1
|
Dong Z, Sepulveda H, Arteaga-Vazquez LJ, Blouin C, Fernandez J, Binder M, Chou WC, Tien HF, Patnaik MM, Faulkner GJ, Myers SA, Rao A. A mutant ASXL1-BAP1-EHMT complex contributes to heterochromatin dysfunction in clonal hematopoiesis and chronic monomyelocytic leukemia. Proc Natl Acad Sci U S A 2025; 122:e2413302121. [PMID: 39752521 PMCID: PMC11725933 DOI: 10.1073/pnas.2413302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 01/15/2025] Open
Abstract
ASXL transcriptional regulator 1 (ASXL1) is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside DNA methyltransferase 3 alpha (DNMT3A) and Tet methylcytosine dioxygenase 2 (TET2). CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin. In contrast, the mechanisms that connect mutant ASXL1 and CH are not yet fully understood. CH/CMML-associated ASXL1 mutations encode C-terminally truncated proteins that enhance the deubiquitinase activity of the ASXL-BAP1 "PR-DUB" deubiquitinase complex, which removes monoubiquitin from H2AK119Ub. Here, we show that ASXL1 mutant proteins interact with the euchromatic histone lysine methyltransferases 1 and 2 (EHMT1-EHMT2) complex, which generates H3K9me1 and me2, the latter a repressive modification in constitutive heterochromatin. Compared to cells from age-matched wild-type mice, we found that expanded myeloid cells from old (≥18-mo-old) Asxl1tm/+ mice, a heterozygous knock-in mouse model of CH, display genome-wide decreases of H3K9me2, H3K9me3, and H2AK119Ub as well as an associated increase in expression of transposable elements (TEs) and satellite repeats. Increased TE expression was also observed in monocytes from ASXL1-mutant CMML patients compared to monocytes from healthy controls. Our data suggest that mutant ASXL1 proteins compromise the integrity of both constitutive and facultative heterochromatin in an age-dependent manner by reducing the levels of H3K9me2/3 and H2AK119Ub. This increase in TE expression correlated with increased expression of nearby genes, including many interferon-inducible (inflammation-associated) genes (ISGs).
Collapse
Affiliation(s)
- Zhen Dong
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
| | - Hugo Sepulveda
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago7591358, Chile
| | - Leo J. Arteaga-Vazquez
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
| | - Chad Blouin
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
| | - Jenna Fernandez
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Moritz Binder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei10002, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei10002, Taiwan
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Geoffrey J. Faulkner
- Mater Research Institute - University of Queensland, Woolloongabba, QLD4102, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD4072, Australia
| | - Samuel A. Myers
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
| | - Anjana Rao
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
| |
Collapse
|
2
|
Dong Z, Sepulveda H, Arteaga-Vazquez LJ, Blouin C, Fernandez J, Binder M, Chou WC, Tien HF, Patnaik M, Faulkner GJ, Myers SA, Rao A. A mutant ASXL1-EHMT complex contributes to heterochromatin dysfunction in clonal hematopoiesis and chronic monomyelocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.30.578015. [PMID: 39803572 PMCID: PMC11722362 DOI: 10.1101/2024.01.30.578015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ASXL1 is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside DNMT3A and TET2 . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin. In contrast, the mechanisms that connect mutant ASXL1 and CH are not yet fully understood. CH/CMML-associated ASXL1 mutations encode C-terminally truncated proteins that enhance the deubiquitinase activity of the ASXL-BAP1 "PR-DUB" deubiquitinase complex, which removes mono-ubiquitin from H2AK119Ub. Here we show that ASXL1 mutant proteins interact with the EHMT1-EHMT2 methyltransferase complex, which generates H3K9me1 and me2, the latter a repressive modification in constitutive heterochromatin. Compared to cells from age-matched wildtype mice, we found that expanded myeloid cells from old (≥18-month-old) Asxl1tm/+ mice, a heterozygous knock-in mouse model of CH, display genome-wide decreases of H3K9me2, H3K9me3 and H2AK119Ub as well as an associated increase in expression of transposable elements (TEs) and satellite repeats. Increased TE expression was also observed in monocytes from ASXL1 -mutant CMML patients compared to monocytes from healthy controls. Our data suggest that mutant ASXL1 proteins compromise the integrity of both constitutive and facultative heterochromatin in an age-dependent manner, by reducing the levels of H3K9me2/3 and H2AK119Ub. This increase in TE expression correlated with increased expression of nearby genes, including many interferon-inducible (inflammation-associated) genes (ISGs). Significance Statement Age-related clonal hematopoiesis (CH) is a premalignant condition associated with inflammatory cardiovascular disease. ASXL1 mutations are very frequent in CH. We show that ASXL1 interacts with EHMT1 and EHMT2, H3K9 methyltransferases that deposit H3K9me1 and me2. Using a mouse model of mutant ASXL1 to recapitulate CH, we found that old ASXL1-mutant mice showed marked expansion of myeloid cells in bone marrow, with decreased H3K9me2/3 and increased expression of transposable elements (TEs) in heterochromatin. In humans, ASXL1-mutant CH progresses to chronic monomyelocytic leukemia (CMML); CMML patient samples showed striking upregulation of many TE families, suggesting that ASXL1 mutations compromise heterochromatin integrity, hence causing derepression of TEs. Targeting heterochromatin-associated proteins and TEs might counter the progression of CH, CMML and other myeloid malignancies.
Collapse
|
3
|
Lin I, Awamleh Z, Sinvhal M, Wan A, Bondhus L, Wei A, Russell BE, Weksberg R, Arboleda VA. ASXL1 truncating variants in BOS and myeloid leukemia drive shared disruption of Wnt-signaling pathways but have differential isoform usage of RUNX3. BMC Med Genomics 2024; 17:282. [PMID: 39614348 DOI: 10.1186/s12920-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Rare variants in epigenes (a.k.a. chromatin modifiers), a class of genes that control epigenetic regulation, are commonly identified in both pediatric neurodevelopmental syndromes and as somatic variants in cancer. However, little is known about the extent of the shared disruption of signaling pathways by the same epigene across different diseases. To address this, we study an epigene, Additional Sex Combs-like 1 (ASXL1), where truncating heterozygous variants cause Bohring-Opitz syndrome (BOS, OMIM #605039), a germline neurodevelopmental disorder, while somatic variants are driver events in acute myeloid leukemia (AML). No BOS patients have been reported to have AML. METHODS This study explores common pathways dysregulated by ASXL1 variants in patients with BOS and AML. We analyzed whole blood transcriptomic and DNA methylation data from patients with BOS and AML with ASXL1-variant (AML-ASXL1) and examined differential exon usage and cell proportions. RESULTS Our analyses identified common molecular signatures between BOS and AML-ASXL1 and highlighted key biomarkers, including VANGL2, GRIK5 and GREM2, that are dysregulated across samples with ASXL1 variants, regardless of disease type. Notably, our data revealed significant de-repression of posterior homeobox A (HOXA) genes and upregulation of Wnt-signaling and hematopoietic regulator HOXB4. While we discovered many shared epigenetic and transcriptomic features, we also identified differential splice isoforms in RUNX3 where the long isoform, p46, is preferentially expressed in BOS, while the shorter p44 isoform is expressed in AML-ASXL1. CONCLUSION Our findings highlight the strong effects of ASXL1 variants that supersede cell-type and even disease states. This is the first direct comparison of transcriptomic and methylation profiles driven by pathogenic variants in a chromatin modifier gene in distinct diseases. Similar to RASopathies, in which pathogenic variants in many genes lead to overlapping phenotypes that can be treated by inhibiting a common pathway, our data identifies common pathways for ASXL1 variants that can be targeted for both disease states. Comparative approaches of high-penetrance genetic variants across cell types and disease states can identify targetable pathways to treat multiple diseases. Finally, our work highlights the connections of epigenes, such as ASXL1, to an underlying stem-cell state in both early development and in malignancy.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mili Sinvhal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Andrew Wan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Leroy Bondhus
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Angela Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bianca E Russell
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, Division of Clinical Genetics, UCLA, Los Angeles, CA, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Interdepartmental Bioinformatics Program, UCLA, Los Angeles, CA, USA.
- Molecular Biology institute, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Boucher A, Murray J, Rao S. Cohesin mutations in acute myeloid leukemia. Leukemia 2024; 38:2318-2328. [PMID: 39251741 DOI: 10.1038/s41375-024-02406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The cohesin complex, encoded by SMC3, SMC1A, RAD21, and STAG2, is a critical regulator of DNA-looping and gene expression. Over a decade has passed since recurrent mutations affecting cohesin subunits were first identified in myeloid malignancies such as Acute Myeloid Leukemia (AML). Since that time there has been tremendous progress in our understanding of chromatin structure and cohesin biology, but critical questions remain because of the multiple critical functions the cohesin complex is responsible for. Recent findings have been particularly noteworthy with the identification of crosstalk between DNA-looping and chromatin domains, a deeper understanding of how cohesin establishes sister chromatid cohesion, a renewed interest in cohesin's role for DNA damage response, and work demonstrating cohesin's importance for Polycomb repression. Despite these exciting findings, the role of cohesin in normal hematopoiesis, and the precise mechanisms by which cohesin mutations promote cancer, remain poorly understood. This review discusses what is known about the role of cohesin in normal hematopoiesis, and how recent findings could shed light on the mechanisms through which cohesin mutations promote leukemic transformation. Important unanswered questions in the field, such as whether cohesin plays a role in HSC heterogeneity, and the mechanisms by which it regulates gene expression at a molecular level, will also be discussed. Particular attention will be given to the potential therapeutic vulnerabilities of leukemic cells with cohesin subunit mutations.
Collapse
Affiliation(s)
- Austin Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Josiah Murray
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Versiti Blood Research Institute, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology/Oncology/Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Ge G, Zhang P, Sui P, Chen S, Yang H, Guo Y, Rubalcava IP, Noor A, Delma CR, Agosto-Peña J, Geng H, Medina EA, Liang Y, Nimer SD, Mesa R, Abdel-Wahab O, Xu M, Yang FC. Targeting lysine demethylase 6B ameliorates ASXL1 truncation-mediated myeloid malignancies in preclinical models. J Clin Invest 2024; 134:e163964. [PMID: 37917239 PMCID: PMC10760961 DOI: 10.1172/jci163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
ASXL1 mutation frequently occurs in all forms of myeloid malignancies and is associated with aggressive disease and poor prognosis. ASXL1 recruits Polycomb repressive complex 2 (PRC2) to specific gene loci to repress transcription through trimethylation of histone H3 on lysine 27 (H3K27me3). ASXL1 alterations reduce H3K27me3 levels, which results in leukemogenic gene expression and the development of myeloid malignancies. Standard therapies for myeloid malignancies have limited efficacy when mutated ASXL1 is present. We discovered upregulation of lysine demethylase 6B (KDM6B), a demethylase for H3K27me3, in ASXL1-mutant leukemic cells, which further reduces H3K27me3 levels and facilitates myeloid transformation. Here, we demonstrated that heterozygous deletion of Kdm6b restored H3K27me3 levels and normalized dysregulated gene expression in Asxl1Y588XTg hematopoietic stem/progenitor cells (HSPCs). Furthermore, heterozygous deletion of Kdm6b decreased the HSPC pool, restored their self-renewal capacity, prevented biased myeloid differentiation, and abrogated progression to myeloid malignancies in Asxl1Y588XTg mice. Importantly, administration of GSK-J4, a KDM6B inhibitor, not only restored H3K27me3 levels but also reduced the disease burden in NSG mice xenografted with human ASXL1-mutant leukemic cells in vivo. This preclinical finding provides compelling evidence that targeting KDM6B may be a therapeutic strategy for myeloid malignancies with ASXL1 mutations.
Collapse
Affiliation(s)
- Guo Ge
- Department of Cell Systems and Anatomy
| | - Peng Zhang
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| | - Pinpin Sui
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| | - Shi Chen
- Department of Molecular Medicine, and
| | - Hui Yang
- Department of Cell Systems and Anatomy
| | - Ying Guo
- Department of Cell Systems and Anatomy
| | | | - Asra Noor
- Department of Cell Systems and Anatomy
| | - Caroline R. Delma
- Department of Cell Systems and Anatomy
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Hui Geng
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Edward A. Medina
- Mays Cancer Center
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ying Liang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mingjiang Xu
- Mays Cancer Center
- Department of Molecular Medicine, and
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| |
Collapse
|
6
|
Johnson SM, Haberberger J, Galeotti J, Ramkissoon L, Coombs CC, Richardson DR, Foster MC, Duncan D, Zeidner JF, Ferguson NL, Montgomery ND. A reappraisal of ASXL1 mutation sites and the cohesin-binding motif in myeloid disease. Blood Cancer J 2023; 13:96. [PMID: 37365170 DOI: 10.1038/s41408-023-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- Steven M Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | | | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catherine C Coombs
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- UC Irvine, 1001 Health Sciences Road, Irvine, CA, 92697, USA
| | - Daniel R Richardson
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Foster
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Novartis Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Daniel Duncan
- Foundation Medicine, Inc, Cambridge, MA, USA
- GRAIL, Inc., 4001 E NC 54 Hwy Assembly Suite 1100, Durham, NC, 27709, USA
| | - Joshua F Zeidner
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Tempus Labs, Inc., 25 Alexandria Way, Durham, NC, 27703, USA
| |
Collapse
|
7
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
8
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
9
|
Medina EA, Delma CR, Yang FC. ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol 2022; 15:127. [PMID: 36068610 PMCID: PMC9450349 DOI: 10.1186/s13045-022-01336-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Myeloid malignancies develop through the accumulation of genetic and epigenetic alterations that dysregulate hematopoietic stem cell (HSC) self-renewal, stimulate HSC proliferation and result in differentiation defects. The polycomb group (PcG) and trithorax group (TrxG) of epigenetic regulators act antagonistically to regulate the expression of genes key to stem cell functions. The genes encoding these proteins, and the proteins that interact with them or affect their occupancy at chromatin, are frequently mutated in myeloid malignancies. PcG and TrxG proteins are regulated by Enhancers of Trithorax and Polycomb (ETP) proteins. ASXL1 and ASXL2 are ETP proteins that assemble chromatin modification complexes and transcription factors. ASXL1 mutations frequently occur in myeloid malignancies and are associated with a poor prognosis, whereas ASXL2 mutations frequently occur in AML with t(8;21)/RUNX1-RUNX1T1 and less frequently in other subtypes of myeloid malignancies. Herein, we review the role of ASXL1 and ASXL2 in normal and malignant hematopoiesis by summarizing the findings of mouse model systems and discussing their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Edward A Medina
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Caroline R Delma
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Awamleh Z, Chater-Diehl E, Choufani S, Wei E, Kianmahd RR, Yu A, Chad L, Costain G, Tan WH, Scherer SW, Arboleda VA, Russell BE, Weksberg R. DNA methylation signature associated with Bohring-Opitz syndrome: a new tool for functional classification of variants in ASXL genes. Eur J Hum Genet 2022; 30:695-702. [PMID: 35361921 PMCID: PMC9177544 DOI: 10.1038/s41431-022-01083-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
The additional sex combs-like (ASXL) gene family-encoded by ASXL1, ASXL2, and ASXL3-is crucial for mammalian development. Pathogenic variants in the ASXL gene family are associated with three phenotypically distinct neurodevelopmental syndromes. Our previous work has shown that syndromic conditions caused by pathogenic variants in epigenetic regulatory genes show consistent patterns of genome-wide DNA methylation (DNAm) alterations, i.e., DNAm signatures in peripheral blood. Given the role of ASXL1 in chromatin modification, we hypothesized that pathogenic ASXL1 variants underlying Bohring-Opitz syndrome (BOS) have a unique DNAm signature. We profiled whole-blood DNAm for 17 ASXL1 variants, and 35 sex- and age-matched typically developing individuals, using Illumina's Infinium EPIC array. We identified 763 differentially methylated CpG sites in individuals with BOS. Differentially methylated sites overlapped 323 unique genes, including HOXA5 and HOXB4, supporting the functional relevance of DNAm signatures. We used a machine-learning classification model based on the BOS DNAm signature to classify variants of uncertain significance in ASXL1, as well as pathogenic ASXL2 and ASXL3 variants. The DNAm profile of one individual with the ASXL2 variant was BOS-like, whereas the DNAm profiles of three individuals with ASXL3 variants were control-like. We also used Horvath's epigenetic clock, which showed acceleration in DNAm age in individuals with pathogenic ASXL1 variants, and the individual with the pathogenic ASXL2 variant, but not in individuals with ASXL3 variants. These studies enhance our understanding of the epigenetic dysregulation underpinning ASXL gene family-associated syndromes.
Collapse
Affiliation(s)
- Zain Awamleh
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Wei
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebecca R Kianmahd
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anna Yu
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lauren Chad
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Ontario, ON, Canada
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Stephen W Scherer
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Ontario, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | - Bianca E Russell
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Ontario, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Zhang X, Dai XY, Qian JY, Xu F, Wang ZW, Xia T, Zhou XJ, Li XX, Shi L, Wei JF, Ding Q. SMC1A regulated by KIAA1429 in m6A-independent manner promotes EMT progress in breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:133-146. [PMID: 34976433 PMCID: PMC8683616 DOI: 10.1016/j.omtn.2021.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
As a component of N6-methyladenosine (m6A) “writers,” KIAA1429 was reported to promote breast cancer proliferation and growth in m6A-independent manners. However, the related mechanism of KIAA1429 in breast cancer metastasis has not been reported. In the present study, we found KIAA1429 could significantly promote the migration and invasion of breast cancer cells. Then we demonstrated that knockdown of KIAA1429 could impede breast cancer metastasis in nude mice in vivo. The level of SNAIL expression and epithelial-mesenchymal transition (EMT) progress was positively related with KIAA1429. Furthermore, we confirmed that the suppression of cell migration, invasion, and EMT progress by knockdown of KIAA1429 could be reversed by the upregulation of SNAIL. However, structural maintenance of chromosomes 1A (SMC1A), not KIAA1429, bound with the SNAIL promoter region directly and promoted the transcription of SNAIL. Then we confirmed that KIAA1429 could bind to the motif in the 3′ UTR of SMC1A mRNA directly and enhance SMC1A mRNA stability. In conclusion, our study revealed a novel mechanism of the KIAA1429/SMC1A/SNAIL axis in the regulation of metastasis of breast cancer. Moreover, it first provided detailed investigation of how KIAA1429 regulated the targeted gene expression at posttranscriptional levels as an RNA binding protein unrelated to its m6A modification.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xin-Yuan Dai
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jia-Yi Qian
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Feng Xu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Zhang-Wei Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Tian Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xu-Jie Zhou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiao-Xia Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.,Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
12
|
Yamamoto K, Goyama S, Asada S, Fujino T, Yonezawa T, Sato N, Takeda R, Tsuchiya A, Fukuyama T, Tanaka Y, Yokoyama A, Toya H, Kon A, Nannya Y, Onoguchi-Mizutani R, Nakagawa S, Hirose T, Ogawa S, Akimitsu N, Kitamura T. A histone modifier, ASXL1, interacts with NONO and is involved in paraspeckle formation in hematopoietic cells. Cell Rep 2021; 36:109576. [PMID: 34433054 DOI: 10.1016/j.celrep.2021.109576] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/03/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Paraspeckles are membraneless organelles formed through liquid-liquid phase separation and consist of multiple proteins and RNAs, including NONO, SFPQ, and NEAT1. The role of paraspeckles and the component NONO in hematopoiesis remains unknown. In this study, we show histone modifier ASXL1 is involved in paraspeckle formation. ASXL1 forms phase-separated droplets, upregulates NEAT1 expression, and increases NONO-NEAT1 interactions through the C-terminal intrinsically disordered region (IDR). In contrast, a pathogenic ASXL mutant (ASXL1-MT) lacking IDR does not support the interaction of paraspeckle components. Furthermore, paraspeckles are disrupted and Nono localization is abnormal in the cytoplasm of hematopoietic stem and progenitor cells (HSPCs) derived from ASXL1-MT knockin mice. Nono depletion and the forced expression of cytoplasmic NONO impair the repopulating potential of HSPCs, as does ASXL1-MT. Our study indicates a link between ASXL1 and paraspeckle components in the maintenance of normal hematopoiesis.
Collapse
Affiliation(s)
- Keita Yamamoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Yokoyama
- National Cancer Center Tsuruoka Metabolomics Laboratory, Yamagata, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Lin YH, Liang Y, Wang H, Tung LT, Förster M, Subramani PG, Di Noia JM, Clare S, Langlais D, Nijnik A. Regulation of B Lymphocyte Development by Histone H2A Deubiquitinase BAP1. Front Immunol 2021; 12:626418. [PMID: 33912157 PMCID: PMC8072452 DOI: 10.3389/fimmu.2021.626418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, via deubiquitination of histone H2AK119ub and other substrates. BAP1 is an important tumor suppressor in human, expressed and functional across many cell-types and tissues, including those of the immune system. B lymphocytes are the mediators of humoral immune response, however the role of BAP1 in B cell development and physiology remains poorly understood. Here we characterize a mouse line with a selective deletion of BAP1 within the B cell lineage (Bap1fl/fl mb1-Cre) and establish a cell intrinsic role of BAP1 in the regulation of B cell development. We demonstrate a depletion of large pre-B cells, transitional B cells, and mature B cells in Bap1fl/fl mb1-Cre mice. We characterize broad transcriptional changes in BAP1-deficient pre-B cells, map BAP1 binding across the genome, and analyze the effects of BAP1-loss on histone H2AK119ub levels and distribution. Overall, our work establishes a cell intrinsic role of BAP1 in B lymphocyte development, and suggests its contribution to the regulation of the transcriptional programs of cell cycle progression, via the deubiquitination of histone H2AK119ub.
Collapse
Affiliation(s)
- Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Michael Förster
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - David Langlais
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
D'Altri T, Wilhelmson AS, Schuster MB, Wenzel A, Kalvisa A, Pundhir S, Meldgaard Hansen A, Porse BT. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica 2021; 106:1000-1007. [PMID: 32381577 PMCID: PMC8017816 DOI: 10.3324/haematol.2019.235150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
ASXL1 is one of the most commonly mutated genes in myeloid malignancies, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In order to further our understanding of the role of ASXL1 lesions in malignant hematopoiesis, we generated a novel knockin mouse model carrying the most frequent ASXL1 mutation identified in MDS patients, ASXL1 p.G643WfsX12. Mutant mice neither displayed any major hematopoietic defects nor developed any apparent hematological disease. In AML patients, ASXL1 mutations co-occur with mutations in CEBPA and we therefore generated compound Cebpa and Asxl1 mutated mice. Using a transplantation model, we found that the mutated Asxl1 allele significantly accelerated disease development in a CEBPA mutant context. Importantly, we demonstrated that, similar to the human setting, Asxl1 mutated mice responded poorly to chemotherapy. This model therefore constitutes an excellent experimental system for further studies into the clinically important question of chemotherapy resistance mediated by mutant ASXL1.
Collapse
Affiliation(s)
- Teresa D'Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Mikkel B Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Adrija Kalvisa
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Meldgaard Hansen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Ochi Y, Ogawa S. Chromatin-Spliceosome Mutations in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061232. [PMID: 33799787 PMCID: PMC7999050 DOI: 10.3390/cancers13061232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Recent genomic studies have identified chromatin-spliceosome (CS)-acute myeloid leukemia (AML) as a new subgroup of AML. CS-AML is defined by several mutations that perturb epigenetic regulation, such as those affecting splicing factors, cohesin components, transcription factors, and chromatin modifiers, which are also frequently mutated in other myeloid malignancies, such as myelodysplastic syndrome and secondary AML. Thus, these mutations identify myeloid neoplasms that lie on the boundaries of conventional differential diagnosis. CS-AML shares several clinical characteristics with secondary AML. Therefore, the presence of CS-mutations may help to better classify and manage patients with AML and related disorders. The aim of this review is to discuss the genetic and clinical characteristics of CS-AML and roles of driver mutations defining this unique genomic subgroup of AML. Abstract Recent genetic studies on large patient cohorts with acute myeloid leukemia (AML) have cataloged a comprehensive list of driver mutations, resulting in the classification of AML into distinct genomic subgroups. Among these subgroups, chromatin-spliceosome (CS)-AML is characterized by mutations in the spliceosome, cohesin complex, transcription factors, and chromatin modifiers. Class-defining mutations of CS-AML are also frequently identified in myelodysplastic syndrome (MDS) and secondary AML, indicating the molecular similarity among these diseases. CS-AML is associated with myelodysplasia-related changes in hematopoietic cells and poor prognosis, and, thus, can be treated using novel therapeutic strategies and allogeneic stem cell transplantation. Functional studies of CS-mutations in mice have revealed that CS-mutations typically cause MDS-like phenotypes by altering the epigenetic regulation of target genes. Moreover, multiple CS-mutations often synergistically induce more severe phenotypes, such as the development of lethal MDS/AML, suggesting that the accumulation of many CS-mutations plays a crucial role in the progression of MDS/AML. Indeed, the presence of multiple CS-mutations is a stronger indicator of CS-AML than a single mutation. This review summarizes the current understanding of the genetic and clinical features of CS-AML and the functional roles of driver mutations characterizing this unique category of AML.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
- Correspondence: ; Tel.: +81-75-753-9285
| |
Collapse
|
16
|
Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia 2021; 23:337-347. [PMID: 33621854 PMCID: PMC7905235 DOI: 10.1016/j.neo.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) affects tens of thousands of patients a year, yet survival rates are as low as 25% in certain populations. This poor survival rate is partially due to the vast genetic diversity of the disease. Rarely do 2 patients with AML have the same mutational profile, which makes the development of targeted therapies particularly challenging. However, a set of recurrent mutations in chromatin modifiers have been identified in many patients, including mutations in the cohesin complex, which have been identified in up to 20% of cases. Interestingly, the canonical function of the cohesin complex in establishing sister chromatid cohesin during mitosis is unlikely to be the affected role in leukemogenesis. Instead, the cohesin complex's role in DNA looping and gene regulation likely facilitates disease. The epigenetic mechanisms by which cohesin complex mutations promote leukemia are not completely elucidated, but alterations of enhancer-promoter interactions and differential histone modifications have been shown to drive oncogenic gene expression changes. Such changes commonly include HoxA upregulation, which may represent a common pathway that could be therapeutically targeted. As cohesin mutations rarely occur alone, examining the impact of common co-occurring mutations, including those in NPM1, the core-binding factor complex, FLT3, and ASXL1, will yield additional insight. While further study of these mutational interactions is required, current research suggests that the use of combinatorial genetics could be the key to uncovering new targets, allowing for the treatment of AML patients based on their individual genetic profiles.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Puja Agrawal
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Abstract
Although we are just beginning to understand the mechanisms that regulate the epigenome, aberrant epigenetic programming has already emerged as a hallmark of hematologic malignancies including acute myeloid leukemia (AML) and B-cell lymphomas. Although these diseases arise from the hematopoietic system, the epigenetic mechanisms that drive these malignancies are quite different. Yet, in all of these tumors, somatic mutations in transcription factors and epigenetic modifiers are the most commonly mutated set of genes and result in multilayered disruption of the epigenome. Myeloid and lymphoid neoplasms generally manifest epigenetic allele diversity, which contributes to tumor cell population fitness regardless of the underlying genetics. Epigenetic therapies are emerging as one of the most promising new approaches for these patients. However, effective targeting of the epigenome must consider the need to restore the various layers of epigenetic marks, appropriate biological end points, and specificity of therapeutic agents to truly realize the potential of this modality.
Collapse
Affiliation(s)
- Cihangir Duy
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wendy Béguelin
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
18
|
Rodrigues CP, Shvedunova M, Akhtar A. Epigenetic Regulators as the Gatekeepers of Hematopoiesis. Trends Genet 2020; 37:S0168-9525(20)30251-1. [PMID: 34756331 DOI: 10.1016/j.tig.2020.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
19
|
Yu P, Li J, Deng SP, Zhang F, Grozdanov PN, Chin EWM, Martin SD, Vergnes L, Islam MS, Sun D, LaSalle JM, McGee SL, Goh E, MacDonald CC, Jin P. Integrated analysis of a compendium of RNA-Seq datasets for splicing factors. Sci Data 2020; 7:178. [PMID: 32546682 PMCID: PMC7297722 DOI: 10.1038/s41597-020-0514-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/13/2020] [Indexed: 02/05/2023] Open
Abstract
A vast amount of public RNA-sequencing datasets have been generated and used widely to study transcriptome mechanisms. These data offer precious opportunity for advancing biological research in transcriptome studies such as alternative splicing. We report the first large-scale integrated analysis of RNA-Seq data of splicing factors for systematically identifying key factors in diseases and biological processes. We analyzed 1,321 RNA-Seq libraries of various mouse tissues and cell lines, comprising more than 6.6 TB sequences from 75 independent studies that experimentally manipulated 56 splicing factors. Using these data, RNA splicing signatures and gene expression signatures were computed, and signature comparison analysis identified a list of key splicing factors in Rett syndrome and cold-induced thermogenesis. We show that cold-induced RNA-binding proteins rescue the neurite outgrowth defects in Rett syndrome using neuronal morphology analysis, and we also reveal that SRSF1 and PTBP1 are required for energy expenditure in adipocytes using metabolic flux analysis. Our study provides an integrated analysis for identifying key factors in diseases and biological processes and highlights the importance of public data resources for identifying hypotheses for experimental testing.
Collapse
Affiliation(s)
- Peng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, China.
| | - Jin Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Su-Ping Deng
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Petar N Grozdanov
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Eunice W M Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, NA, Singapore
| | - Sheree D Martin
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - M Saharul Islam
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Sean L McGee
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Eyleen Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, NA, Singapore
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Ochi Y, Kon A, Sakata T, Nakagawa MM, Nakazawa N, Kakuta M, Kataoka K, Koseki H, Nakayama M, Morishita D, Tsuruyama T, Saiki R, Yoda A, Okuda R, Yoshizato T, Yoshida K, Shiozawa Y, Nannya Y, Kotani S, Kogure Y, Kakiuchi N, Nishimura T, Makishima H, Malcovati L, Yokoyama A, Takeuchi K, Sugihara E, Sato TA, Sanada M, Takaori-Kondo A, Cazzola M, Kengaku M, Miyano S, Shirahige K, Suzuki HI, Ogawa S. Combined Cohesin-RUNX1 Deficiency Synergistically Perturbs Chromatin Looping and Causes Myelodysplastic Syndromes. Cancer Discov 2020; 10:836-853. [PMID: 32249213 PMCID: PMC7269820 DOI: 10.1158/2159-8290.cd-19-0982] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
Abstract
STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Masanori Kakuta
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Tatsuaki Tsuruyama
- Department of Drug and Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Yoda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rurika Okuda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunori Kogure
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomomi Nishimura
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Khaminets A, Ronnen-Oron T, Baldauf M, Meier E, Jasper H. Cohesin controls intestinal stem cell identity by maintaining association of Escargot with target promoters. eLife 2020; 9:e48160. [PMID: 32022682 PMCID: PMC7002041 DOI: 10.7554/elife.48160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain regenerative capacity of the intestinal epithelium. Their function and activity are regulated by transcriptional changes, yet how such changes are coordinated at the genomic level remains unclear. The Cohesin complex regulates transcription globally by generating topologically-associated DNA domains (TADs) that link promotor regions with distant enhancers. We show here that the Cohesin complex prevents premature differentiation of Drosophila ISCs into enterocytes (ECs). Depletion of the Cohesin subunit Rad21 and the loading factor Nipped-B triggers an ISC to EC differentiation program that is independent of Notch signaling, but can be rescued by over-expression of the ISC-specific escargot (esg) transcription factor. Using damID and transcriptomic analysis, we find that Cohesin regulates Esg binding to promoters of differentiation genes, including a group of Notch target genes involved in ISC differentiation. We propose that Cohesin ensures efficient Esg-dependent gene repression to maintain stemness and intestinal homeostasis.
Collapse
Affiliation(s)
| | | | - Maik Baldauf
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Elke Meier
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Heinrich Jasper
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Buck Institute for Research on AgingNovatoUnited States
- Immunology DiscoveryGenentech, IncSouth San FranciscoUnited States
| |
Collapse
|
23
|
Zhang P, Xu M, Yang FC. The Role of ASXL1/2 and Their Associated Proteins in Malignant Hematopoiesis. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 2019; 76:2511-2523. [PMID: 30927018 PMCID: PMC11105736 DOI: 10.1007/s00018-019-03084-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Recent high-throughput genome-wide sequencing studies have identified recurrent somatic mutations in myeloid neoplasms. An epigenetic regulator, Additional sex combs-like 1 (ASXL1), is one of the most frequently mutated genes in all subtypes of myeloid malignancies. ASXL1 mutations are also frequently detected in clonal hematopoiesis, which is associated with an increased risk of mortality. Therefore, it is important to understand how ASXL1 mutations contribute to clonal expansion and myeloid transformation in hematopoietic cells. Studies using ASXL1-depleted human hematopoietic cells and Asxl1 knockout mice have shown that deletion of wild-type ASXL1 protein leads to impaired hematopoiesis and accelerates myeloid malignancies via loss of interaction with polycomb repressive complex 2 proteins. On the other hand, ASXL1 mutations in myeloid neoplasms typically occur near the last exon and result in the expression of C-terminally truncated mutant ASXL1 protein. Biological studies and biochemical analyses of this variant have shed light on its dominant-negative and gain-of-function features in myeloid transformation via a variety of epigenetic changes. Based on these results, it would be possible to establish novel promising therapeutic strategies for myeloid malignancies harboring ASXL1 mutations by blocking interactions between ASXL1 and associating epigenetic regulators. Here, we summarize the clinical implications of ASXL1 mutations, the role of wild-type ASXL1 in normal hematopoiesis, and oncogenic functions of mutant ASXL1 in myeloid neoplasms.
Collapse
Affiliation(s)
- Shuhei Asada
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan.
| |
Collapse
|
25
|
Pezzotta A, Mazzola M, Spreafico M, Marozzi A, Pistocchi A. Enigmatic Ladies of the Rings: How Cohesin Dysfunction Affects Myeloid Neoplasms Insurgence. Front Cell Dev Biol 2019; 7:21. [PMID: 30873408 PMCID: PMC6400976 DOI: 10.3389/fcell.2019.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/05/2019] [Indexed: 12/04/2022] Open
Abstract
The genes of the cohesin complex exert different functions, ranging from the adhesion of sister chromatids during the cell cycle, DNA repair, gene expression and chromatin architecture remodeling. In recent years, the improvement of DNA sequencing technologies allows the identification of cohesin mutations in different tumors such as acute myeloid leukemia (AML), acute megakaryoblastic leukemia (AMKL), and myelodysplastic syndromes (MDS). However, the role of cohesin dysfunction in cancer insurgence remains elusive. In this regard, cells harboring cohesin mutations do not show any increase in aneuploidy that might explain their oncogenic activity, nor cohesin mutations are sufficient to induce myeloid neoplasms as they have to co-occur with other causative mutations such as NPM1, FLT3-ITD, and DNMT3A. Several works, also using animal models for cohesin haploinsufficiency, correlate cohesin activity with dysregulated expression of genes involved in myeloid development and differentiation. These evidences support the involvement of cohesin mutations in myeloid neoplasms.
Collapse
Affiliation(s)
- Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Brenner AK, Aasebø E, Hernandez-Valladares M, Selheim F, Berven F, Grønningsæter IS, Bartaula-Brevik S, Bruserud Ø. The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome. Cancers (Basel) 2019; 11:cancers11010073. [PMID: 30634713 PMCID: PMC6356272 DOI: 10.3390/cancers11010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy, which is highly heterogeneous with regard to chemosensitivity and biological features. The AML cell population is organized in a hierarchy that is reflected in the in vitro growth characteristics, with only a minority of cells being able to proliferate for more than two weeks. In this study, we investigated the ability of AML stem cells to survive and proliferate in suspension cultures in the presence of exogenous mediators but without supporting non-leukemic cells. We saw that a high number of maintained stem cells (i.e., a large number of clonogenic cells after five weeks of culture) was associated with decreased overall survival for patients receiving intensive chemotherapy; this prognostic impact was also detected in the multivariate/adjusted analysis. Furthermore, the patients with many clonogenic cells presented more frequently with mutations in transcription-related genes, and also showed a higher abundance of proteins involved in transcription at the time of diagnosis. In conclusion, the growth characteristics of the long-term proliferating leukemic stem cells seem to have an independent prognostic impact in human AML, and these characteristics appear to be reflected by the mutational landscape and the proteome of the patients at the time of diagnosis.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elise Aasebø
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Maria Hernandez-Valladares
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Selheim
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Ida-Sofie Grønningsæter
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
27
|
Zhang P, He F, Bai J, Yamamoto S, Chen S, Zhang L, Sheng M, Zhang L, Guo Y, Man N, Yang H, Wang S, Cheng T, Nimer SD, Zhou Y, Xu M, Wang QF, Yang FC. Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy. J Clin Invest 2018; 128:5383-5398. [PMID: 30226831 DOI: 10.1172/jci121366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
ASXL1 is frequently mutated in myeloid malignancies and is known to co-occur with other gene mutations. However, the molecular mechanisms underlying the leukemogenesis associated with ASXL1 and cooperating mutations remain to be elucidated. Here, we report that Asxl1 loss cooperated with haploinsufficiency of Nf1, a negative regulator of the RAS signaling pathway, to accelerate the development of myeloid leukemia in mice. Loss of Asxl1 and Nf1 in hematopoietic stem and progenitor cells resulted in a gain-of-function transcriptional activation of multiple pathways such as MYC, NRAS, and BRD4 that are critical for leukemogenesis. The hyperactive MYC and BRD9 transcription programs were correlated with elevated H3K4 trimethylation at the promoter regions of genes involving these pathways. Furthermore, pharmacological inhibition of both the MAPK pathway and BET bromodomain prevented leukemia initiation and inhibited disease progression in Asxl1Δ/Δ Nf1Δ/Δ mice. Concomitant mutations of ASXL1 and RAS pathway genes were associated with aggressive progression of myeloid malignancies in patients. This study sheds light on the effect of cooperation between epigenetic alterations and signaling pathways on accelerating the progression of myeloid malignancies and provides a rational therapeutic strategy for the treatment of myeloid malignancies with ASXL1 and RAS pathway gene mutations.
Collapse
Affiliation(s)
- Peng Zhang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shohei Yamamoto
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lin Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Sheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suyun Wang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
28
|
Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. Leukemia 2018; 32:1834-1837. [PMID: 29743720 DOI: 10.1038/s41375-018-0126-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
|
29
|
Weinberg OK, Gibson CJ, Blonquist TM, Neuberg D, Pozdnyakova O, Kuo F, Ebert BL, Hasserjian RP. Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities. Haematologica 2018; 103:626-633. [PMID: 29326119 PMCID: PMC5865424 DOI: 10.3324/haematol.2017.181842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022] Open
Abstract
Despite improvements in our understanding of the molecular basis of acute myeloid leukemia (AML), the association between genetic mutations with morphological dysplasia remains unclear. In this study, we evaluated and scored dysplasia in bone marrow (BM) specimens from 168 patients with de novo AML; none of these patients had cytogenetic abnormalities according to the 2016 World Health Organization Classification. We then performed targeted sequencing of diagnostic BM aspirates for recurrent mutations associated with myeloid malignancies. We found that cohesin pathway mutations [q (FDR-adjusted P)=0.046] were associated with a higher degree of megakaryocytic dysplasia and STAG2 mutations were marginally associated with greater myeloid lineage dysplasia (q=0.052). Frequent megakaryocytes with separated nuclear lobes were more commonly seen among cases with cohesin pathway mutations (q=0.010) and specifically in those with STAG2 mutations (q=0.010), as well as NPM1 mutations (q=0.022 when considering the presence of any vs no megakaryocytes with separated nuclear lobes). RAS pathway mutations (q=0.006) and FLT3-ITD (q=0.006) were significantly more frequent in cases without evaluable erythroid cells. In univariate analysis of the 153 patients treated with induction chemotherapy, NPM1 mutations were associated with longer event-free survival (EFS) (P=0.042), while RUNX1 (P=0.042), NF1 (P=0.040), frequent micromegakaryocytes (P=0.018) and presence of a subclone (P=0.002) were associated with shorter EFS. In multivariable modeling, NPM1 was associated with longer EFS, while presence of a subclone and frequent micromegakaryocytes remained significantly associated with shorter EFS.
Collapse
Affiliation(s)
- Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Christopher J Gibson
- Division of Hematology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
| | - Traci M Blonquist
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Kuo
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
30
|
Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov 2018; 4:4. [PMID: 29423272 PMCID: PMC5802628 DOI: 10.1038/s41421-017-0004-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.
Collapse
|
31
|
Yang H, Kurtenbach S, Guo Y, Lohse I, Durante MA, Li J, Li Z, Al-Ali H, Li L, Chen Z, Field MG, Zhang P, Chen S, Yamamoto S, Li Z, Zhou Y, Nimer SD, Harbour JW, Wahlestedt C, Xu M, Yang FC. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 2018; 131:328-341. [PMID: 29113963 PMCID: PMC5774208 DOI: 10.1182/blood-2017-06-789669] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/28/2017] [Indexed: 11/20/2022] Open
Abstract
Additional Sex Combs-Like 1 (ASXL1) is mutated at a high frequency in all forms of myeloid malignancies associated with poor prognosis. We generated a Vav1 promoter-driven Flag-Asxl1Y588X transgenic mouse model, Asxl1Y588X Tg, to express a truncated FLAG-ASXL1aa1-587 protein in the hematopoietic system. The Asxl1Y588X Tg mice had an enlarged hematopoietic stem cell (HSC) pool, shortened survival, and predisposition to a spectrum of myeloid malignancies, thereby recapitulating the characteristics of myeloid malignancy patients with ASXL1 mutations. ATAC- and RNA-sequencing analyses revealed that the ASXL1aa1-587 truncating protein expression results in more open chromatin in cKit+ cells compared with wild-type cells, accompanied by dysregulated expression of genes critical for HSC self-renewal and differentiation. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation experiments showed that ASXL1aa1-587 acquired an interaction with BRD4. An epigenetic drug screening demonstrated a hypersensitivity of Asxl1Y588X Tg bone marrow cells to BET bromodomain inhibitors. This study demonstrates that ASXL1aa1-587 plays a gain-of-function role in promoting myeloid malignancies. Our model provides a powerful platform to test therapeutic approaches of targeting the ASXL1 truncation mutations in myeloid malignancies.
Collapse
Affiliation(s)
- Hui Yang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | | | - Ying Guo
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Ines Lohse
- Sylvester Comprehensive Cancer Center
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences
| | | | - Jianping Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Zhaomin Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Hassan Al-Ali
- Sylvester Comprehensive Cancer Center
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Peggy and Harold Katz Family Drug Discovery Center, and
| | - Lingxiao Li
- Sylvester Comprehensive Cancer Center
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL; and
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Matthew G Field
- Sylvester Comprehensive Cancer Center
- Bascom Palmer Eye Institute
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Shi Chen
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Shohei Yamamoto
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Zhuo Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL; and
| | - J William Harbour
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
- Bascom Palmer Eye Institute
| | - Claes Wahlestedt
- Sylvester Comprehensive Cancer Center
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
32
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:470-479. [PMID: 29222295 PMCID: PMC6142568 DOI: 10.1182/asheducation-2017.1.470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
33
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood 2017; 130:2475-2483. [PMID: 29212804 DOI: 10.1182/blood-2017-06-782037] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023] Open
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
34
|
Li J, He F, Zhang P, Chen S, Shi H, Sun Y, Guo Y, Yang H, Man N, Greenblatt S, Li Z, Guo Z, Zhou Y, Wang L, Morey L, Williams S, Chen X, Wang QT, Nimer SD, Yu P, Wang QF, Xu M, Yang FC. Loss of Asxl2 leads to myeloid malignancies in mice. Nat Commun 2017; 8:15456. [PMID: 28593990 PMCID: PMC5472177 DOI: 10.1038/ncomms15456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
ASXL2 is frequently mutated in acute myeloid leukaemia patients with t(8;21). However, the roles of ASXL2 in normal haematopoiesis and the pathogenesis of myeloid malignancies remain unknown. Here we show that deletion of Asxl2 in mice leads to the development of myelodysplastic syndrome (MDS)-like disease. Asxl2−/− mice have an increased bone marrow (BM) long-term haematopoietic stem cells (HSCs) and granulocyte–macrophage progenitors compared with wild-type controls. Recipients transplanted with Asxl2−/− and Asxl2+/− BM cells have shortened lifespan due to the development of MDS-like disease or myeloid leukaemia. Paired daughter cell assays demonstrate that Asxl2 loss enhances the self-renewal of HSCs. Deletion of Asxl2 alters the expression of genes critical for HSC self-renewal, differentiation and apoptosis in Lin−cKit+ cells. The altered gene expression is associated with dysregulated H3K27ac and H3K4me1/2. Our study demonstrates that ASXL2 functions as a tumour suppressor to maintain normal HSC function. ASXL2 mutations are mostly found in a subset of leukemia patients with certain genetic aberrations; however the role of this protein in normal hematopoiesis and related malignancies is still unclear. Here the authors use a knock-out mouse model to uncover the role of Asxl2 in hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Jianping Li
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Fuhong He
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Hui Shi
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yanling Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Zhaomin Li
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering, and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Sion Williams
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Qun-Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| |
Collapse
|
35
|
Jin M, Xu S, An Q. Pediatric haematopoiesis and related malignancies. Oncol Lett 2017; 14:10-14. [PMID: 28693128 PMCID: PMC5494839 DOI: 10.3892/ol.2017.6106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Survival after acute paediatric (0–14 years), adolescent (15–19 years) and young adult (20–39 years) leukaemia has improved substantially over the last five decades, particularly for acute lymphoblastic leukaemia (ALL) and acute promyelocytic leukaemia. This progress represents one of the most successful achievements in the history of medicine and has been attributed to the development of effective chemotherapy regimens, improvement in supportive care, better risk stratification, use of targeted therapies, and advances in haematopoietic stem cell transplantation. Recent studies have revealed improvement in survival over time for all age groups and subtypes of leukaemia. However, these outcomes varied widely by age and are associated with sociodemographic and clinical factors. The present review concludes that survival and early death after acute leukaemia has greatly improved among young patients. However, inequalities in outcomes remain and are likely a result of multiple factors.
Collapse
Affiliation(s)
- Mingwei Jin
- Department of Pediatrics, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Shumei Xu
- Department of Pediatrics, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Qi An
- Department of Pediatrics, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|