1
|
Vannah S, Stiehl ID, Gleiser M. An Informational-Entropic Approach to Exoplanet Characterization. ENTROPY (BASEL, SWITZERLAND) 2025; 27:385. [PMID: 40282620 PMCID: PMC12025435 DOI: 10.3390/e27040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
In the past, measures of the "Earth-likeness" of exoplanets have been qualitative, considering an abiotic Earth, or requiring discretionary choices of what parameters make a planet Earth-like. With the advent of high-resolution exoplanet spectroscopy, there is a growing need for a method of quantifying the Earth-likeness of a planet that addresses these issues while making use of the data available from modern telescope missions. In this work, we introduce an informational-entropic metric that makes use of the spectrum of an exoplanet to directly quantify how Earth-like the planet is. To illustrate our method, we generate simulated transmission spectra of a series of Earth-like and super-Earth exoplanets, as well as an exoJupiter and several gas giant exoplanets. As a proof of concept, we demonstrate the ability of the information metric to evaluate how similar a planet is to Earth, making it a powerful tool in the search for a candidate Earth 2.0.
Collapse
Affiliation(s)
- Sara Vannah
- Atmospheric and Environmental Research, Inc., Lexington, MA 02421, USA
| | - Ian D. Stiehl
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA (M.G.)
| | - Marcelo Gleiser
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA (M.G.)
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Harris RL, Schuerger AC. Hydrogenotrophic methanogenesis at 7-12 mbar by Methanosarcina barkeri under simulated martian atmospheric conditions. Sci Rep 2025; 15:2880. [PMID: 39843490 PMCID: PMC11754898 DOI: 10.1038/s41598-025-86145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Mars, with its ancient history of long-lived habitable environments, continues to captivate researchers exploring the potential for extant life. This study investigates the biosignature potential of Martian methane by assessing the viability of hydrogenotrophic methanogenesis in Methanosarcina barkeri MS under simulated Martian surface conditions. We expose M. barkeri to sustained hypobaria (7-12 mbar), low temperature (0˚C), and a CO2-dominated gas mixture mimicking the Martian atmosphere. The results demonstrate statistically quantifiable CH4 production under all tested conditions, including at 7-12 mbar. Transcriptomics reveal that low total pressure and temperature did not significantly impact gene expression, highlighting the resilience of M. barkeri. However, atmospheric gas composition, specifically Mars gas with 2.9% pH2, led to significant down-regulation of methanogenesis genes, hindering growth over 14 days. Notably, CH4 production scaled with the partial pressure of H2, revealing that hydrogen uptake affinity is a stronger predictor of habitability and methanogenic potential than favorable Gibbs free energy of reaction. Our findings suggest that Mars' subsurface could harbor habitable refugia capable of supporting methanogenesis, sustaining microbial life at low metabolic steady states. These insights challenge assumptions about Martian habitability and have implications for astrobiological exploration, planetary protection, and in situ resource utilization for future human missions.
Collapse
Affiliation(s)
- Rachel L Harris
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- NASA Postdoctoral Management Program Fellow, Astrobiology Program, NASA Headquarters, Washington, DC, 20546, USA.
| | - Andrew C Schuerger
- Department of Plant Pathology, Space Life Sciences Lab, University of Florida, 505 Odyssey Way, Exploration Park,, Merritt Island, FL, 32953, USA.
| |
Collapse
|
3
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
4
|
Murray J, Jagoutz O. Olivine alteration and the loss of Mars' early atmospheric carbon. SCIENCE ADVANCES 2024; 10:eadm8443. [PMID: 39321300 PMCID: PMC11423889 DOI: 10.1126/sciadv.adm8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
The early Martian atmosphere had 0.25 to 4 bar of CO2 but thinned rapidly around 3.5 billion years ago. The fate of that carbon remains poorly constrained. The hydrothermal alteration of ultramafic rocks, rich in Fe(II) and Mg, forms both abiotic methane, serpentine, and high-surface-area smectite clays. Given the abundance of ultramafic rocks and smectite in the Martian upper crust and the growing evidence of organic carbon in Martian sedimentary rocks, we quantify the effects of ultramafic alteration on the carbon cycle of early Mars. We calculate the capacity of Noachian-age clays to store organic carbon. Up to 1.7 bar of CO2 can plausibly be adsorbed on clay surfaces. Coupling abiotic methanogenesis with best estimates of Mars' δ13C history predicts a reservoir of 0.6 to 1.3 bar of CO2 equivalent. Such a reservoir could be used as an energy source for long-term missions. Our results further illustrate the control of water-rock reactions on the atmospheric evolution of planets.
Collapse
Affiliation(s)
- Joshua Murray
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Jagoutz
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. Co-evolution of early Earth environments and microbial life. Nat Rev Microbiol 2024; 22:572-586. [PMID: 38811839 DOI: 10.1038/s41579-024-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.
Collapse
Affiliation(s)
- Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.
| | - Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rika E Anderson
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- Biology Department, Carleton College, Northfield, MN, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eva E Stüeken
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
6
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
7
|
Smith HB, Mathis C. Life detection in a universe of false positives: Can the Fatal Flaws of Exoplanet Biosignatures be Overcome Absent a Theory of Life? Bioessays 2023; 45:e2300050. [PMID: 37821360 DOI: 10.1002/bies.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Astrobiology aims to determine the distribution and diversity of life in the universe. But as the word "biosignature" suggests, what will be detected is not life itself, but an observation implicating living systems. Our limited access to other worlds suggests this observation is more likely to reflect out-of-equilibrium gasses than a writhing octopus. Yet, anything short of a writhing octopus will raise skepticism about what has been detected. Resolving that skepticism requires a theory to delineate processes due to life and those due to abiotic mechanisms. This poses an existential question for life detection: How do astrobiologists plan to detect life on exoplanets via features shared between non-living and living systems? We argue that you cannot without an underlying theory of life. We illustrate this by analyzing the hypothetical detection of an "Earth 2.0" exoplanet. Without a theory of life, we argue the community should focus on identifying unambiguous features of life via four areas: examining life on Earth, building life in the lab, probing the solar system, and searching for technosignatures. Ultimately, we ask, what exactly do astrobiologists hope to learn by searching for life?
Collapse
Affiliation(s)
- Harrison B Smith
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Cole Mathis
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
8
|
Vickers P, Cowie C, Dick SJ, Gillen C, Jeancolas C, Rothschild LJ, McMahon S. Confidence of Life Detection: The Problem of Unconceived Alternatives. ASTROBIOLOGY 2023; 23:1202-1212. [PMID: 37506351 DOI: 10.1089/ast.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Potential biosignatures that offer the promise of extraterrestrial life (past or present) are to be expected in the coming years and decades, whether from within our own solar system, from an exoplanet atmosphere, or otherwise. With each such potential biosignature, the degree of our uncertainty will be the first question asked. Have we really identified extraterrestrial life? How sure are we? This paper considers the problem of unconceived alternative explanations. We stress that articulating our uncertainty requires an assessment of the extent to which we have explored the relevant possibility space. It is argued that, for most conceivable potential biosignatures, we currently have not explored the relevant possibility space very thoroughly at all. Not only does this severely limit the circumstances in which we could reasonably be confident in our detection of extraterrestrial life, it also poses a significant challenge to any attempt to quantify our degree of uncertainty. The discussion leads us to the following recommendation: when it comes specifically to an extraterrestrial life-detection claim, the astrobiology community should follow the uncertainty assessment approach adopted by the Intergovernmental Panel on Climate Change (IPCC).
Collapse
Affiliation(s)
| | | | - Steven J Dick
- NASA Chief Historian (Retired), NASA, Washington, DC, USA
| | | | | | | | | |
Collapse
|
9
|
Georgiou CD, McKay C, Reymond JL. Organic Catalytic Activity as a Method for Agnostic Life Detection. ASTROBIOLOGY 2023; 23:1118-1127. [PMID: 37523279 DOI: 10.1089/ast.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An ideal life detection instrument would have high sensitivity but be insensitive to abiotic processes and would be capable of detecting life with alternate molecular structures. In this study, we propose that catalytic activity can be the basis of a nearly ideal life detection instrument. There are several advantages to catalysis as an agnostic life detection method. Demonstrating catalysis does not necessarily require culturing/growing the alien life and in fact may persist even in dead biomass for some time, and the amplification by catalysis is large even by minute amounts of catalysts and, hence, can be readily detected against abiotic background rates. In specific, we propose a hydrolytic catalysis detection instrument that could detect activity in samples of extraterrestrial organic material from unknown life. The instrument uses chromogenic assay-based detection of various hydrolytic catalytic activities, which are matched to corresponding artificial substrates having the same, chromogenic (preferably fluorescent) upon release, group; D- and L-enantiomers of these substrates can be used to also answer the question whether unknown life is chiral. Since catalysis is a time-proportional product-concentration amplification process, hydrolytic catalytic activity can be measured on a sample of even a minute size, and with instruments based on, for example, optofluidic chip technology.
Collapse
Affiliation(s)
| | | | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Randolph-Flagg NG, Ely T, Som SM, Shock EL, German CR, Hoehler TM. Phosphate availability and implications for life on ocean worlds. Nat Commun 2023; 14:2388. [PMID: 37185347 PMCID: PMC10130162 DOI: 10.1038/s41467-023-37770-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Several moons in the outer solar system host liquid water oceans. A key next step in assessing the habitability of these ocean worlds is to determine whether life's elemental and energy requirements are also met. Phosphorus is required by all known life and is often limited to biological productivity in Earth's oceans. This raises the possibility that its availability may limit the abundance or productivity of Earth-like life on ocean worlds. To address this potential problem, here we calculate the equilibrium dissolved phosphate concentrations associated with the reaction of water and rocks-a key driver of ocean chemical evolution-across a broad range of compositional inputs and reaction conditions. Equilibrium dissolved phosphate concentrations range from 10-11 to 10-1 mol/kg across the full range of carbonaceous chondrite compositions and reaction conditions considered, but are generally > 10-5 mol/kg for most plausible scenarios. Relative to the phosphate requirements and uptake kinetics of microorganisms in Earth's oceans, such concentrations would be sufficient to support initially rapid cell growth and construction of global ocean cell populations larger than those observed in Earth's deep oceans.
Collapse
Affiliation(s)
- Noah G Randolph-Flagg
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, USA.
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
| | - Tucker Ely
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, USA
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - Sanjoy M Som
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Everett L Shock
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - Christopher R German
- Dept. Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, Falmouth, MA, USA
| | - Tori M Hoehler
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, USA
| |
Collapse
|
11
|
Seeburger R, Higgins PM, Whiteford NP, Cockell CS. Linking Methanogenesis in Low-Temperature Hydrothermal Vent Systems to Planetary Spectra: Methane Biosignatures on an Archean-Earth-like Exoplanet. ASTROBIOLOGY 2023; 23:415-430. [PMID: 37017441 DOI: 10.1089/ast.2022.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, the viability of the detection of methane produced by microbial activity in low-temperature hydrothermal vents on an Archean-Earth-like exoplanet in the habitable zone is explored via a simplified bottom-up approach using a toy model. By simulating methanogens at hydrothermal vent sites in the deep ocean, biological methane production for a range of substrate inflow rates was determined and compared to literature values. These production rates were then used, along with a range of ocean floor vent coverage fractions, to determine likely methane concentrations in the simplified atmosphere. At maximum production rates, a vent coverage of 4-15 × 10-4 % (roughly 2000-6500 times that of modern Earth) is required to achieve 0.25% atmospheric methane. At minimum production rates, 100% vent coverage is not enough to produce 0.25% atmospheric methane. NASA's Planetary Spectrum Generator was then used to assess the detectability of methane features at various atmospheric concentrations. Even with future space-based observatory concepts (such as LUVOIR and HabEx), our results show the importance of both mirror size and distance to the observed planet. Planets with a substantial biomass of methanogens in hydrothermal vents can still lack a detectable, convincingly biological methane signature if they are beyond the scope of the chosen instrument. This work shows the value of coupling microbial ecological modeling with exoplanet science to better understand the constraints on biosignature gas production and its detectability.
Collapse
Affiliation(s)
- Rhys Seeburger
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, UK
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | - Peter M Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, UK
- Department of Earth Sciences, University of Toronto, Toronto, Canada
| | - Niall P Whiteford
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, UK
- Centre for Exoplanet Science, University of Edinburgh, Edinburgh, UK
- American Museum of Natural History, New York, New York, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Angerhausen D, Ottiger M, Dannert F, Miguel Y, Sousa-Silva C, Kammerer J, Menti F, Alei E, Konrad BS, Wang HS, Quanz SP. Large Interferometer for Exoplanets: VIII. Where Is the Phosphine? Observing Exoplanetary PH 3 with a Space-Based Mid-Infrared Nulling Interferometer. ASTROBIOLOGY 2023; 23:183-194. [PMID: 36576793 DOI: 10.1089/ast.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phosphine could be a key molecule in the understanding of exotic chemistry that occurs in (exo)planetary atmospheres. While phosphine has been detected in the Solar System's giant planets, it has not been observed in exoplanets to date. In the exoplanetary context, however, it has been theorized to be a potential biosignature molecule. The goal of our study was to identify which illustrative science cases for PH3 chemistry are observable with a space-based mid-infrared nulling interferometric observatory like the Large Interferometer for Exoplanets (LIFE) concept. We identified a representative set of scenarios for PH3 detections in exoplanetary atmospheres that vary over the whole dynamic range of the LIFE mission. We used chemical kinetics and radiative transfer calculations to produce forward models of these informative, prototypical observational cases for LIFEsim, our observation simulator software for LIFE. In a detailed, yet first order approximation, it takes a mission like LIFE: (i) about 1 h to find phosphine in a warm giant around a G star at 10 pc, (ii) about 10 h in H2 or CO2 dominated temperate super-Earths around M star hosts at 5 pc, (iii) and even in 100 h it seems very unlikely that phosphine would be detectable in a Venus-Twin with extreme PH3 concentrations at 5 pc. Phosphine in concentrations previously discussed in the literature is detectable in 2 out of the 3 cases, and it is detected about an order of magnitude faster than in comparable cases with James Webb Space Telescope. We show that there is a significant number of objects accessible for these classes of observations. These results will be used to prioritize the parameter range for the next steps with more detailed retrieval simulations. They will also inform timely questions in the early design phase of a mission like LIFE and guide the community by providing easy-to-scale first estimates for a large part of detection space of such a mission.
Collapse
Affiliation(s)
- Daniel Angerhausen
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research PlanetS, Bern, Switzerland
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Maurice Ottiger
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - Felix Dannert
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - Yamila Miguel
- SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
- Leiden Observatory, University of Leiden, Leiden, The Netherlands
| | - Clara Sousa-Silva
- Center for Astrophysics, Harvard-Smithsonian, Cambridge, Massachusetts, USA
- Division of Science, Mathematics, and Computing, Bard College, Annandale-on-Hudson, New York, USA
| | - Jens Kammerer
- Space Telescope Science Institute, Baltimore, Maryland, USA
| | - Franziska Menti
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - Eleonora Alei
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research PlanetS, Bern, Switzerland
| | - Björn S Konrad
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research PlanetS, Bern, Switzerland
| | - Haiyang S Wang
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research PlanetS, Bern, Switzerland
| | - Sascha P Quanz
- Department of Physics, Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research PlanetS, Bern, Switzerland
| |
Collapse
|
13
|
Thompson MA, Krissansen-Totton J, Wogan N, Telus M, Fortney JJ. The case and context for atmospheric methane as an exoplanet biosignature. Proc Natl Acad Sci U S A 2022; 119:e2117933119. [PMID: 35353627 PMCID: PMC9168929 DOI: 10.1073/pnas.2117933119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Methane has been proposed as an exoplanet biosignature. Imminent observations with the James Webb Space Telescope may enable methane detections on potentially habitable exoplanets, so it is essential to assess in what planetary contexts methane is a compelling biosignature. Methane’s short photochemical lifetime in terrestrial planet atmospheres implies that abundant methane requires large replenishment fluxes. While methane can be produced by a variety of abiotic mechanisms such as outgassing, serpentinizing reactions, and impacts, we argue that—in contrast to an Earth-like biosphere—known abiotic processes cannot easily generate atmospheres rich in CH4 and CO2 with limited CO due to the strong redox disequilibrium between CH4 and CO2. Methane is thus more likely to be biogenic for planets with 1) a terrestrial bulk density, high mean-molecular-weight and anoxic atmosphere, and an old host star; 2) an abundance of CH4 that implies surface fluxes exceeding what could be supplied by abiotic processes; and 3) atmospheric CO2 with comparatively little CO.
Collapse
Affiliation(s)
- Maggie A. Thompson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
| | | | - Nicholas Wogan
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195
| | - Myriam Telus
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064
| | - Jonathan J. Fortney
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
| |
Collapse
|
14
|
|
15
|
Pfister CA, Light SH, Bohannan B, Schmidt T, Martiny A, Hynson NA, Devkota S, David L, Whiteson K. Conceptual Exchanges for Understanding Free-Living and Host-Associated Microbiomes. mSystems 2022; 7:e0137421. [PMID: 35014872 PMCID: PMC8751383 DOI: 10.1128/msystems.01374-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Whether a microbe is free-living or associated with a host from across the tree of life, its existence depends on a limited number of elements and electron donors and acceptors. Yet divergent approaches have been used by investigators from different fields. The "environment first" research tradition emphasizes thermodynamics and biogeochemical principles, including the quantification of redox environments and elemental stoichiometry to identify transformations and thus an underlying microbe. The increasingly common "microbe first" research approach benefits from culturing and/or DNA sequencing methods to first identify a microbe and encoded metabolic functions. Here, the microbe itself serves as an indicator for environmental conditions and transformations. We illustrate the application of both approaches to the study of microbiomes and emphasize how both can reveal the selection of microbial metabolisms across diverse environments, anticipate alterations to microbiomes in host health, and understand the implications of a changing climate for microbial function.
Collapse
Affiliation(s)
- Catherine A. Pfister
- Department of Ecology & Evolution and The Microbiome Center, University of Chicago, Chicago, Illinois, USA
| | - Samuel H. Light
- Department of Microbiology & Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Brendan Bohannan
- Environmental Studies and Biology, University of Oregon, Eugene, Oregon, USA
| | - Thomas Schmidt
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam Martiny
- Earth System Science & Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Nicole A. Hynson
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Suzanne Devkota
- Microbiome Research, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lawrence David
- Molecular Genetics & Microbiology, Duke University, Durham, North Carolina, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
16
|
Limaye SS, Zelenyi L, Zasova L. Introducing the Venus Collection-Papers from the First Workshop on Habitability of the Cloud Layer. ASTROBIOLOGY 2021; 21:1157-1162. [PMID: 34582698 DOI: 10.1089/ast.2021.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce the collection of papers from the first workshop on the habitability of the venusian cloud layer organized by the Roscosmos/IKI-NASA Joint Science Definition Team (JSDT) for Russia's Venera-D mission and hosted by the Space Research Institute in Moscow, Russia, during October 2-5, 2019. The collection also includes three papers that were developed independently of the workshop but are relevant to venusian cloud habitability.
Collapse
Affiliation(s)
- Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lev Zelenyi
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ludmilla Zasova
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
17
|
Omran A, Oze C, Jackson B, Mehta C, Barge LM, Bada J, Pasek MA. Phosphine Generation Pathways on Rocky Planets. ASTROBIOLOGY 2021; 21:1264-1276. [PMID: 34551269 DOI: 10.1089/ast.2021.0034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The possibility of life in the venusian clouds was proposed in the 1960s, and recently this hypothesis has been revived with the potential detection of phosphine (PH3) in Venus' atmosphere. These observations may have detected ∼5-20 ppb phosphine on Venus (Greaves et al., 2020), which raises questions about venusian atmospheric/geochemical processes and suggests that this phosphine could possibly be generated by biological processes. In such a claim, it is essential to understand the abiotic phosphorus chemistry that may occur under Venus-relevant conditions, particularly those processes that may result in phosphine generation. Here, we discuss two related abiotic routes for phosphine generation within the atmosphere of Venus. Based on our assessment, corrosion of large impactors as they ablate near Venus' cloud layer, and the presence of reduced phosphorus compounds in the subcloud layer could result in production of phosphine and may explain the phosphine detected in Venus' atmosphere or on other rocky planets. We end on a cautionary note: although there may be life in the clouds of Venus, the detection of a simple, single gas, phosphine, is likely not a decisive indicator.
Collapse
Affiliation(s)
- Arthur Omran
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Christopher Oze
- Geology Department, Occidental College, Los Angeles, California, USA
| | - Brian Jackson
- Department of Physics, Boise State University, Boise, Idaho, USA
| | - Chris Mehta
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jeffrey Bada
- Scripps Institution of Oceanography Department, University of California at San Diego, La Jolla, California, USA
| | - Matthew A Pasek
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Rivera-Valentín EG, Filiberto J, Lynch KL, Mamajanov I, Lyons TW, Schulte M, Méndez A. Introduction-First Billion Years: Habitability. ASTROBIOLOGY 2021; 21:893-905. [PMID: 34406807 PMCID: PMC8403211 DOI: 10.1089/ast.2020.2314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/22/2020] [Indexed: 06/13/2023]
Abstract
The physical processes active during the first billion years (FBY) of Earth's history, such as accretion, differentiation, and impact cratering, provide constraints on the initial conditions that were conducive to the formation and establishment of life on Earth. This motivated the Lunar and Planetary Institute's FBY topical initiative, which was a four-part conference series intended to look at each of these physical processes to study the basic structure and composition of our Solar System that was set during the FBY. The FBY Habitability conference, held in September 2019, was the last in this series and was intended to synthesize the initiative; specifically, to further our understanding of the origins of life, planetary and environmental habitability, and the search for life beyond Earth. The conference included discussions of planetary habitability and the potential emergence of life on bodies within our Solar System, as well as extrasolar systems by applying our knowledge of the Solar System's FBY, and in particular Earth's early history. To introduce this Special Collection, which resulted from work discussed at the conference, we provide a review of the main themes and a synopsis of the FBY Habitability conference.
Collapse
Affiliation(s)
| | - Justin Filiberto
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Kennda L. Lynch
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA
| | - Mitch Schulte
- Planetary Science Division, NASA Headquarters, Washington, District of Columbia, USA
| | - Abel Méndez
- Planetary Habitability Laboratory, University of Puerto Rico Arecibo, Arecibo, Puerto Rico
| |
Collapse
|
19
|
Cavalazzi B, Lemelle L, Simionovici A, Cady SL, Russell MJ, Bailo E, Canteri R, Enrico E, Manceau A, Maris A, Salomé M, Thomassot E, Bouden N, Tucoulou R, Hofmann A. Cellular remains in a ~3.42-billion-year-old subseafloor hydrothermal environment. SCIENCE ADVANCES 2021; 7:eabf3963. [PMID: 34261651 PMCID: PMC8279515 DOI: 10.1126/sciadv.abf3963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/28/2021] [Indexed: 05/15/2023]
Abstract
Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Although the site of life's emergence continues to be debated, evidence of early life provides insights into its early evolution and metabolic affinity. Here, we present the discovery of exceptionally well-preserved, ~3.42-billion-year-old putative filamentous microfossils that inhabited a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt in South Africa. The filaments colonized the walls of conduits created by low-temperature hydrothermal fluid. Combined with their morphological and chemical characteristics as investigated over a range of scales, they can be considered the oldest methanogens and/or methanotrophs that thrived in an ultramafic volcanic substrate.
Collapse
Affiliation(s)
- Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy.
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | | | - Alexandre Simionovici
- ISTerre, University of Grenoble-Alpes, CNRS, Grenoble, France
- Institut Universitaire de France, Paris, France
| | - Sherry L Cady
- Pacific Northwest National Laboratory, EMSL, Richland, WA, USA
| | - Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy
| | | | | | - Emanuele Enrico
- INRiM, Istituto Nazionale di Ricerca Metrologica, Torino, Italy
| | - Alain Manceau
- ISTerre, University of Grenoble-Alpes, CNRS, Grenoble, France
| | - Assimo Maris
- Dipartimento di Chimica "Giacomo Ciamician," Università di Bologna, Bologna, Italy
| | | | | | | | - Rémi Tucoulou
- European Synchrotron Radiation Facility, Grenoble, France
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
20
|
Lehmer OR, Catling DC, Krissansen-Totton J. Carbonate-silicate cycle predictions of Earth-like planetary climates and testing the habitable zone concept. Nat Commun 2020; 11:6153. [PMID: 33262334 PMCID: PMC7708846 DOI: 10.1038/s41467-020-19896-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022] Open
Abstract
In the conventional habitable zone (HZ) concept, a CO2-H2O greenhouse maintains surface liquid water. Through the water-mediated carbonate-silicate weathering cycle, atmospheric CO2 partial pressure (pCO2) responds to changes in surface temperature, stabilizing the climate over geologic timescales. We show that this weathering feedback ought to produce a log-linear relationship between pCO2 and incident flux on Earth-like planets in the HZ. However, this trend has scatter because geophysical and physicochemical parameters can vary, such as land area for weathering and CO2 outgassing fluxes. Using a coupled climate and carbonate-silicate weathering model, we quantify the likely scatter in pCO2 with orbital distance throughout the HZ. From this dispersion, we predict a two-dimensional relationship between incident flux and pCO2 in the HZ and show that it could be detected from at least 83 (2σ) Earth-like exoplanet observations. If fewer Earth-like exoplanets are observed, testing the HZ hypothesis from this relationship could be difficult. In the habitable zone concept, a planet’s carbon dioxide-water greenhouse maintains surface liquid water. Here, the authors estimate how many Earthlike exoplanets are needed to detect a relationship between stellar flux and the atmospheric carbon dioxide predicted by carbon cycle modeling.
Collapse
Affiliation(s)
- Owen R Lehmer
- MS 239-4, Space Science Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Box 351310, Seattle, WA, 98195, USA. .,Virtual Planetary Laboratory at the University of Washington, Seattle, WA, 98195, USA.
| | - David C Catling
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Box 351310, Seattle, WA, 98195, USA.,Virtual Planetary Laboratory at the University of Washington, Seattle, WA, 98195, USA
| | - Joshua Krissansen-Totton
- Virtual Planetary Laboratory at the University of Washington, Seattle, WA, 98195, USA.,Department of Astronomy and Astrophysics, MS UCO/Lick Observatory, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
21
|
Saha S, Nagaraj N, Mathur A, Yedida R, H R S. Evolution of novel activation functions in neural network training for astronomy data: habitability classification of exoplanets. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2020; 229:2629-2738. [PMID: 33194093 PMCID: PMC7651829 DOI: 10.1140/epjst/e2020-000098-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Quantification of habitability is a complex task. Previous attempts at measuring habitability are well documented. Classification of exoplanets, on the other hand, is a different approach and depends on quality of training data available in habitable exoplanet catalogs. Classification is the task of predicting labels of newly discovered planets based on available class labels in the catalog. We present analytical exploration of novel activation functions as consequence of integration of several ideas leading to implementation and subsequent use in habitability classification of exoplanets. Neural networks, although a powerful engine in supervised methods, often require expensive tuning efforts for optimized performance. Habitability classes are hard to discriminate, especially when attributes used as hard markers of separation are removed from the data set. The solution is approached from the point of investigating analytical properties of the proposed activation functions. The theory of ordinary differential equations and fixed point are exploited to justify the "lack of tuning efforts" to achieve optimal performance compared to traditional activation functions. Additionally, the relationship between the proposed activation functions and the more popular ones is established through extensive analytical and empirical evidence. Finally, the activation functions have been implemented in plain vanilla feed-forward neural network to classify exoplanets. The mathematical exercise supplements the grand idea of classifying exoplanets, computing habitability scores/indices and automatic grouping of the exoplanets converging at some level.
Collapse
Affiliation(s)
- Snehanshu Saha
- CSIS and APPCAIR, BITS Pilani K K Birla, Goa Campus, Sancoale, India
| | - Nithin Nagaraj
- Consciousness Studies Programme, National Institute of Advanced Studies, Bengaluru, India
| | - Archana Mathur
- Nitte Meenakshi Institute of Technology, Bengaluru, India
| | | | - Sneha H R
- Nitte Meenakshi Institute of Technology, Bengaluru, India
| |
Collapse
|
22
|
Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New H2O Cross Sections. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab9363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Testing Earthlike Atmospheric Evolution on Exo-Earths through Oxygen Absorption: Required Sample Sizes and the Advantage of Age-based Target Selection. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab8fad] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Abstract
Life emerged on Earth within the first quintile of its habitable window, but a technological civilization did not blossom until its last. Efforts to infer the rate of abiogenesis, based on its early emergence, are frustrated by the selection effect that if the evolution of intelligence is a slow process, then life's early start may simply be a prerequisite to our existence, rather than useful evidence for optimism. In this work, we interpret the chronology of these two events in a Bayesian framework, extending upon previous work by considering that the evolutionary timescale is itself an unknown that needs to be jointly inferred, rather than fiducially set. We further adopt an objective Bayesian approach, such that our results would be agreed upon even by those using wildly different priors for the rates of abiogenesis and evolution-common points of contention for this problem. It is then shown that the earliest microfossil evidence for life indicates that the rate of abiogenesis is at least 2.8 times more likely to be a typically rapid process, rather than a slow one. This modest limiting Bayes factor rises to 8.7 if we accept the more disputed evidence of 13C-depleted zircon deposits [E. A. Bell, P. Boehnke, T. M. Harrison, W. L. Mao, Proc. Natl. Acad. Sci. U.S.A. 112, 14518-14521 (2015)]. For intelligence evolution, it is found that a rare-intelligence scenario is slightly favored at 3:2 betting odds. Thus, if we reran Earth's clock, one should statistically favor life to frequently reemerge, but intelligence may not be as inevitable.
Collapse
|
25
|
Sauterey B, Charnay B, Affholder A, Mazevet S, Ferrière R. Co-evolution of primitive methane-cycling ecosystems and early Earth's atmosphere and climate. Nat Commun 2020; 11:2705. [PMID: 32483130 PMCID: PMC7264298 DOI: 10.1038/s41467-020-16374-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/28/2020] [Indexed: 01/24/2023] Open
Abstract
The history of the Earth has been marked by major ecological transitions, driven by metabolic innovation, that radically reshaped the composition of the oceans and atmosphere. The nature and magnitude of the earliest transitions, hundreds of million years before photosynthesis evolved, remain poorly understood. Using a novel ecosystem-planetary model, we find that pre-photosynthetic methane-cycling microbial ecosystems are much less productive than previously thought. In spite of their low productivity, the evolution of methanogenic metabolisms strongly modifies the atmospheric composition, leading to a warmer but less resilient climate. As the abiotic carbon cycle responds, further metabolic evolution (anaerobic methanotrophy) may feed back to the atmosphere and destabilize the climate, triggering a transient global glaciation. Although early metabolic evolution may cause strong climatic instability, a low CO:CH4 atmospheric ratio emerges as a robust signature of simple methane-cycling ecosystems on a globally reduced planet such as the late Hadean/early Archean Earth.
Collapse
Affiliation(s)
- Boris Sauterey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, 75005, Paris, France.
- International Center for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS-PSL University, University of Arizona, Tucson, AZ, 85721, USA.
- Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Lille, F-75014, Paris, France.
| | - Benjamin Charnay
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195, Meudon, France
| | - Antonin Affholder
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, 75005, Paris, France
- International Center for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS-PSL University, University of Arizona, Tucson, AZ, 85721, USA
- Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Lille, F-75014, Paris, France
| | - Stéphane Mazevet
- Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Lille, F-75014, Paris, France
| | - Régis Ferrière
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, 75005, Paris, France
- International Center for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS-PSL University, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
26
|
|
27
|
Haqq-Misra J, Kopparapu RK, Schwieterman E. Observational Constraints on the Great Filter. ASTROBIOLOGY 2020; 20:572-579. [PMID: 32364797 DOI: 10.1089/ast.2019.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The search for spectroscopic biosignatures with the next generation of space telescopes could provide observational constraints on the abundance of exoplanets with signs of life. An extension of this spectroscopic characterization of exoplanets is the search for observational evidence of technology, known as technosignatures. Current mission concepts that would observe biosignatures from ultraviolet to near-infrared wavelengths could place upper limits on the fraction of planets in the Galaxy that host life, although such missions tend to have relatively limited capabilities of constraining the prevalence of technosignatures at mid-infrared wavelengths. Yet searching for technosignatures alongside biosignatures would provide important knowledge about the future of our civilization. If planets with technosignatures are abundant, then we can increase our confidence that the hardest step in planetary evolution-the Great Filter-is probably in our past. But if we find that life is commonplace while technosignatures are absent, then this would increase the likelihood that the Great Filter awaits to challenge us in the future.
Collapse
Affiliation(s)
| | | | - Edward Schwieterman
- Blue Marble Space Institute of Science, Seattle, Washington
- University of California at Riverside, Riverside, California
| |
Collapse
|
28
|
When is Chemical Disequilibrium in Earth-like Planetary Atmospheres a Biosignature versus an Anti-biosignature? Disequilibria from Dead to Living Worlds. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab7b81] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Catling DC, Zahnle KJ. The Archean atmosphere. SCIENCE ADVANCES 2020; 6:eaax1420. [PMID: 32133393 PMCID: PMC7043912 DOI: 10.1126/sciadv.aax1420] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 05/05/2023]
Abstract
The atmosphere of the Archean eon-one-third of Earth's history-is important for understanding the evolution of our planet and Earth-like exoplanets. New geological proxies combined with models constrain atmospheric composition. They imply surface O2 levels <10-6 times present, N2 levels that were similar to today or possibly a few times lower, and CO2 and CH4 levels ranging ~10 to 2500 and 102 to 104 times modern amounts, respectively. The greenhouse gas concentrations were sufficient to offset a fainter Sun. Climate moderation by the carbon cycle suggests average surface temperatures between 0° and 40°C, consistent with occasional glaciations. Isotopic mass fractionation of atmospheric xenon through the Archean until atmospheric oxygenation is best explained by drag of xenon ions by hydrogen escaping rapidly into space. These data imply that substantial loss of hydrogen oxidized the Earth. Despite these advances, detailed understanding of the coevolving solid Earth, biosphere, and atmosphere remains elusive, however.
Collapse
Affiliation(s)
- David C. Catling
- Department of Earth and Space Sciences and cross-campus Astrobiology Program, Box 351310, University of Washington, Seattle, WA 98195, USA
| | - Kevin J. Zahnle
- Space Sciences Division, NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA
| |
Collapse
|
30
|
Clouds will Likely Prevent the Detection of Water Vapor in JWST Transmission Spectra of Terrestrial Exoplanets. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/2041-8213/ab6200] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Léveillé RJ, Papineau D, Rempfert KR, Sánchez-Román M, Spear JR, Southam G, Stern JC, Cleaves HJ. Deciphering Biosignatures in Planetary Contexts. ASTROBIOLOGY 2019; 19:1075-1102. [PMID: 31335163 PMCID: PMC6708275 DOI: 10.1089/ast.2018.1903] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/10/2019] [Indexed: 05/05/2023]
Abstract
Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology & Geophysics, University of Utah, Salt Lake City, Utah
| | - Nancy W. Hinman
- Department of Geosciences, University of Montana, Missoula, Montana
| | | | - Keith E. Schubert
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas
| | - Richard J. Gillams
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Electronics and Computer Science, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Stanley M. Awramik
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California
| | - Penelope J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California
| | - Dina M. Bower
- Department of Astronomy, University of Maryland College Park (CRESST), College Park, Maryland
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | | | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Penelope L. King
- Research School of Earth Sciences, The Australian National University, Canberra, Australia
| | - Robert M. Hazen
- Geophysical Laboratory, Carnegie Institution for Science, Washington, District of Columbia
| | - Richard J. Léveillé
- Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
- Geosciences Department, John Abbott College, Sainte-Anne-de-Bellevue, Canada
| | - Dominic Papineau
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
- Centre for Planetary Sciences, University College London, London, United Kingdom
- BioGeology and Environmental Geology State Key Laboratory, School of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado
| | - Mónica Sánchez-Román
- Earth Sciences Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Henderson James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, New Jersey
| |
Collapse
|
32
|
Lammer H, Sproß L, Grenfell JL, Scherf M, Fossati L, Lendl M, Cubillos PE. The Role of N 2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats. ASTROBIOLOGY 2019; 19:927-950. [PMID: 31314591 DOI: 10.1089/ast.2018.1914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the Archean, N2 has been a major atmospheric constituent in Earth's atmosphere. Nitrogen is an essential element in the building blocks of life; therefore, the geobiological nitrogen cycle is a fundamental factor in the long-term evolution of both Earth and Earth-like exoplanets. We discuss the development of Earth's N2 atmosphere since the planet's formation and its relation with the geobiological cycle. Then we suggest atmospheric evolution scenarios and their possible interaction with life-forms: first for a stagnant-lid anoxic world, second for a tectonically active anoxic world, and third for an oxidized tectonically active world. Furthermore, we discuss a possible demise of present Earth's biosphere and its effects on the atmosphere. Since life-forms are the most efficient means for recycling deposited nitrogen back into the atmosphere at present, they sustain its surface partial pressure at high levels. Also, the simultaneous presence of significant N2 and O2 is chemically incompatible in an atmosphere over geological timescales. Thus, we argue that an N2-dominated atmosphere in combination with O2 on Earth-like planets within circumstellar habitable zones can be considered as a geo-biosignature. Terrestrial planets with such atmospheres will have an operating tectonic regime connected with an aerobic biosphere, whereas other scenarios in most cases end up with a CO2-dominated atmosphere. We conclude with implications for the search for life on Earth-like exoplanets inside the habitable zones of M to K stars.
Collapse
Affiliation(s)
- Helmut Lammer
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Laurenz Sproß
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
- 2Institute of Physics, University of Graz, Graz, Austria
| | - John Lee Grenfell
- 3Department of Extrasolar Planets and Atmospheres, German Aerospace Center, Institute of Planetary Research, Berlin, Germany
| | - Manuel Scherf
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Luca Fossati
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Monika Lendl
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | | |
Collapse
|
33
|
|
34
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
35
|
Detectability of Biosignatures in Anoxic Atmospheres with theJames Webb Space Telescope: A TRAPPIST-1e Case Study. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-3881/aad564] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Abstract
The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets.
Collapse
|
37
|
Kite ES, Gaidos E, Onstott TC. Valuing Life-Detection Missions. ASTROBIOLOGY 2018; 18:834-840. [PMID: 30035639 DOI: 10.1089/ast.2017.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
38
|
Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT, Moore W, Schwieterman EW, Shkolnik EL, Smith HB. Exoplanet Biosignatures: Future Directions. ASTROBIOLOGY 2018; 18:779-824. [PMID: 29938538 PMCID: PMC6016573 DOI: 10.1089/ast.2017.1738] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.
Collapse
Affiliation(s)
- Sara I. Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
- Blue Marble Space Institute of Science, Seattle, Washington
| | - William Bains
- EAPS (Earth, Atmospheric and Planetary Science), MIT, Cambridge, Massachusetts
- Rufus Scientific Ltd., Royston, United Kingdom
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sebastian Danielache
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Earth Life Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Shawn Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
| | - Betul Kacar
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- NASA Astrobiology Institute, Reliving the Past Team, University of Montana, Missoula, Montana
- Department of Molecular and Cell Biology, University of Arizona, Tucson, Arizona
- Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - Adrian Lenardic
- Department of Earth Science, Rice University, Houston, Texas
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
| | - William Moore
- Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia
- National Institute of Aerospace, Hampton, Virginia
| | - Edward W. Schwieterman
- Blue Marble Space Institute of Science, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
| | - Evgenya L. Shkolnik
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Harrison B. Smith
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
39
|
Catling DC, Krissansen-Totton J, Kiang NY, Crisp D, Robinson TD, DasSarma S, Rushby AJ, Del Genio A, Bains W, Domagal-Goldman S. Exoplanet Biosignatures: A Framework for Their Assessment. ASTROBIOLOGY 2018; 18:709-738. [PMID: 29676932 PMCID: PMC6049621 DOI: 10.1089/ast.2017.1737] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, 709-738.
Collapse
Affiliation(s)
- David C. Catling
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Joshua Krissansen-Totton
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - David Crisp
- MS 233-200, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Tyler D. Robinson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University of Maryland, Baltimore, Maryland
| | | | | | - William Bains
- Department of Earth, Atmospheric and Planetary Science, Cambridge, Massachusetts
| | | |
Collapse
|
40
|
Kiang NY, Domagal-Goldman S, Parenteau MN, Catling DC, Fujii Y, Meadows VS, Schwieterman EW, Walker SI. Exoplanet Biosignatures: At the Dawn of a New Era of Planetary Observations. ASTROBIOLOGY 2018; 18:619-629. [PMID: 29741918 PMCID: PMC6014570 DOI: 10.1089/ast.2018.1862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 05/15/2023]
Abstract
The rapid rate of discoveries of exoplanets has expanded the scope of the science possible for the remote detection of life beyond Earth. The Exoplanet Biosignatures Workshop Without Walls (EBWWW) held in 2016 engaged the international scientific community across diverse scientific disciplines, to assess the state of the science and technology in the search for life on exoplanets, and to identify paths for progress. The workshop activities resulted in five major review papers, which provide (1) an encyclopedic review of known and proposed biosignatures and models used to ascertain them (Schwieterman et al., 2018 in this issue); (2) an in-depth review of O2 as a biosignature, rigorously examining the nuances of false positives and false negatives for evidence of life (Meadows et al., 2018 in this issue); (3) a Bayesian framework to comprehensively organize current understanding to quantify confidence in biosignature assessments (Catling et al., 2018 in this issue); (4) an extension of that Bayesian framework in anticipation of increasing planetary data and novel concepts of biosignatures (Walker et al., 2018 in this issue); and (5) a review of the upcoming telescope capabilities to characterize exoplanets and their environment (Fujii et al., 2018 in this issue). Because of the immense content of these review papers, this summary provides a guide to their complementary scope and highlights salient features. Strong themes that emerged from the workshop were that biosignatures must be interpreted in the context of their environment, and that frameworks must be developed to link diverse forms of scientific understanding of that context to quantify the likelihood that a biosignature has been observed. Models are needed to explore the parameter space where measurements will be widespread but sparse in detail. Given the technological prospects for large ground-based telescopes and space-based observatories, the detection of atmospheric signatures of a few potentially habitable planets may come before 2030. Key Words: Exoplanets-Biosignatures-Remote observation-Spectral imaging-Bayesian analysis. Astrobiology 18, 619-626.
Collapse
Affiliation(s)
- Nancy Y. Kiang
- NASA Goddard Institute for Space Studies (GISS), New York, New York, USA
- Nexus for Exoplanet System Science, ROCKE-3D Team, NASA GISS, USA
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| | - Shawn Domagal-Goldman
- Nexus for Exoplanet System Science, ROCKE-3D Team, NASA GISS, USA
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- NASA Ames Research Center, Exobiology Branch, Mountain View, California, USA
| | - David C. Catling
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, Washington, USA
| | - Yuka Fujii
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, Japan
| | - Victoria S. Meadows
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Astronomy Department, University of Washington, Seattle, Washington, USA
| | - Edward W. Schwieterman
- NASA Astrobiology Institute, Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Earth Sciences, University of California, Riverside, California, USA
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Sara I. Walker
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
41
|
|