1
|
Rothstein A, Fischer A, Achtermann A, Icking E, Hecker K, Banszerus L, Otto M, Trellenkamp S, Lentz F, Watanabe K, Taniguchi T, Beschoten B, Dolleman RJ, Kennes DM, Stampfer C. Gate-Defined Single-Electron Transistors in Twisted Bilayer Graphene. NANO LETTERS 2025; 25:6429-6437. [PMID: 40229198 DOI: 10.1021/acs.nanolett.4c06492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Twisted bilayer graphene (tBLG) near the magic angle is a unique platform where the combination of topology and strong correlations gives rise to exotic electronic phases. These phases are gate-tunable and related to the presence of flat electronic bands, isolated by single-particle band gaps. This enables gate-controlled charge confinements, essential for the operation of single-electron transistors (SETs), and allows one to explore the interplay of confinement, electron interactions, band renormalization, and the moiré superlattice, potentially revealing key paradigms of strong correlations. Here, we present gate-defined SETs in tBLG with well-tunable Coulomb blockade resonances. These SETs allow us to study magnetic field-induced quantum oscillations in the density of states of the source-drain reservoirs, providing insight into gate-tunable Fermi surfaces of tBLG. Comparison with tight-binding calculations highlights the importance of displacement-field-induced band renormalization crucial for future advanced gate-tunable quantum devices and circuits in tBLG including, e.g., quantum dots and Josephson junction arrays.
Collapse
Affiliation(s)
- Alexander Rothstein
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ammon Fischer
- Institute for Theory of Statistical Physics, RWTH Aachen University, and JARA Fundamentals of Future Information Technology, 52062 Aachen, Germany
| | - Anthony Achtermann
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Eike Icking
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Katrin Hecker
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Luca Banszerus
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Martin Otto
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik, 52074 Aachen, Germany
| | - Stefan Trellenkamp
- Helmholtz Nano Facility, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Florian Lentz
- Helmholtz Nano Facility, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Bernd Beschoten
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Robin J Dolleman
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Dante M Kennes
- Institute for Theory of Statistical Physics, RWTH Aachen University, and JARA Fundamentals of Future Information Technology, 52062 Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Christoph Stampfer
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
2
|
Pawłowski J, Kumar P, Watanabe K, Taniguchi T, S Novoselov K, Churchill HOH, Kotekar-Patil D. Single electron quantum dot in two-dimensional transition metal dichalcogenides. NANOTECHNOLOGY 2025; 36:195001. [PMID: 40174603 DOI: 10.1088/1361-6528/adc81a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/02/2025] [Indexed: 04/04/2025]
Abstract
Spin-valley properties in two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) has attracted significant interest due to the possible applications in quantum computing. Spin-valley properties can be exploited in TMDC quantum dot (QD) with well-resolved energy levels. This requires smaller QDs, especially in material systems with heavy carrier effective mass e.g. TMDCs and silicon. Device architectures employed for TMDC QDs so far have difficulty achieving smaller QDs. Therefore, an alternative approach in the device architecture is needed. Here, we propose a multilayer device architecture to achieve a gate-defined QD in TMDC with a relatively large energy splitting on the QD. We provide a range of device dimensions and dielectric thicknesses and its correlation with the QD energy splitting. The device architecture is modeled realistically. Moreover, we show that all the device parameters used in modeling are experimentally achievable. These studies lay the foundation for future work toward spin-valley qubits in TMDCs. The successful implementation of these device architectures will drive the technological development of 2D materials-based quantum technologies.
Collapse
Affiliation(s)
- Jarosław Pawłowski
- Institute of Theoretical Physics, Wrocław University of Science and Technology, Wrocław, Poland
| | - Pankaj Kumar
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Konstantin S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
- Department of Materials and Engineering, National University of Singapore, Singapore
| | - Hugh O H Churchill
- Department of Physics, University of Arkansas, Fayetteville, A R, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Dharmraj Kotekar-Patil
- Department of Physics, University of Arkansas, Fayetteville, A R, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| |
Collapse
|
3
|
Talha-Dean T, Tarn Y, Mukherjee S, John JW, Huang D, Verzhbitskiy IA, Venkatakrishnarao D, Das S, Lee R, Mishra A, Wang S, Ang YS, Johnson Goh KE, Lau CS. Nanoironing van der Waals Heterostructures toward Electrically Controlled Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31738-31746. [PMID: 38843175 DOI: 10.1021/acsami.4c03639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Assembling two-dimensional van der Waals (vdW)-layered materials into heterostructures is an exciting development that sparked the discovery of rich correlated electronic phenomena. vdW heterostructures also offer possibilities for designer device applications in areas such as optoelectronics, valley- and spintronics, and quantum technology. However, realizing the full potential of these heterostructures requires interfaces with exceptionally low disorder which is challenging to engineer. Here, we show that thermal scanning probes can be used to create pristine interfaces in vdW heterostructures. Our approach is compatible at both the material- and device levels, and monolayer WS2 transistors show up to an order of magnitude improvement in electrical performance from this technique. We also demonstrate vdW heterostructures with low interface disorder enabling the electrical formation and control of quantum dots that can be tuned from macroscopic current flow to the single-electron tunneling regime.
Collapse
Affiliation(s)
- Teymour Talha-Dean
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K
| | - Yaoju Tarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Subhrajit Mukherjee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - John Wellington John
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan A Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Rainer Lee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Abhishek Mishra
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shuhua Wang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Yee Sin Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
4
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
5
|
Hecker K, Banszerus L, Schäpers A, Möller S, Peters A, Icking E, Watanabe K, Taniguchi T, Volk C, Stampfer C. Coherent charge oscillations in a bilayer graphene double quantum dot. Nat Commun 2023; 14:7911. [PMID: 38036517 PMCID: PMC10689829 DOI: 10.1038/s41467-023-43541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The coherent dynamics of a quantum mechanical two-level system passing through an anti-crossing of two energy levels can give rise to Landau-Zener-Stückelberg-Majorana (LZSM) interference. LZSM interference spectroscopy has proven to be a fruitful tool to investigate charge noise and charge decoherence in semiconductor quantum dots (QDs). Recently, bilayer graphene has developed as a promising platform to host highly tunable QDs potentially useful for hosting spin and valley qubits. So far, in this system no coherent oscillations have been observed and little is known about charge noise in this material. Here, we report coherent charge oscillations and [Formula: see text] charge decoherence times in a bilayer graphene double QD. The charge decoherence times are measured independently using LZSM interference and photon assisted tunneling. Both techniques yield [Formula: see text] average values in the range of 400-500 ps. The observation of charge coherence allows to study the origin and spectral distribution of charge noise in future experiments.
Collapse
Affiliation(s)
- K Hecker
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany.
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - L Banszerus
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - A Schäpers
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - S Möller
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - A Peters
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - E Icking
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - C Volk
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - C Stampfer
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
6
|
Lau CS, Das S, Verzhbitskiy IA, Huang D, Zhang Y, Talha-Dean T, Fu W, Venkatakrishnarao D, Johnson Goh KE. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS NANO 2023. [PMID: 37257134 DOI: 10.1021/acsnano.3c03455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite over a decade of intense research efforts, the full potential of two-dimensional transition-metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications. Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities.
Collapse
Affiliation(s)
- Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan A Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yiyu Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Teymour Talha-Dean
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
7
|
Schock RTK, Neuwald J, Möckel W, Kronseder M, Pirker L, Remškar M, Hüttel AK. Non-Destructive Low-Temperature Contacts to MoS 2 Nanoribbon and Nanotube Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209333. [PMID: 36624967 DOI: 10.1002/adma.202209333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Molybdenum disulfide nanoribbons and nanotubes are quasi-1D semiconductors with strong spin-orbit interaction, a nanomaterial highly promising for quantum electronic applications. Here, it is demonstrated that a bismuth semimetal layer between the contact metal and this nanomaterial strongly improves the properties of the contacts. Two-point resistances on the order of 100 kΩ are observed at room temperature. At cryogenic temperature, Coulomb blockade is visible. The resulting stability diagrams indicate a marked absence of trap states at the contacts and the corresponding disorder, compared to previous devices that use low-work-function metals as contacts. Single-level quantum transport is observed at temperatures below 100 mK.
Collapse
Affiliation(s)
- Robin T K Schock
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Jonathan Neuwald
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Wolfgang Möckel
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Matthias Kronseder
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Luka Pirker
- Solid State Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, 182 23, Prague, Czech Republic
| | - Maja Remškar
- Solid State Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Andreas K Hüttel
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
8
|
Lau CS, Chee JY, Cao L, Ooi ZE, Tong SW, Bosman M, Bussolotti F, Deng T, Wu G, Yang SW, Wang T, Teo SL, Wong CPY, Chai JW, Chen L, Zhang ZM, Ang KW, Ang YS, Goh KEJ. Gate-Defined Quantum Confinement in CVD 2D WS 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103907. [PMID: 34437744 DOI: 10.1002/adma.202103907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Temperature-dependent transport measurements are performed on the same set of chemical vapor deposition (CVD)-grown WS2 single- and bilayer devices before and after atomic layer deposition (ALD) of HfO2 . This isolates the influence of HfO2 deposition on low-temperature carrier transport and shows that carrier mobility is not charge impurity limited as commonly thought, but due to another important but commonly overlooked factor: interface roughness. This finding is corroborated by circular dichroic photoluminescence spectroscopy, X-ray photoemission spectroscopy, cross-sectional scanning transmission electron microscopy, carrier-transport modeling, and density functional modeling. Finally, electrostatic gate-defined quantum confinement is demonstrated using a scalable approach of large-area CVD-grown bilayer WS2 and ALD-grown HfO2 . The high dielectric constant and low leakage current enabled by HfO2 allows an estimated quantum dot size as small as 58 nm. The ability to lithographically define increasingly smaller devices is especially important for transition metal dichalcogenides due to their large effective masses, and should pave the way toward their use in quantum information processing applications.
Collapse
Affiliation(s)
- Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jing Yee Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Liemao Cao
- Science, Mathematics and Technology, Singapore University of Technology, 8 Somapah Road, Singapore, 487372, Singapore
| | - Zi-En Ooi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Shi Wun Tong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Michel Bosman
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Gang Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Tong Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Calvin Pei Yu Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jian Wei Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Li Chen
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Zhong Ming Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Kah-Wee Ang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yee Sin Ang
- Science, Mathematics and Technology, Singapore University of Technology, 8 Somapah Road, Singapore, 487372, Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| |
Collapse
|
9
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Kiyama H, Yoshimi K, Kato T, Nakajima T, Oiwa A, Tarucha S. Preparation and Readout of Multielectron High-Spin States in a Gate-Defined GaAs/AlGaAs Quantum Dot. PHYSICAL REVIEW LETTERS 2021; 127:086802. [PMID: 34477427 DOI: 10.1103/physrevlett.127.086802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The readout scheme consists of mapping from multielectron to two-electron spin states and a subsequent two-electron spin readout, thus obviating the need to resolve dense multielectron energy levels. Using this technique, we measure the relaxations of the high-spin states and find them to be an order of magnitude faster than those of low-spin states. Numerical calculations of spin relaxation rates using the exact diagonalization method agree with the experiment. The technique developed here offers a new tool for the study and application of high-spin states in quantum dots.
Collapse
Affiliation(s)
- H Kiyama
- SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - K Yoshimi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - T Kato
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - T Nakajima
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - A Oiwa
- SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - S Tarucha
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Tiessen J, Shi J. Nano-chevron quantum dot for spin-qubit applications. NANOSCALE 2021; 13:12659-12668. [PMID: 34477616 DOI: 10.1039/d1nr02842a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the theoretical properties of a parabolic hBN/MoS2/hBN heterostructure quantum dot potential generated via electrostatic gates and its interaction with a cobalt nano chevron. We demonstrate that such an example system can undergo electric dipole spin resonance for a single electron isolated to the K' valley within the MoS2 monolayer, and such a system can achieve pi-rotation times of approximately 5.5 ns under the influence of a 20.89 GHz driving field. Our proposed system requires operating conditions easily achievable with current experimental methods and would allow for the all-electrical control of a spin-qubit within an MoS2 device. Our results show that such a system is experimentally feasible and would have comparable properties to that of more traditional silicon based spin-qubits. Furthermore, the design of the device can be applied to other material systems beyond MoS2 and cobalt. In theory, the proposed structure could make use of any 2D material that experiences strong proximity exchange interactions with other magnetic materials, which makes our proposed design highly general.
Collapse
Affiliation(s)
- John Tiessen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | |
Collapse
|
12
|
Kim BK, Choi DH, Yu BS, Kim M, Watanabe K, Taniguchi T, Kim JJ, Bae MH. Gate-tunable quantum dot formation between localized-resonant states in a few-layer MoS 2. NANOTECHNOLOGY 2021; 32:195207. [PMID: 33530078 DOI: 10.1088/1361-6528/abe262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate a gate-tunable quantum dot (QD) located between two potential barriers defined in a few-layer MoS2. Although both local gates used to tune the potential barriers have disorder-induced QDs, we observe diagonal current stripes in current resonant islands formed by the alignment of the Fermi levels of the electrodes and the energy levels of the disorder-induced QDs, as evidence of the gate-tunable QD. We demonstrate that the charging energy of the designed QD can be tuned in the range of 2-6 meV by changing the local-gate voltages in ∼1 V.
Collapse
Affiliation(s)
- Bum-Kyu Kim
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Dong-Hwan Choi
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Sung Yu
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Minsoo Kim
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Ju-Jin Kim
- Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Myung-Ho Bae
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
13
|
Hossain MA, Yu J, van der Zande AM. Realizing Optoelectronic Devices from Crumpled Two-Dimensional Material Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48910-48916. [PMID: 32975108 DOI: 10.1021/acsami.0c10787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to their high in-plane stiffness and low flexural rigidity, two-dimensional (2D) materials are excellent candidates for engineering three-dimensional (3D) nanostructures using crumpling. An important new direction is to integrate 2D materials into crumpled heterostructures, which can have much more complex device geometries. Here, we demonstrate phototransistors from crumpled 2D heterostructures formed from graphene contacts to a monolayer transition-metal dichalcogenide (MoS2, WSe2) channel and quantify the membrane morphology and optoelectronic performance. First, we examined the morphology of folds in the heterostructure and constituent monolayers under uniaxial compression. The 2D membranes relieve the stress by delaminating from the substrate and creating nearly periodic folds whose spacing depends on the membrane type. The matched mechanical stiffness of the constituting layers allows the 2D heterostructure to maintain a conformal interface through large deformations. Next, we examined the optoelectronic performance of a biaxially crumpled graphene-WSe2 phototransistor. Photoluminescence (PL) spectroscopy shows that the optical band gap of WSe2 shifts by less than 2 meV between flat and 15% biaxial crumpling, corresponding to a change in strain of less than 0.05%. The photoresponsivity scaled as P-0.38 and reached 20 A/W under an illumination power density of 4 μW/cm2 at 20 V bias, a performance comparable to flat photosensors. Using photocurrent microscopy, we observe that the photoresponsivity increases by only 20% after crumpling. Both the PL and photoresponse confirm that crumpling and delamination prevent the buildup of compressive strain leading to highly deformed materials and devices with similar performance to their flat analogs. These results set a foundation for crumpled all-2D heterostructure devices and circuitry for flexible and stretchable electronic applications.
Collapse
Affiliation(s)
- M Abir Hossain
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jaehyung Yu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S Goodwin Avenue MC-230, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Baimuratov AS, Högele A. Valley-selective energy transfer between quantum dots in atomically thin semiconductors. Sci Rep 2020; 10:16971. [PMID: 33046734 PMCID: PMC7552393 DOI: 10.1038/s41598-020-73688-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 11/09/2022] Open
Abstract
In monolayers of transition metal dichalcogenides the nonlocal nature of the effective dielectric screening leads to large binding energies of excitons. Additional lateral confinement gives rise to exciton localization in quantum dots. By assuming parabolic confinement for both the electron and the hole, we derive model wave functions for the relative and the center-of-mass motions of electron-hole pairs, and investigate theoretically resonant energy transfer among excitons localized in two neighboring quantum dots. We quantify the probability of energy transfer for a direct-gap transition by assuming that the interaction between two quantum dots is described by a Coulomb potential, which allows us to include all relevant multipole terms of the interaction. We demonstrate the structural control of the valley-selective energy transfer between quantum dots.
Collapse
Affiliation(s)
- Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,Munich Center for Quantum Science and Technology (MCQST), Schellingtraße 4, 80799, Munich, Germany
| |
Collapse
|
15
|
Russ M, Péterfalvi CG, Burkard G. Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:165301. [PMID: 31829981 DOI: 10.1088/1361-648x/ab613f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We theoretically study a silicon triple quantum dot (TQD) system coupled to a superconducting microwave resonator. The response signal of an injected probe signal can be used to extract information about the level structure by measuring the transmission and phase shift of the output field. This information can further be used to gain knowledge about the valley splittings and valley phases in the individual dots. Since relevant valley states are typically split by several [Formula: see text], a finite temperature or an applied external bias voltage is required to populate energetically excited states. The theoretical methods in this paper include a capacitor model to fit experimental charging energies, an extended Hubbard model to describe the tunneling dynamics, a rate equation model to find the occupation probabilities, and an input-output model to determine the response signal of the resonator.
Collapse
|
16
|
Deng GW, Xu N, Li WJ. Gate-Defined Quantum Dots: Fundamentals and Applications. QUANTUM DOT OPTOELECTRONIC DEVICES 2020. [DOI: 10.1007/978-3-030-35813-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Carrier control in 2D transition metal dichalcogenides with Al 2O 3 dielectric. Sci Rep 2019; 9:8769. [PMID: 31217503 PMCID: PMC6584693 DOI: 10.1038/s41598-019-45392-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/05/2019] [Indexed: 11/28/2022] Open
Abstract
We report transport measurements of dual gated MoS2 and WSe2 devices using atomic layer deposition grown Al2O3 as gate dielectrics. We are able to achieve current pinch-off using independent split gates and observe current steps suggesting possible carrier confinement. We also investigated the impact of gate geometry and used electrostatic potential simulations to explain the observed device physics.
Collapse
|
18
|
Brotons-Gisbert M, Branny A, Kumar S, Picard R, Proux R, Gray M, Burch KS, Watanabe K, Taniguchi T, Gerardot BD. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. NATURE NANOTECHNOLOGY 2019; 14:442-446. [PMID: 30858522 DOI: 10.1038/s41565-019-0402-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Gate-tunable quantum-mechanical tunnelling of particles between a quantum confined state and a nearby Fermi reservoir of delocalized states has underpinned many advances in spintronics and solid-state quantum optics. The prototypical example is a semiconductor quantum dot separated from a gated contact by a tunnel barrier. This enables Coulomb blockade, the phenomenon whereby electrons or holes can be loaded one-by-one into a quantum dot1,2. Depending on the tunnel-coupling strength3,4, this capability facilitates single spin quantum bits1,2,5 or coherent many-body interactions between the confined spin and the Fermi reservoir6,7. Van der Waals (vdW) heterostructures, in which a wide range of unique atomic layers can easily be combined, offer novel prospects to engineer coherent quantum confined spins8,9, tunnel barriers down to the atomic limit10 or a Fermi reservoir beyond the conventional flat density of states11. However, gate-control of vdW nanostructures12-16 at the single particle level is needed to unlock their potential. Here we report Coulomb blockade in a vdW heterostructure consisting of a transition metal dichalcogenide quantum dot coupled to a graphene contact through an atomically thin hexagonal boron nitride (hBN) tunnel barrier. Thanks to a tunable Fermi reservoir, we can deterministically load either a single electron or a single hole into the quantum dot. We observe hybrid excitons, composed of localized quantum dot states and delocalized continuum states, arising from ultra-strong spin-conserving tunnel coupling through the atomically thin tunnel barrier. Probing the charged excitons in applied magnetic fields, we observe large gyromagnetic ratios (∼8). Our results establish a foundation for engineering next-generation devices to investigate either novel regimes of Kondo physics or isolated quantum bits in a vdW heterostructure platform.
Collapse
Affiliation(s)
- Mauro Brotons-Gisbert
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK.
| | - Artur Branny
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
- Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Santosh Kumar
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
- Indian Institute of Technology, Goa GEC Campus, Ponda, Goa, India
| | - Raphaël Picard
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Raphaël Proux
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Mason Gray
- Boston College Department of Physics, Chestnut Hill, MA, USA
| | - Kenneth S Burch
- Boston College Department of Physics, Chestnut Hill, MA, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Brian D Gerardot
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
19
|
Zhang X, Li HO, Cao G, Xiao M, Guo GC, Guo GP. Semiconductor quantum computation. Natl Sci Rev 2019; 6:32-54. [PMID: 34691830 PMCID: PMC8291422 DOI: 10.1093/nsr/nwy153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 11/12/2022] Open
Abstract
Semiconductors, a significant type of material in the information era, are becoming more and more powerful in the field of quantum information. In recent decades, semiconductor quantum computation was investigated thoroughly across the world and developed with a dramatically fast speed. The research varied from initialization, control and readout of qubits, to the architecture of fault-tolerant quantum computing. Here, we first introduce the basic ideas for quantum computing, and then discuss the developments of single- and two-qubit gate control in semiconductors. Up to now, the qubit initialization, control and readout can be realized with relatively high fidelity and a programmable two-qubit quantum processor has even been demonstrated. However, to further improve the qubit quality and scale it up, there are still some challenges to resolve such as the improvement of the readout method, material development and scalable designs. We discuss these issues and introduce the forefronts of progress. Finally, considering the positive trend of the research on semiconductor quantum devices and recent theoretical work on the applications of quantum computation, we anticipate that semiconductor quantum computation may develop fast and will have a huge impact on our lives in the near future.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Ou Li
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gang Cao
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming Xiao
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Can Guo
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Guo
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Mosallanejad V, Chiu KL, Guo GP. Coherent transport in Y-junction graphene waveguide. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:445301. [PMID: 30207300 DOI: 10.1088/1361-648x/aae09d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We performed a series of theoretical transport studies on Y-branch electron waveguides which are embedded in mid-size armchair graphene nanoribbons. Non-equilibrium Green's function with different approximations of tight-binding Hamiltonian has been employed. Using the first nearest hopping approximation, we observed very pronounced conductance quantization, the structure of which depends on geometrical design and shows a spacing of 4e 2/h, indicating the existence of valley degree of freedom. Moreover, by incorporating the third nearest approximation, we observed seminal plateaus deviated from multiples of 4e 2/h conductance, suggesting the lift of valley degeneracy. Finally, Quasi-one dimensional band structure calculations have been performed to study the availability of energy channels and the role of the major geometrical parameters on the transport.
Collapse
|
21
|
Sharma CH, Surendran AP, Varghese A, Thalakulam M. Stable and scalable 1T MoS 2 with low temperature-coefficient of resistance. Sci Rep 2018; 8:12463. [PMID: 30127378 PMCID: PMC6102259 DOI: 10.1038/s41598-018-30867-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/07/2018] [Indexed: 11/09/2022] Open
Abstract
Monolithic realization of metallic 1T and semiconducting 2H phases makes MoS2 a potential candidate for future microelectronic circuits. A method for engineering a stable 1T phase from the 2H phase in a scalable manner and an in-depth electrical characterization of the 1T phase is wanting at large. Here we demonstrate a controllable and scalable 2H to 1T phase engineering technique for MoS2 using microwave plasma. Our method allows lithographically defining 1T regions on a 2H sample. The 1T samples show excellent temporal and thermal stability making it suitable for standard device fabrication techniques. We conduct both two-probe and four-probe electrical transport measurements on devices with back-gated field effect transistor geometry in a temperature range of 4 K to 300 K. The 1T samples exhibit Ohmic current-voltage characteristics in all temperature ranges without any dependence to the gate voltage, a signature of a metallic state. The sheet resistance of our 1T MoS2 sample is considerably lower and the carrier concentration is a few orders of magnitude higher than that of the 2H samples. In addition, our samples show negligible temperature dependence of resistance from 4 K to 300 K ruling out any hoping mediated or activated electrical transport.
Collapse
Affiliation(s)
- Chithra H Sharma
- School of Physics, Indian Institute of Science Education & Research Thiruvananthapuram, Kerala, 695551, India
| | - Ananthu P Surendran
- School of Physics, Indian Institute of Science Education & Research Thiruvananthapuram, Kerala, 695551, India
| | - Abin Varghese
- School of Physics, Indian Institute of Science Education & Research Thiruvananthapuram, Kerala, 695551, India
| | - Madhu Thalakulam
- School of Physics, Indian Institute of Science Education & Research Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
22
|
Epping A, Banszerus L, Güttinger J, Krückeberg L, Watanabe K, Taniguchi T, Hassler F, Beschoten B, Stampfer C. Quantum transport through MoS 2 constrictions defined by photodoping. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:205001. [PMID: 29620021 DOI: 10.1088/1361-648x/aabbb8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS2) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS2/hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.
Collapse
Affiliation(s)
- Alexander Epping
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany. Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|