1
|
Gu L, Yang Z, Cui J, Feng Z, Yao J, Song J. Achieving High Loading Capacity of Perovskite Nanocrystals in Pore-Reamed Metal-Organic Frameworks for Bright Scintillators. ACS NANO 2025; 19:15803-15812. [PMID: 40227286 DOI: 10.1021/acsnano.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Lead halide perovskite nanocrystal (PNC) scintillators featuring a fast decay and a high radiation hardness have garnered significant attention. A high PNC loading is essential to ensure a strong X-ray absorption for scintillator applications, but concentrated PNCs tend to aggregate in the solid state, resulting in significant emission quenching. Employing a dispersion medium offers a promising strategy to produce high-loading PNC solids without agglomeration. Herein, we synthesize CsPbBr3 PNC/metal-organic framework (MOF) nanostructures to achieve high-loading PNCs within MOF hosts. The macroporous cavities of hierarchically porous (HP) MOFs can host more PNCs than the confined nanometer-scale spaces of microporous MOFs. Additionally, the surface-rich structure of MOFs aids in dispersing PNCs, effectively reducing aggregation-induced emission quenching. We find that HP-MOFs can achieve a high PNC loading ratio of 75%, as well as the less-aggregated PNCs. As a result, the PNC/HP-MOF scintillator exhibits a 2.3 times higher light yield than that of the PNC scintillator, primarily resulting from the enhanced luminance efficiency of well-dispersed PNCs. The bright and fast features of nanostructure scintillators enable static and dynamic X-ray imaging for industrial inspection applications. These findings highlight that constructing a high-loading nanostructure is crucial for advancing the X-ray imaging applications of PNC scintillators.
Collapse
Affiliation(s)
- Linyuan Gu
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Jiangtao Cui
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Zhihao Feng
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
| |
Collapse
|
2
|
Marcato T, Kumar S, Shih CJ. Strategies for Controlling Emission Anisotropy in Lead Halide Perovskite Emitters for LED Outcoupling Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413622. [PMID: 39676496 DOI: 10.1002/adma.202413622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
In the last decade, momentous progress in lead halide perovskite (LHP) light-emitting diodes (LEDs) is witnessed as their external quantum efficiency (ηext) has increased from 0.1 to more than 30%. Indeed, perovskite LEDs (PeLEDs), which can in principle reach 100% internal quantum efficiency as they are not limited by the spin-statistics, are reaching their full potential and approaching the theoretical limit in terms of device efficiency. However, ≈70% to 85% of total generated photons are trapped within the devices through the dissipation pathways of the substrate, waveguide, and evanescent modes. To this end, numerous extrinsic and intrinsic light-outcoupling strategies are studied to enhance light-outcoupling efficiency (ηout). At the outset, various external and internal light outcoupling techniques are reviewed with specific emphasis on emission anisotropy and its role on ηout. In particular, the device ηext can be enhanced by up to 50%, taking advantage of the increased probability for photons outcoupled to air by effectively inducing horizontally oriented emission transition dipole moments (TDM) in the perovskite emitters. The role of the TDM orientation in PeLED performance and the factors allowing its rational manipulation are reviewed extensively. Furthermore, this account presents an in-depth discussion about the effects of the self-assembly of LHP colloidal nanocrystals (NCs) into superlattices on the NC emission anisotropy and optical properties.
Collapse
Affiliation(s)
- Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
3
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
He H, Xing Y, Cui Z, Qin S, Wen Z, Yang D, Xie H, Mei S, Zhang W, Guo R. Regulating Phase Distribution of Dion-Jacobson Perovskite Colloidal Multiple Quantum Wells Toward Highly Stable Deep-Blue Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305191. [PMID: 37752759 DOI: 10.1002/smll.202305191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Metal halide perovskite colloidal quantum wells (CQWs) hold great promise for modern photonics and optoelectronics. However, current studies focus on Ruddlesden-Popper (R-P) phase perovskite CQWs that contain bilayers of monovalent long-chain alkylamomoniums between the separated perovskite octahedra layers. The bilayers are packed back-to-back via weak van der Waals interaction, resulting in inferior charge carrier transport and easier decomposition of perovskite. This report first creates a new type of perovskite colloidal multiple QWs (CMQWs) in the form of Dion-Jacobson (D-J) structure by introducing an asymmetric diammonium cation. Furthermore, the phase distribution is optimized by the synergistic effect of valeric acid and zwitterionic lecithin, finally achieving pure deep-blue emission at 435 nm with narrow full width at half maximum. The diammonium layer in D-J perovskite CMQWs features extremely short width of only ≈0.6 nm, thereby contributing to more effective charge carrier transport and higher stability. Through the continuous photoluminescence (PL) measurement and corresponding theoretical calculation, the higher stability of D-J perovskite CMQWs than that of R-P structural CMQWs is confirmed. This work reveals the inherent superior stability of D-J structural CMQWs, which opens a new direction for fabricating stable perovskite optoelectronics.
Collapse
Affiliation(s)
- Haiyang He
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yifeng Xing
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Shuaitao Qin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhuoqi Wen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Dan Yang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Xihu District, Hangzhou City, Zhejiang, 310003, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang, 322000, China
- Zhongshan - Fudan Joint Innovation Center, Zhongshan, 528437, China
| |
Collapse
|
5
|
Moral RF, Malfatti-Gasperini AA, Bonato LG, Vale BRC, Fonseca AFV, Padilha LA, Oliveira CLP, Nogueira AF. Self-assembly of perovskite nanoplates in colloidal suspensions. MATERIALS HORIZONS 2023; 10:5822-5834. [PMID: 37842783 DOI: 10.1039/d3mh01401k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.
Collapse
Affiliation(s)
- Raphael F Moral
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | - Luiz G Bonato
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Brener R C Vale
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André F V Fonseca
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Lazaro A Padilha
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ana F Nogueira
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
6
|
Khatun MF, Okamoto T, Biju V. Self-assembled halide perovskite quantum dots in polymer thin films showing temperature-controlled exciton recombination. Chem Commun (Camb) 2023; 59:13831-13834. [PMID: 37859494 DOI: 10.1039/d3cc02621c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Rationally assembled supramolecular structures of organic chromophores or semiconductor nanomaterials show excitonic properties different from individual molecules or nanoparticles. We report polymer-assisted assembly formation and thermal modulation of excitonic recombination in self-assembled formamidinium lead bromide perovskite quantum dots.
Collapse
Affiliation(s)
- Most Farida Khatun
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Takuya Okamoto
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
7
|
Okamoto T, Biju V. Slipping-Free Halide Perovskite Supercrystals from Supramolecularly-Assembled Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303496. [PMID: 37170667 DOI: 10.1002/smll.202303496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Supramolecularly assembled high-order supercrystals (SCs) help control the dielectric, electronic, and excitonic properties of semiconductor nanocrystals (NCs) and quantum dots (QDs). Ligand-engineered perovskite NCs (PNCs) assemble into SCs showing shorter excitonic lifetimes than strongly dielectric PNC films showing long photoluminescence (PL) lifetimes and long-range carrier diffusion. Monodentate to bidentate ligand exchange on ≈ 8 nm halide perovskite (APbX3 ; A:Cs/MA, X:Br/I) PNCs generates mechanically stable SCs with close-packed lattices, overlapping electronic wave functions, and higher dielectric constant, providing distinct excitonic properties from single PNCs or PNC films. From Fast Fourier Transform (FFT) images, time-resolved PL, and small-angle X-ray scattering, structurally and excitonically ordered large SCs are identified. An Sc shows a smaller spectral shift (<35 meV) than a PNC film (>100 meV), a microcrystal (>100 meV), or a bulk crystal (>100 meV). Also, the exciton lifetime (<10 ns) of an SC is excitation power-independent in the single exciton regime 〈N〉<1, comparable to an isolated PNC. Therefore, bidentate-ligand-assisted SCs help overcome delayed exciton or carrier recombination in halide perovskite nanocrystal assemblies or films.
Collapse
Affiliation(s)
- Takuya Okamoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
8
|
Liu Z, Qin X, Chen Q, Jiang T, Chen Q, Liu X. Metal-Halide Perovskite Nanocrystal Superlattice: Self-Assembly and Optical Fingerprints. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209279. [PMID: 36738101 DOI: 10.1002/adma.202209279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal-halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal-halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.
Collapse
Affiliation(s)
- Zhuang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Qihao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Tianci Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Xiaogang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
9
|
Wang Y, Liu J, Wang A, Gao S, Li Z, Li J, Yan S, Cheng S, Song Z, Zhang Y, Dong J, Cao J, Wang F, Huang W, Qin T. Heterostructural Nanosheets Consisting of Polycyclic Aromatic Hydrocarbon Shields and Layered Perovskite Cores for Optical Image Encryption. J Phys Chem Lett 2023; 14:2047-2055. [PMID: 36795606 DOI: 10.1021/acs.jpclett.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical image encryption technology, in which the emission on/off can be controlled by using specially appointed wavelengths, is useful in information storage and protection. Herein, we report a family of sandwiched heterostructural nanosheets, consisting of three-layered (n = 3) perovskite (PSK) frameworks in center with two different polycyclic aromatic hydrocarbons [triphenylene (Tp) and pyrene (Py)] in periphery. Both heterostructural nanosheets (Tp-PSK and Py-PSK) exhibit blue emissions under UVA-I irradiation; however, different photoluminescent properties are observed under UVA-II. A bright emission of Tp-PSK is attributed to the fluorescence resonance energy transfer (FRET) from Tp-shield to PSK-core, whereas the observed photoquenching phenomenon in Py-PSK is due to the competitive absorption between Py-shield and PSK-core. We exploited the unique photophysical features (on/off emission) of the two nanosheets in a narrow UV window (320-340 nm) for optical image encrypting.
Collapse
Affiliation(s)
- Yanchen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiaxin Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Aifei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Song Gao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zihao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Junjie Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suhao Yan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Suwen Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Zhicheng Song
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Yupeng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jingjin Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Jiupeng Cao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Tianshi Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| |
Collapse
|
10
|
Zhu Q, Zhang F, Huang Y, Xiao H, Zhao L, Zhang X, Song T, Tang X, Li X, He G, Chong B, Zhou J, Zhang Y, Zhang B, Cao J, Luo M, Wang S, Ye G, Zhang W, Chen X, Cong S, Zhou D, Li H, Li J, Zou G, Shang W, Jiang J, Luo Y. An all-round AI-Chemist with a scientific mind. Natl Sci Rev 2022; 9:nwac190. [PMID: 36415316 PMCID: PMC9674120 DOI: 10.1093/nsr/nwac190] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
The realization of automated chemical experiments by robots unveiled the prelude to an artificial intelligence (AI) laboratory. Several AI-based systems or robots with specific chemical skills have been demonstrated, but conducting all-round scientific research remains challenging. Here, we present an all-round AI-Chemist equipped with scientific data intelligence that is capable of performing basic tasks generally required in chemical research. Based on a service platform, the AI-Chemist is able to automatically read the literatures from a cloud database and propose experimental plans accordingly. It can control a mobile robot in-house or online to automatically execute the complete experimental process on 14 workstations, including synthesis, characterization and performance tests. The experimental data can be simultaneously analysed by the computational brain of the AI-Chemist through machine learning and Bayesian optimization, allowing a new hypothesis for the next iteration to be proposed. The competence of the AI-Chemist has been scrutinized by three different chemical tasks. In the future, the more advanced all-round AI-Chemists equipped with scientific data intelligence may cause changes to the landscape of the chemical laboratory.
Collapse
Affiliation(s)
- Qing Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fei Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Hengyu Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - LuYuan Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - XuChun Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Tao Song
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - XinSheng Tang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xiang Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guo He
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - BaoChen Chong
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - JunYi Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - YiHan Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Baicheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - JiaQi Cao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Man Luo
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - GuiLin Ye
- Hefei JiShu Quantum Technology Co. Ltd, Hefei 230026, China
| | - WanJun Zhang
- Hefei JiShu Quantum Technology Co. Ltd, Hefei 230026, China
| | - Xin Chen
- Hefei JiShu Quantum Technology Co. Ltd, Hefei 230026, China
| | - Shuang Cong
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Donglai Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Huirong Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jialei Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Gang Zou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - WeiWei Shang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
11
|
Dong W, Zhang X, Yang F, Zeng Q, Yin W, Zhang W, Wang H, Yang X, Kershaw SV, Yang B, Rogach AL, Zheng W. Amine-Terminated Carbon Dots Linking Hole Transport Layer and Vertically Oriented Quasi-2D Perovskites through Hydrogen Bonds Enable Efficient LEDs. ACS NANO 2022; 16:9679-9690. [PMID: 35658393 DOI: 10.1021/acsnano.2c03064] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Close attention to the interfaces of solution-processed metal halide perovskite-based light-emitting devices (LEDs) is crucial for their optimal performance. Solution processing of these devices typically leads to the formation of van der Waals interfaces with a weak connection between different functional layers, leaving great room for improvement in charge transport through strengthening of the interlayer interaction. Here, we have realized a hydrogen-bond-assisted interface that makes use of ultrasmall amine-terminated carbon dots to enhance the interaction between the hole transport layer made of PEDOT:PSS and the hybrid lead bromide perovskite emitting layer, which not only promotes the hole injection efficiency but also orients the quasi-2D perovskite crystals penetrating the vertical direction of the device without any, or very few, horizontal grain boundaries, which has a profound effect on the photophysical and transport properties of the emitting layer. As a result, LEDs based on quasi-2D perovskites show up to 24.5% external quantum efficiency, 80 000 cd m-2 brightness, and over 5-fold extended longevity.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Fan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Haoran Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
12
|
Fakharuddin A, Gangishetty MK, Abdi-Jalebi M, Chin SH, bin Mohd Yusoff AR, Congreve DN, Tress W, Deschler F, Vasilopoulou M, Bolink HJ. Perovskite light-emitting diodes. NATURE ELECTRONICS 2022; 5:203-216. [DOI: 10.1038/s41928-022-00745-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/02/2022] [Indexed: 09/02/2023]
|
13
|
Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nat Commun 2022; 13:1338. [PMID: 35288556 PMCID: PMC8921293 DOI: 10.1038/s41467-022-29084-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
AbstractGelatinous underwater invertebrates such as jellyfish have organs that are transparent, luminescent and self-healing, which allow the creatures to navigate, camouflage themselves and, indeed, survive in aquatic environments. Artificial luminescent materials that can mimic such functionality can be used to develop aquatic wearable/stretchable displays and water-resistant devices. Here, a luminescent composite that is simultaneously transparent, tough and can autonomously self-heal in both dry and wet conditions is reported. A tough, self-healable fluorine elastomer with dipole–dipole interactions is synthesized as the polymer matrix. It exhibits excellent compatibility with metal halide perovskite quantum dots. The composite possesses a toughness of 19 MJ m−3, maximum strain of 1300% and capability to autonomously self-heal underwater. Notably, the material can withstand extremely harsh aqueous conditions, such as highly salty, acidic (pH = 1) and basic (pH = 13) environment for more than several months with almost no decay in mechanical performance or optical properties.
Collapse
|
14
|
Zhang Z, Ghimire S, Okamoto T, Sachith BM, Sobhanan J, Subrahmanyam C, Biju V. Mechano-optical Modulation of Excitons and Carrier Recombination in Self-Assembled Halide Perovskite Quantum Dots. ACS NANO 2022; 16:160-168. [PMID: 34978425 DOI: 10.1021/acsnano.1c04944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanically modulating optical properties of semiconductor nanocrystals and organic molecules are valuable for mechano-optical and optomechanical devices. Halide perovskites with excellent optical and electronic properties are promising for such applications. We report the mechanically changing excitons and photoluminescence of self-assembled formamidinium lead bromide (FAPbBr3) quantum dots. The as-synthesized quantum dots (3.6 nm diameter), showing blue emission and a short photoluminescence lifetime (2.6 ns), form 20-300 nm 2D and 3D self-assemblies with intense green emission in a solution or a film. The blue emission and short photoluminescence lifetime of the quantum dots are different from the delayed (ca. 550 ns) green emission from the assemblies. Thus, we consider the structure and excitonic properties of individual quantum dots differently from the self-assemblies. The blue emission and short lifetime of individual quantum dots are consistent with a weak dielectric screening of excitons or strong quantum confinement. The red-shifted emission and a long photoluminescence lifetime of the assemblies suggest a strong dielectric screening that weakens the quantum confinement, allowing excitons to split into free carriers, diffuse, and trap. The delayed emission suggests nongeminate recombination of diffusing and detrapped carriers. Interestingly, the green emission of the self-assembly blueshifts by applying a lateral mechanical force (ca. 4.65 N). Correspondingly, the photoluminescence lifetime decreases by 1 order of magnitude. These photoluminescence changes suggest the mechanical dissociation of the quantum dot self-assemblies and mechanically controlled exciton splitting and recombination. The mechanically changing emission color and lifetime of halide perovskite are promising for mechano-optical and optomechanical switches and sensors.
Collapse
Affiliation(s)
- Zhijing Zhang
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo, Hokkaido 060-0810, Japan
| | - Sushant Ghimire
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Sapporo, Hokkaido 001-0020, Japan
- Institute of Physics, University of Rostock, Albert-Einstein-Straβe 23, 18059 Rostock, Germany
| | - Takuya Okamoto
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Sapporo, Hokkaido 001-0020, Japan
| | | | - Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo, Hokkaido 060-0810, Japan
| | - Challapalli Subrahmanyam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Mandi, Telangana 502285, India
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
15
|
Ramdass A, Sathish V, Thanasekaran P. AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
16
|
Toso S, Baranov D, Giannini C, Manna L. Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction. ACS NANO 2021; 15:20341-20352. [PMID: 34843227 PMCID: PMC8717630 DOI: 10.1021/acsnano.1c08636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The research on two-dimensional colloidal semiconductors has received a boost from the emergence of ultrathin lead halide perovskite nanoplatelets. While the optical properties of these materials have been widely investigated, their accurate structural and compositional characterization is still challenging. Here, we exploited the natural tendency of the platelets to stack into highly ordered films, which can be treated as single crystals made of alternating layers of organic ligands and inorganic nanoplatelets, to investigate their structure by multilayer diffraction. Using X-ray diffraction alone, this method allowed us to reveal the structure of ∼12 Å thick Cs-Pb-Br perovskite and ∼25 Å thick Cs-Pb-I-Cl Ruddlesden-Popper nanoplatelets by precisely measuring their thickness, stoichiometry, surface passivation type and coverage, as well as deviations from the crystal structures of the corresponding bulk materials. It is noteworthy that a single, readily available experimental technique, coupled with proper modeling, provides access to such detailed structural and compositional information.
Collapse
Affiliation(s)
- Stefano Toso
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- International
Doctoral Program in Science, Università
Cattolica del Sacro Cuore, 25121 Brescia, Italy
| | - Dmitry Baranov
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cinzia Giannini
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
17
|
Bo J, Sun X, Wan P, Huang D, Chen X, Chen M, Li R, Shen D, Li Q, Xia W, Ye Z, Chen Y, Chen S. Perovskite Quantum Dots with Ultrahigh Solid-State Photoluminescence Quantum Efficiency, Superior Stability, and Uncompromised Electrical Conductivity. J Phys Chem Lett 2021; 12:9115-9123. [PMID: 34528436 DOI: 10.1021/acs.jpclett.1c02472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All-inorganic perovskite quantum dots (PQDs), potentially applicable to high-performance display technologies, are facing challenges when the superior luminescence properties with high stability and uncompromised electrical conductivity are combined. Here, by introducing hexylamine sulfate and reducing the reaction rate, we managed to optimize the surface sacrificial coating of CsPbBr3 QDs. As a result, the colloidal PQDs show a photoluminescence quantum efficiency (PLQE) of 95.8% in solution, and an internal PLQE as high as 97.8% in solid-state films. As far as stability is concerned, the PQDs not only show excellent resistance to polar solvent but also can retain over 84% of the initial PL intensity after continuous heating at 100 °C for 60 min. More importantly, the superior stability is achieved without compromising electrical conductivity. The light-emitting diodes made from these PQDs show a current efficiency of 8.9 cd A-1 with excellent thermal stability.
Collapse
Affiliation(s)
- Jun Bo
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| | - Xiaojuan Sun
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| | - Peng Wan
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| | - Dong Huang
- School of Optical Science and Engineering, Soochow University, Suzhou, Jiangsu215006, China
| | - Xingtong Chen
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| | - Mengyu Chen
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| | - Rui Li
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| | - Dongyang Shen
- School of Optical Science and Engineering, Soochow University, Suzhou, Jiangsu215006, China
| | - Qinyi Li
- School of Optical Science and Engineering, Soochow University, Suzhou, Jiangsu215006, China
| | - Wenlin Xia
- School of Optical Science and Engineering, Soochow University, Suzhou, Jiangsu215006, China
| | - Zi Ye
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| | - Yu Chen
- School of Optical Science and Engineering, Soochow University, Suzhou, Jiangsu215006, China
| | - Song Chen
- College of Chemistry, Chemical Engineering and Materials Science,Soochow University, Suzhou, Jiangsu215123, China
| |
Collapse
|
18
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 463] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
19
|
Dai SW, Lai YL, Yang L, Chuang YT, Tan GH, Shen SW, Huang YS, Lo YC, Yeh TH, Wu CI, Chen LJ, Lu MY, Wong KT, Liu SW, Lin HW. Organic Lead Halide Nanocrystals Providing an Ultra-Wide Color Gamut with Almost-Unity Photoluminescence Quantum Yield. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25202-25213. [PMID: 34010569 DOI: 10.1021/acsami.1c05961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The most attractive aspect of perovskite nanocrystals (NCs) for optoelectronic applications is their widely tunable emission wavelength, but it has been quite challenging to tune it without sacrificing the photoluminescence quantum yield (PLQY). In this work, we report a facile ligand-optimized ion-exchange (LOIE) method to convert room-temperature spray-synthesized, perovskite parent NCs that emit a saturated green color to NCs capable of emitting colors across the entire visible spectrum. These NCs exhibited exceptionally stable and high PLQYs, particularly for the pure blue (96%) and red (93%) primary colors that are indispensable for display applications. Surprisingly, the blue- and red-emissive NCs obtained using the LOIE method preserved the cubic shape and cubic phase structure that they inherited from their parent NCs, while exhibiting high crystallinity and high color-purity. Together with the parent green-emissive NCs, the obtained blue- and red-emissive NCs provided a very wide color gamut, corresponding to a Digital Cinema Initiatives-P3 of 140% or an International Telecommunication Union Recommendation BT.2020 of 102%. With the superior optical merits of these LOIE-manipulated NCs, a corresponding color conversion luminescence device provided a high external quantum efficiency (10.5%) and extremely high brightness (970 000 cd/m2). This study provides a valid route toward highly stable, extremely emissive, and panchromatic perovskite NCs with potential use in a variety of future optoelectronic applications.
Collapse
Affiliation(s)
- Shu-Wen Dai
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ying-Lin Lai
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Lin Yang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Shin-Wei Shen
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Sheng Huang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yuan-Chih Lo
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Tzu-Hung Yeh
- Organic Electronics Research Center, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan Dist., New Taipei City 24301, Taiwan
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Lih-Juann Chen
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shun-Wei Liu
- Organic Electronics Research Center, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan Dist., New Taipei City 24301, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
20
|
Chen Z, Li Z, Hopper TR, Bakulin AA, Yip HL. Materials, photophysics and device engineering of perovskite light-emitting diodes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:046401. [PMID: 33730709 DOI: 10.1088/1361-6633/abefba] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Here we provide a comprehensive review of a newly developed lighting technology based on metal halide perovskites (i.e. perovskite light-emitting diodes) encompassing the research endeavours into materials, photophysics and device engineering. At the outset we survey the basic perovskite structures and their various dimensions (namely three-, two- and zero-dimensional perovskites), and demonstrate how the compositional engineering of these structures affects the perovskite light-emitting properties. Next, we turn to the physics underpinning photo- and electroluminescence in these materials through their connection to the fundamental excited states, energy/charge transport processes and radiative and non-radiative decay mechanisms. In the remainder of the review, we focus on the engineering of perovskite light-emitting diodes, including the history of their development as well as an extensive analysis of contemporary strategies for boosting device performance. Key concepts include balancing the electron/hole injection, suppression of parasitic carrier losses, improvement of the photoluminescence quantum yield and enhancement of the light extraction. Overall, this review reflects the current paradigm for perovskite lighting, and is intended to serve as a foundation to materials and device scientists newly working in this field.
Collapse
Affiliation(s)
- Ziming Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou University City, Panyu District, Guangzhou 510006, People's Republic of China
| | - Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
| | - Thomas R Hopper
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- Innovation Center of Printed Photovoltaics, South China Institute of Collaborative Innovation, Dongguan 523808, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| |
Collapse
|
21
|
Qu F, Yin T, Fa Q, Jiang D, Zhao XE. Lead halide perovskites with aggregation-induced emission feature coupled with gold nanoparticles for fluorescence detection of heparin. NANOTECHNOLOGY 2021; 32:235501. [PMID: 33621960 DOI: 10.1088/1361-6528/abe905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Herein, a new kind of lead halide perovskite (LHP, (C12H25NH3)2PbI4) with aggregation-induced emission (AIE) feature is developed as a fluorescent probe for heparin (Hep). The LHPs exhibit high emission when they aggregate in water. Interestingly, a few picomoles of dispersed gold nanoparticles (AuNPs) can quench the emission of LHPs, but the aggregated AuNPs are invalid. When protamine (Pro) is mixed with AuNPs at first, the negatively charged AuNPs aggregate through electrostatic interaction, producing the AIE recovery. Nevertheless, Hep disturbs the interaction between AuNPs and Pro due to its strong electrostatic interaction with Pro. Therefore, the dispersed AuNPs quench the fluorescence of LHPs again. A response linear range of Hep of 0.8-4.2 ng ml-1is obtained, and the detection limit is 0.29 ng ml-1. Compared with other probes for determination of Hep with AuNPs, this strategy exhibits better sensitivity due to the small quantity of AuNPs used. Finally, it is also successfully applied to detect Hep in human serum samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Tian Yin
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Qianqian Fa
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan 250014, People's Republic of China
| | - Xian-En Zhao
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| |
Collapse
|
22
|
Peng S, Wei Q, Wang B, Zhang Z, Yang H, Pang G, Wang K, Xing G, Sun XW, Tang Z. Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shaomin Peng
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Hongcheng Yang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guotao Pang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Kai Wang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Xiao Wei Sun
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| |
Collapse
|
23
|
Peng S, Wei Q, Wang B, Zhang Z, Yang H, Pang G, Wang K, Xing G, Sun XW, Tang Z. Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angew Chem Int Ed Engl 2020; 59:22156-22162. [DOI: 10.1002/anie.202009193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Shaomin Peng
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Hongcheng Yang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guotao Pang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Kai Wang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Xiao Wei Sun
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| |
Collapse
|
24
|
Yan L, Wang M, Zhai C, Zhao L, Lin S. Symmetry Breaking Induced Anisotropic Carrier Transport and Remarkable Thermoelectric Performance in Mixed Halide Perovskites CsPb(I 1-xBr x) 3. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40453-40464. [PMID: 32790315 DOI: 10.1021/acsami.0c07501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a combination of first-principles calculations and the Boltzmann transport theory to understand the carrier transport and thermoelectric performance of mixed halide perovskite alloys CsPb(I1-xBrx)3 with different Br compositions. Our computational results correlate the conduction band splitting in CsPb(I1-xBrx)3 to the significant anisotropy in their carrier transport properties, such as effective masses and deformation potential constants. Such band splitting originates from the symmetry-broken crystal structures of CsPb(I1-xBrx)3 polymorphs: with residue stresses/strains in asymmetric CsPb(I1-xBrx)3, nondegenerate orbitals reconstruct the conduction band and reduce the Pb-halide antibonding character along certain directions. While the Seebeck coefficient (S) and the relaxation time-normalized electrical conductivity (σ/τ) show weak directional anisotropy, the carrier relaxation time (τ) is highly direction-dependent. The reconstruction of the conduction band finally leads to significantly anisotropic and enhanced thermoelectric power factors (PF = S2σ) in CsPb(I1-xBrx)3 compared to those in pure CsPbI3 and CsPbBr3, showing anomalous nonlinear alloy behavior. A delicate balance between S2σ and combined measurement of the carrier effective mass and deformation potential constant, m*EDP, is confirmed. The lattice thermal conductivities of CsPb(I1-xBrx)3 are significantly suppressed compared to those of their pure counterparts due to strong mass disordering and strain fields upon halogen substitution. As a result, symmetry breaking in CsPb(I1-xBrx)3 leads to anisotropy in carrier transport, high PF, and scattered phonon transport (ultralow thermal conductivity), concurrently contributing to their promising thermoelectric figures of merit (ZT) up to 1.7 at room temperature. The principles behind the asymmetry-induced factors would serve as new design concepts to tailor the thermoelectric properties of alloys, mixtures, superlattices, and low-dimensional materials.
Collapse
Affiliation(s)
- Lifu Yan
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Mingchao Wang
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chenxi Zhai
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Lingling Zhao
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shangchao Lin
- Institute of Engineering Thermophysics, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Li H, Liu X, Ying Q, Wang C, Jia W, Xing X, Yin L, Lu Z, Zhang K, Pan Y, Shi Z, Huang L, Jia D. Self‐Assembly of Perovskite CsPbBr
3
Quantum Dots Driven by a Photo‐Induced Alkynyl Homocoupling Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hongbo Li
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Xiangdong Liu
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Qifei Ying
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chao Wang
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 211816 China
| | - Wei Jia
- Laboratory of Energy Materials Chemistry Ministry of Education Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry Xinjiang University Urumqi Xinjiang 830046 China
| | - Xing Xing
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 211816 China
| | - Lisha Yin
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Zhenda Lu
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 211816 China
| | - Kun Zhang
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Yue Pan
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Ling Huang
- Institute of Advanced Materials (IAM) Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Dianzeng Jia
- Laboratory of Energy Materials Chemistry Ministry of Education Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry Xinjiang University Urumqi Xinjiang 830046 China
| |
Collapse
|
26
|
Li H, Liu X, Ying Q, Wang C, Jia W, Xing X, Yin L, Lu Z, Zhang K, Pan Y, Shi Z, Huang L, Jia D. Self-Assembly of Perovskite CsPbBr 3 Quantum Dots Driven by a Photo-Induced Alkynyl Homocoupling Reaction. Angew Chem Int Ed Engl 2020; 59:17207-17213. [PMID: 32578927 DOI: 10.1002/anie.202004947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Herein, we report the facile growth of three-dimensional CsPbBr3 perovskite supercrystals (PSCs) self-assembled from individual CsPbBr3 perovskite quantum dots (PQDs). By varying the carbon chain length of a surface-bound ligand molecule, 1-alkynyl acid, different morphologies of PSCs were obtained accompanied by an over 1000-fold photoluminescence improvement compared with that of PQDs. Systematic analyses have shown, for the first time, that under UV irradiation, CsBr, the byproduct formed during PQDs synthesis, could effectively catalyze the homocoupling reaction between two alkynyl groups, which further worked as a driving force to push forward the self-assembly of PQDs.
Collapse
Affiliation(s)
- Hongbo Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Xiangdong Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Qifei Ying
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Chao Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 211816, China
| | - Wei Jia
- Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Xing Xing
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 211816, China
| | - Lisha Yin
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 211816, China
| | - Kun Zhang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Yue Pan
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ling Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Dianzeng Jia
- Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
27
|
McKenna B, Shivkumar A, Charles B, Evans RC. Synthetic factors affecting the stability of methylammonium lead halide perovskite nanocrystals. NANOSCALE 2020; 12:11694-11702. [PMID: 32441286 DOI: 10.1039/d0nr03227a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lead halide perovskite nanocrystals (PNCs) have emerged as promising candidates for use in optoelectronic devices. Significant focus has been directed towards optimising synthetic conditions to obtain PNCs with tunable emission properties. However, the reproducible production of stable PNC dispersions is also crucial for fabrication and scale-up of these devices using liquid deposition methods. Here, the stability of methylammonium lead halide (MAPbX3 where X = Br, I) PNCs produced via the ligand-assisted reprecipitation process is explored. We have focussed on understanding how different combinations of specific synthetic factors - dilution, halide source and ratio as well as capping-ligand concentration - affect the stability of the resultant PNC dispersion. Photoluminescence spectroscopy, transmission electron microscopy and dynamic light scattering studies revealed that subtle changes in the reaction conditions lead to significant changes in the particle morphology and associated optical properties, often with catastrophic consequences on stability. This study highlights the importance of designing PNC dispersions in order to make more efficient and reliable optoelectronic devices.
Collapse
Affiliation(s)
- Barry McKenna
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Abhinav Shivkumar
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Bethan Charles
- Department of Materials Science & Metallurgy, University of Cambridge, UK.
| | - Rachel C Evans
- Department of Materials Science & Metallurgy, University of Cambridge, UK.
| |
Collapse
|
28
|
Sandeep K. Revealing the Role of Aggregation and Surface Chemistry in the Bi‐phasic Anion Exchange Reactions of Cesium Lead Halide Perovskites. ChemistrySelect 2020. [DOI: 10.1002/slct.201904307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- K. Sandeep
- Department of Chemistry, Government Victoria CollegeResearch Center under University of Calicut, Palakkad Kerala India 678001
| |
Collapse
|
29
|
Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nat Commun 2020; 11:387. [PMID: 31959755 PMCID: PMC6971243 DOI: 10.1038/s41467-019-14084-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023] Open
Abstract
Miniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers. Here, we report decoupled multi-quantum-well superlattices comprised of the colloidal quantum wells of lead halide perovskites, with unprecedentedly ultrathin quantum barriers that screen interlayer interactions within the range of 6.5 Å. Crystallographic and 2D k-space spectroscopic analysis reveals that the transition dipole moment orientation of bright excitons in the superlattices is predominantly in-plane and independent of stacking layer and quantum barrier thickness, confirming interlayer decoupling. Decoupled high-order MQW superlattices are desired to design miniaturized photonic sources but they are yet to be realized in scalable ways. Here Jagielski et al. achieve this goal using multiple-stacked colloidal lead halide perovskite quantum wells separated by atomically thin quantum barriers.
Collapse
|
30
|
Kumar S, Jagielski J, Marcato T, Solari SF, Shih CJ. Understanding the Ligand Effects on Photophysical, Optical, and Electroluminescent Characteristics of Hybrid Lead Halide Perovskite Nanocrystal Solids. J Phys Chem Lett 2019; 10:7560-7567. [PMID: 31736317 PMCID: PMC6926956 DOI: 10.1021/acs.jpclett.9b02950] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There has been a tremendous amount of interest in developing high-efficiency light-emitting diodes (LEDs) based on colloidal nanocrystals (NCs) of hybrid lead halide perovskites. Here, we systematically investigate the ligand effects on EL characteristics by tuning the hydrophobicity of primary alkylamine ligands used in NC synthesis. By increasing the ligand hydrophobicity, we find (i) a reduced NC size that induces a higher degree of quantum confinement, (ii) a shortened exciton lifetime that increases the photoluminescence quantum yield, (iii) a lowering of refractive index that increases the light outcoupling efficiency, and (iv) an increased thin-film resistivity. Accordingly, ligand engineering allows us to demonstrate high-performance green LEDs exhibiting a maximum external quantum efficiency up to 16.2%. The device operational lifetime, defined by the time lasted when the device luminance reduces to 85% of its initial value, LT85, reaches 243 min at an initial luminance of 516 cd m-2.
Collapse
|
31
|
Jiang K, Gao X, Feng X, Wang Y, Li Z, Lin H. Carbon Dots with Dual‐Emissive, Robust, and Aggregation‐Induced Room‐Temperature Phosphorescence Characteristics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Jiang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province Ningbo Institute of Materials Technology & Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 China
| | - Xiaolu Gao
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province Ningbo Institute of Materials Technology & Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 China
| | - Xiangyu Feng
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province Ningbo Institute of Materials Technology & Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 China
| | - Yuhui Wang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province Ningbo Institute of Materials Technology & Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 China
| | - Zhongjun Li
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Hengwei Lin
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province Ningbo Institute of Materials Technology & Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 China
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| |
Collapse
|
32
|
Jiang K, Gao X, Feng X, Wang Y, Li Z, Lin H. Carbon Dots with Dual-Emissive, Robust, and Aggregation-Induced Room-Temperature Phosphorescence Characteristics. Angew Chem Int Ed Engl 2019; 59:1263-1269. [PMID: 31715082 DOI: 10.1002/anie.201911342] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Indexed: 11/07/2022]
Abstract
Carbon dots (CDs) with dual-emissive, robust, and aggregation-induced RTP characteristics are reported for the first time. The TA-CDs are prepared via hydrothermal treatment of trimellitic acid and exhibit unique white prompt and yellow RTP emissions in solid state under UV excitation (365 nm) on and off, respectively. The yellow RTP emission of TA-CDs powder should be resulted from the formation of a new excited triplet state due to their aggregation, and the white prompt emission is due to their blue fluorescence and yellow RTP dual-emissive nature. The RTP emission of TA-CDs powder was highly stable under grinding, which is very rare amongst traditional pure organic RTP materials. To employ the unique characteristics of TA-CDs, advanced anti-counterfeiting and information encryption methodologies (water-stimuli-response producing RTP) were preliminarily investigated.
Collapse
Affiliation(s)
- Kai Jiang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaolu Gao
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiangyu Feng
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuhui Wang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhongjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hengwei Lin
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
33
|
Yan F, Tan ST, Li X, Demir HV. Light Generation in Lead Halide Perovskite Nanocrystals: LEDs, Color Converters, Lasers, and Other Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902079. [PMID: 31650694 DOI: 10.1002/smll.201902079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Facile solution processing lead halide perovskite nanocrystals (LHP-NCs) exhibit superior properties in light generation, including a wide color gamut, a high flexibility for tuning emissive wavelengths, a great defect tolerance and resulting high quantum yield; and intriguing electric feature of ambipolar transport with moderate and comparable mobility. As a result, LHP-NCs have accomplished great achievements in various light generation applications, including color converters for lighting and display, light-emitting diodes, low threshold lasing, X-ray scintillators, and single photon emitters. Herein, the considerable progress that has been made thus far is reviewed along with the current challenges and future prospects in the light generation applications of LHP-NCs.
Collapse
Affiliation(s)
- Fei Yan
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Swee Tiam Tan
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiao Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Hilmi Volkan Demir
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
34
|
Fakharuddin A, Shabbir U, Qiu W, Iqbal T, Sultan M, Heremans P, Schmidt-Mende L. Inorganic and Layered Perovskites for Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807095. [PMID: 31012172 DOI: 10.1002/adma.201807095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Indexed: 05/25/2023]
Abstract
Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light-emitting diodes (LEDs), continuous-wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long-term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current-voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single-crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.
Collapse
Affiliation(s)
- Azhar Fakharuddin
- IMEC, Kapeldreef 75, Heverlee, 3001, Belgium
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, 3000, Leuven, Belgium
- Department of Physics, University of Konstanz, 78457, Konstanz, Germany
| | - Umair Shabbir
- Department of Physics, Faculty of Science, University of Gujrat, Gujrat, 50700, Punjab, Pakistan
- Nanoscience and Technology Department, National Centre for Physics, Quaid-I-Azam, University Campus, Islamabad, 44000, Pakistan
| | - Weiming Qiu
- IMEC, Kapeldreef 75, Heverlee, 3001, Belgium
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, 3000, Leuven, Belgium
| | - Tahir Iqbal
- Department of Physics, Faculty of Science, University of Gujrat, Gujrat, 50700, Punjab, Pakistan
| | - Muhammad Sultan
- Nanoscience and Technology Department, National Centre for Physics, Quaid-I-Azam, University Campus, Islamabad, 44000, Pakistan
| | - Paul Heremans
- IMEC, Kapeldreef 75, Heverlee, 3001, Belgium
- Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, 3000, Leuven, Belgium
| | | |
Collapse
|
35
|
|
36
|
Lee KJ, Turedi B, Sinatra L, Zhumekenov AA, Maity P, Dursun I, Naphade R, Merdad N, Alsalloum A, Oh S, Wehbe N, Hedhili MN, Kang CH, Subedi RC, Cho N, Kim JS, Ooi BS, Mohammed OF, Bakr OM. Perovskite-Based Artificial Multiple Quantum Wells. NANO LETTERS 2019; 19:3535-3542. [PMID: 31009227 DOI: 10.1021/acs.nanolett.9b00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiconductor quantum well structures have been critical to the development of modern photonics and solid-state optoelectronics. Quantum level tunable structures have introduced new transformative device applications and afforded a myriad of groundbreaking studies of fundamental quantum phenomena. However, noncolloidal, III-V compound quantum well structures are limited to traditional semiconductor materials fabricated by stringent epitaxial growth processes. This report introduces artificial multiple quantum wells (MQWs) built from CsPbBr3 perovskite materials using commonly available thermal evaporator systems. These perovskite-based MQWs are spatially aligned on a large-area substrate with multiple stacking and systematic control over well/barrier thicknesses, resulting in tunable optical properties and a carrier confinement effect. The fabricated CsPbBr3 artificial MQWs can be designed to display a variety of photoluminescence (PL) characteristics, such as a PL peak shift commensurate with the well/barrier thickness, multiwavelength emissions from asymmetric quantum wells, the quantum tunneling effect, and long-lived hot-carrier states. These new artificial MQWs pave the way toward widely available semiconductor heterostructures for light-conversion applications that are not restricted by periodicity or a narrow set of dimensions.
Collapse
Affiliation(s)
| | | | - Lutfan Sinatra
- Quantum Solutions LLC , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | | | | | | | | | | | | | - Semi Oh
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | | | | | | | | | - Namchul Cho
- Department of Energy Systems Engineering , Soonchunhyang University , Asan 31538 , Republic of Korea
| | - Jin Soo Kim
- Division of Advanced Materials Engineering and Research Center of Advanced Materials Development , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | | | | | | |
Collapse
|
37
|
Shamsi J, Urban AS, Imran M, De Trizio L, Manna L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem Rev 2019; 119:3296-3348. [PMID: 30758194 PMCID: PMC6418875 DOI: 10.1021/acs.chemrev.8b00644] [Citation(s) in RCA: 647] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 01/17/2023]
Abstract
Metal halide perovskites represent a flourishing area of research, which is driven by both their potential application in photovoltaics and optoelectronics and by the fundamental science behind their unique optoelectronic properties. The emergence of new colloidal methods for the synthesis of halide perovskite nanocrystals, as well as the interesting characteristics of this new type of material, has attracted the attention of many researchers. This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed. We will examine the chemistry and the capability of different colloidal synthetic routes with regard to controlling the shape, size, and optical properties of the resulting nanocrystals. We will also provide an up-to-date overview of their postsynthesis transformations, and summarize the various solution processes that are aimed at fabricating halide perovskite-based nanocomposites. Furthermore, we will review the fundamental optical properties of halide perovskite nanocrystals by focusing on their linear optical properties, on the effects of quantum confinement, and on the current knowledge of their exciton binding energies. We will also discuss the emergence of nonlinear phenomena such as multiphoton absorption, biexcitons, and carrier multiplication. Finally, we will discuss open questions and possible future directions.
Collapse
Affiliation(s)
- Javad Shamsi
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alexander S. Urban
- Nanospectroscopy
Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Amalienstaße 54, 80799 Munich, Germany
| | - Muhammad Imran
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Luca De Trizio
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Kavli
Institute of Nanoscience and Department of Chemical Engineering, Delft University of Technology, PO Box 5, 2600AA Delft, The Netherlands
| |
Collapse
|
38
|
Zhang Y, Sun R, Ou X, Fu K, Chen Q, Ding Y, Xu LJ, Liu L, Han Y, Malko AV, Liu X, Yang H, Bakr OM, Liu H, Mohammed OF. Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. ACS NANO 2019; 13:2520-2525. [PMID: 30721023 DOI: 10.1021/acsnano.8b09484] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.
Collapse
Affiliation(s)
- Yuhai Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) , University of Jinan , Jinan 250022 , Shandong China
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Ruijia Sun
- Institute for Advanced Interdisciplinary Research (iAIR) , University of Jinan , Jinan 250022 , Shandong China
| | - Xiangyu Ou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Kaifang Fu
- Institute for Advanced Interdisciplinary Research (iAIR) , University of Jinan , Jinan 250022 , Shandong China
| | - Qiushui Chen
- Department of Chemistry , National University of Singapore , Singapore 117543
| | - Yuchong Ding
- Research & Development Center of Material and Equipment , China Electronics Technology Group, Corporation No. 26 Research Institute , Chongqing 400060 , China
| | - Liang-Jin Xu
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Lingmei Liu
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Anton V Malko
- Department of Physics , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Xiaogang Liu
- Department of Chemistry , National University of Singapore , Singapore 117543
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Osman M Bakr
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) , University of Jinan , Jinan 250022 , Shandong China
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
39
|
Wei J, Yao R, Ge Q, Wen Z, Ji X, Fang C, Zhang J, Xu H, Sun J. Catalytic Hydrogenation of CO2 to Isoparaffins over Fe-Based Multifunctional Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02267] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhiyong Wen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xuewei Ji
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyan Fang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jixin Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hengyong Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
40
|
Bohn BJ, Tong Y, Gramlich M, Lai ML, Döblinger M, Wang K, Hoye RLZ, Müller-Buschbaum P, Stranks SD, Urban AS, Polavarapu L, Feldmann J. Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. NANO LETTERS 2018; 18:5231-5238. [PMID: 29990435 DOI: 10.1021/acs.nanolett.8b02190] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The easily tunable emission of halide perovskite nanocrystals throughout the visible spectrum makes them an extremely promising material for light-emitting applications. Whereas high quantum yields and long-term colloidal stability have already been achieved for nanocrystals emitting in the red and green spectral range, the blue region currently lags behind with low quantum yields, broad emission profiles, and insufficient colloidal stability. In this work, we present a facile synthetic approach for obtaining two-dimensional CsPbBr3 nanoplatelets with monolayer-precise control over their thickness, resulting in sharp photoluminescence and electroluminescence peaks with a tunable emission wavelength between 432 and 497 nm due to quantum confinement. Subsequent addition of a PbBr2-ligand solution repairs surface defects likely stemming from bromide and lead vacancies in a subensemble of weakly emissive nanoplatelets. The overall photoluminescence quantum yield of the blue-emissive colloidal dispersions is consequently enhanced up to a value of 73 ± 2%. Transient optical spectroscopy measurements focusing on the excitonic resonances further confirm the proposed repair process. Additionally, the high stability of these nanoplatelets in films and to prolonged ultraviolet light exposure is shown.
Collapse
Affiliation(s)
- Bernhard J Bohn
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Yu Tong
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Moritz Gramlich
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - May Ling Lai
- Cavendish Laboratory , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Markus Döblinger
- Department of Chemistry , Ludwig-Maximilians-Universität München , Butenandtstrasse 5-13 (E) , 81377 Munich , Germany
| | - Kun Wang
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Strasse 1 , 85748 Garching , Germany
| | - Robert L Z Hoye
- Cavendish Laboratory , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Strasse 1 , 85748 Garching , Germany
| | - Samuel D Stranks
- Cavendish Laboratory , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Alexander S Urban
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Lakshminarayana Polavarapu
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München , Amalienstrasse 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstrasse 4 , 80799 Munich , Germany
| |
Collapse
|
41
|
Tada S, Kayamori S, Honma T, Kamei H, Nariyuki A, Kon K, Toyao T, Shimizu KI, Satokawa S. Design of Interfacial Sites between Cu and Amorphous ZrO2 Dedicated to CO2-to-Methanol Hydrogenation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01396] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shohei Tada
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Shingo Kayamori
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiromu Kamei
- Nikki-Universal Co., Ltd., 7-14-1 Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Akane Nariyuki
- Nikki-Universal Co., Ltd., 7-14-1 Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Kenichi Kon
- Institute for Catalysis, Hokkaido University, Kita21-Nishi10,
Kita-ku, Sapporo-shi, Hokkaido 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Kita21-Nishi10,
Kita-ku, Sapporo-shi, Hokkaido 001-0021, Japan
- Elements Strategy Initiative for Catalysis and Batteries, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto-shi, Kyoto 615-8520, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, Kita21-Nishi10,
Kita-ku, Sapporo-shi, Hokkaido 001-0021, Japan
- Elements Strategy Initiative for Catalysis and Batteries, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto-shi, Kyoto 615-8520, Japan
| | - Shigeo Satokawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| |
Collapse
|
42
|
Abstract
The development of smart illumination sources represents a central challenge for current technology. In this context, the quest for novel materials that enable efficient light generation is essential. Metal halide compounds with perovskite crystalline structure (ABX3) have gained tremendous interest in the last five years since they come as easy-to-prepare high performance semiconductors. Perovskite absorbers are driving the power-conversion-efficiencies of thin film photovoltaics to unprecedented values. Nowadays, mixed-cation, mixed-halide lead perovskite solar cells reach efficiencies consistently over 20% and promise to get close to 30% in multijunction devices when combined with silicon cells at no surcharge. Nonetheless, perovskites' fame extends further since extensive research on these novel semiconductors has also revealed their brightest side. Soon after their irruption in the photovoltaic scenario, demonstration of efficient color tunable-with high color purity-perovskite emitters has opened new avenues for light generation applications that are timely to discuss herein.
Collapse
|