoiding skin contamination by means of clothing can be implemented in areas of endemicity. Buruli ulcer is a prototype of ecosystem pathology, illustrating the impact of human activities on the environment as a source for emerging tropical infectious diseases.
Collapse
|
27
|
Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci Rep 2017; 7:14291. [PMID: 29085050 PMCID: PMC5662765 DOI: 10.1038/s41598-017-14727-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
Ebola virus disease (EVD) is a contagious, severe and often lethal form of hemorrhagic fever in humans. The association of EVD outbreaks with forest clearance has been suggested previously but many aspects remained uncharacterized. We used remote sensing techniques to investigate the association between deforestation in time and space, with EVD outbreaks in Central and West Africa. Favorability modeling, centered on 27 EVD outbreak sites and 280 comparable control sites, revealed that outbreaks located along the limits of the rainforest biome were significantly associated with forest losses within the previous 2 years. This association was strongest for closed forests (>83%), both intact and disturbed, of a range of tree heights (5–>19 m). Our results suggest that the increased probability of an EVD outbreak occurring in a site is linked to recent deforestation events, and that preventing the loss of forests could reduce the likelihood of future outbreaks.
Collapse
|
28
|
Evidences of the Low Implication of Mosquitoes in the Transmission of Mycobacterium ulcerans, the Causative Agent of Buruli Ulcer. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2017; 2017:1324310. [PMID: 28932250 PMCID: PMC5592421 DOI: 10.1155/2017/1324310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022]
Abstract
Background Buruli ulcer (BU) continues to be a serious public health threat in wet tropical regions and the mode of transmission of its etiological agent, Mycobacterium ulcerans (MU), remains poorly understood. In this study, mosquito species collected in endemic villages in Benin were screened for the presence of MU. In addition, the ability of mosquitoes larvae to pick up MU from their environment and remain colonized through the larval developmental stages to the adult stage was investigated. Methods 7,218 adults and larvae mosquitoes were sampled from endemic and nonendemic villages and screened for MU DNA targets (IS2404, IS2606, and KR-B) using qPCR. Results. MU was not detected in any of the field collected samples. Additional studies of artificially infected larvae of Anopheles kisumu with MU strains revealed that mosquitoes larvae are able to ingest and host MU during L1, L2, L3, and L4 developmental stages. However, we noticed an absence of these bacteria at both pupae and adult stages, certainly revealing the low ability of infected or colonized mosquitoes to vertically transmit MU to their offspring. Conclusion The overall findings highlight the low implication of mosquitoes as biological vectors in the transmission cycle of MU from the risk environments to humans.
Collapse
|
29
|
Meyin A Ebong S, García-Peña GE, Pluot-Sigwalt D, Marsollier L, Le Gall P, Eyangoh S, Guégan JF. Ecology and Feeding Habits Drive Infection of Water Bugs with Mycobacterium ulcerans. ECOHEALTH 2017; 14:329-341. [PMID: 28315039 DOI: 10.1007/s10393-017-1228-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
Mycobacterium ulcerans (MU), the causative agent of Buruli ulcer, is present in a wide spectrum of environments, including terrestrial and aquatic ecosystems in tropical regions. The most promising studies on the epidemiological risk of this disease suggest that some ecological settings may favor infection of animals with MU including human. A species' needs and impacts on resources and the environment, i.e., its ecological niche, may influence its susceptibility to be infected by this microbial form. For example, some Naucoridae may dive in fresh waters to prey upon infected animals and thus may get infected with MU. However, these studies have rarely considered that inference on the ecological settings favoring infection and transmission may be confounded because host carrier sister species have similar ecological niches, and potentially the same host-microbe interactions. Hence, a relationship between the ecological niche of Naucoridae and its infection with MU may be due to a symbiotic relationship between the host and the pathogen, rather than its ecological niche. To account for this confounding effect, we investigated the relationships between surrogates of the ecological niche of water bug species and their susceptibility to MU, by performing phylogenetic comparative analyses on a large dataset of 11 families of water bugs collected in 10 different sites across Cameroon, central Africa. Our results indicate that MU circulates and infects a couple of host taxa, i.e., Belostomatidae, Naucoridae, living both in the aquatic vegetation and as predators inside the trophic network and sister species of water bugs have indeed similar host-microbe interactions with MU.
Collapse
Affiliation(s)
- Solange Meyin A Ebong
- UMR MIVEGEC IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, BP 64501, 34394, Montpellier Cedex, France.
- Service de Mycobactériologie, Centre Pasteur du Cameroun, BP 1274, Yaoundé, Cameroon.
- Laboratoire de Parasitologie et Ecologie, Faculté des Sciences, Université de Yaoundé I, Yaoundé, Cameroon.
| | - Gabriel E García-Peña
- UMR MIVEGEC IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, BP 64501, 34394, Montpellier Cedex, France
- Centre de Synthèse et d'Analyse sur la Biodiversité (CESAB), 13857, Aix-en-Provence Cedex 3, France
| | - Dominique Pluot-Sigwalt
- Département Systématique et Evolution, UMR7205 CNRS/MNHN, Museum National d'Histoire Naturelle, Paris, France
| | - Laurent Marsollier
- Inserm Avenir ATOMycA CRCNA Inserm U892 & CNRS U6299, Université et CHU d'Angers, Angers, France
| | - Philippe Le Gall
- UMR EGCE IRD, CNRS et Université Paris-Sud Orsay, Centre CNRS de Gif-sur-Yvette, 91198, Gif-sur-Yvette Cedex, France
| | - Sara Eyangoh
- Service de Mycobactériologie, Centre Pasteur du Cameroun, BP 1274, Yaoundé, Cameroon
| | - Jean-François Guégan
- UMR MIVEGEC IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, BP 64501, 34394, Montpellier Cedex, France
| |
Collapse
|
30
|
Combe M, Velvin CJ, Morris A, Garchitorena A, Carolan K, Sanhueza D, Roche B, Couppié P, Guégan JF, Gozlan RE. Global and local environmental changes as drivers of Buruli ulcer emergence. Emerg Microbes Infect 2017; 6:e21. [PMID: 28442755 PMCID: PMC5457673 DOI: 10.1038/emi.2017.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/21/2022]
Abstract
Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.
Collapse
Affiliation(s)
- Marine Combe
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Camilla Jensen Velvin
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Aaron Morris
- The Royal Veterinary College, Department of Production and Population Health, The Royal Veterinary College, Hawkshead Lane North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Andres Garchitorena
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
- PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Carolan
- Computational & Systems Biology, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Daniel Sanhueza
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Benjamin Roche
- UMMISCO, Département Sociétés et Mondialisation, UMI IRD-UPMC 209, 93143 Bondy, France
| | - Pierre Couppié
- Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, 97306 Cayenne, French Guiana, France
- Service de Dermatologie, Cayenne Hospital, rue des Flamboyant, BP 6006, 97306 Cayenne, French Guiana, France
| | - Jean-François Guégan
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
- Future Earth International Programme, OneHealth Global Research Project, Future Earth Montréal Hub, Montréal, QC H3H 2L3, Canada
| | - Rodolphe Elie Gozlan
- Institut de Recherche pour le Développement, Département Ecologie, Biodiversité et Fonctionnement des Ecosystemes Continentaux, UMR BOREA IRD 207, CNRS 7208, MNHN, UPMC, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
31
|
Zingue D, Bouam A, Militello M, Drancourt M. High-Throughput Carbon Substrate Profiling of Mycobacterium ulcerans Suggests Potential Environmental Reservoirs. PLoS Negl Trop Dis 2017; 11:e0005303. [PMID: 28095422 PMCID: PMC5271411 DOI: 10.1371/journal.pntd.0005303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/27/2017] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans is a close derivative of Mycobacterium marinum and the agent of Buruli ulcer in some tropical countries. Epidemiological and environmental studies pointed towards stagnant water ecosystems as potential sources of M. ulcerans, yet the ultimate reservoirs remain elusive. We hypothesized that carbon substrate determination may help elucidating the spectrum of potential reservoirs. METHODOLOGY/PRINCIPAL FINDINGS In a first step, high-throughput phenotype microarray Biolog was used to profile carbon substrates in one M. marinum and five M. ulcerans strains. A total of 131/190 (69%) carbon substrates were metabolized by at least one M. ulcerans strain, including 28/190 (15%) carbon substrates metabolized by all five M. ulcerans strains of which 21 substrates were also metabolized by M. marinum. In a second step, 131 carbon substrates were investigated, through a bibliographical search, for their known environmental sources including plants, fruits and vegetables, bacteria, algae, fungi, nematodes, mollusks, mammals, insects and the inanimate environment. This analysis yielded significant association of M. ulcerans with bacteria (p = 0.000), fungi (p = 0.001), algae (p = 0.003) and mollusks (p = 0.007). In a third step, the Medline database was cross-searched for bacteria, fungi, mollusks and algae as potential sources of carbon substrates metabolized by all tested M. ulcerans; it indicated that 57% of M. ulcerans substrates were associated with bacteria, 18% with alga, 11% with mollusks and 7% with fungi. CONCLUSIONS This first report of high-throughput carbon substrate utilization by M. ulcerans would help designing media to isolate and grow this pathogen. Furthermore, the presented data suggest that potential M. ulcerans environmental reservoirs might be related to micro-habitats where bacteria, fungi, algae and mollusks are abundant. This should be followed by targeted investigations in Buruli ulcer endemic regions.
Collapse
Affiliation(s)
- Dezemon Zingue
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Amar Bouam
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Muriel Militello
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Michel Drancourt
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| |
Collapse
|