1
|
Duran-Romaña R, Houben B, Migens PF, Zhang Y, Rousseau F, Schymkowitz J. Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation. Nat Commun 2025; 16:1673. [PMID: 39955309 PMCID: PMC11830000 DOI: 10.1038/s41467-025-57033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Because of vectorial protein translation, residues that interact in the native protein structure but are distantly separated in the primary sequence are unavailable simultaneously. Instead, there is a temporal delay during which the N-terminal interaction partner is unsatisfied and potentially vulnerable to non-native interactions. We introduce "Native Fold Delay" (NFD), a metric that integrates protein topology with translation kinetics to quantify such delays. We found that many proteins exhibit residues with NFDs in the range of tens of seconds. These residues, predominantly in well-structured, buried regions, often coincide with aggregation-prone regions. NFD correlates with co-translational engagement by the yeast Hsp70 chaperone Ssb, suggesting that native fold-delayed regions have a propensity to misfold. Supporting this, we show that proteins with long NFDs are more frequently co-translationally ubiquitinated and prone to aggregate upon Ssb deletion.
Collapse
Affiliation(s)
- Ramon Duran-Romaña
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paula Fernández Migens
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Wales TE, Pajak A, Roeselová A, Shivakumaraswamy S, Howell S, Kjær S, Hartl FU, Engen JR, Balchin D. Resolving chaperone-assisted protein folding on the ribosome at the peptide level. Nat Struct Mol Biol 2024; 31:1888-1897. [PMID: 38987455 PMCID: PMC11638072 DOI: 10.1038/s41594-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein folding in vivo begins during synthesis on the ribosome and is modulated by molecular chaperones that engage the nascent polypeptide. How these features of protein biogenesis influence the maturation pathway of nascent proteins is incompletely understood. Here, we use hydrogen-deuterium exchange mass spectrometry to define, at peptide resolution, the cotranslational chaperone-assisted folding pathway of Escherichia coli dihydrofolate reductase. The nascent polypeptide folds along an unanticipated pathway through structured intermediates not populated during refolding from denaturant. Association with the ribosome allows these intermediates to form, as otherwise destabilizing carboxy-terminal sequences remain confined in the ribosome exit tunnel. Trigger factor binds partially folded states without disrupting their structure, and the nascent chain is poised to complete folding immediately upon emergence of the C terminus from the exit tunnel. By mapping interactions between the nascent chain and ribosomal proteins, we trace the path of the emerging polypeptide during synthesis. Our work reveals new mechanisms by which cellular factors shape the conformational search for the native state.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Aleksandra Pajak
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | | | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA.
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Kong C, Li SW, Su J, Zang LG, He M, Ding NZ, He CQ. The origin and evolution of European eel rhabdovirus dominant genotype. Microb Pathog 2024; 197:107054. [PMID: 39481692 DOI: 10.1016/j.micpath.2024.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
The Eel Virus European X (EVEX) is a significant pathogen contributing to the decline of eel populations. As an important evolutionary driving force, it is crucial to understand whether homologous recombination (HR)occurs between EVEXs for revealing the evolutionary patterns of the virus. This study indicates that HR may enhance genetic diversity and accelerate the evolution and spread of EVEX. Phylogenetic analysis reveals that the current popular EVEX is primarily composed of a dominant recombinant genotype. Further investigation suggests that recombination events, which likely occurred approximately 54 years ago, may alter codon preferences, highlighting the adaptive advantages this provides and enhancing the virus's ability to infect its eel host. The emergence of this advantageous genotype may be driven by environmental selection pressures, consistent with natural selection principles. In summary, our findings suggest that HR might plays an important role in EVEX evolution, facilitating its adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Chao Kong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Sheng-Wen Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Jian Su
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Li-Guo Zang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Mei He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Nai-Zheng Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| | - Cheng-Qiang He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
4
|
Lampkin BJ, Goldberg BJ, Kritzer JA. Multiplexed no-wash cellular imaging using BenzoTag, an evolved self-labeling protein. Chem Sci 2024; 15:d4sc05090h. [PMID: 39430930 PMCID: PMC11487927 DOI: 10.1039/d4sc05090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Self-labeling proteins are powerful tools for exploring biology as they enable the precise cellular localization of a synthetic molecule, often a fluorescent dye. HaloTag7 is the most popular self-labeling protein due to its broad utility, its bio-orthogonality, and the simplicity of its chloroalkane ligand. However, reaction rates of HaloTag7 with different chloroalkane-containing substrates are highly variable and rates are only very fast for rhodamine-based dyes. This is a major limitation for the HaloTag system because fast labeling rates are critical for live-cell assays. Here, we use yeast surface display to produce a HaloTag variant, BenzoTag, with improved performance with a fluorogenic benzothiadiazole dye. Molecular evolution improved conjugation kinetics and increased the signal from the dye-protein complex, allowing for robust, no-wash fluorescence labeling in live cells. The new BenzoTag-benzothiadiazole system has improved performance compared to the best existing HaloTag7-silicon rhodamine system, including saturation of intracellular enzyme in under 100 seconds and robust labeling at dye concentrations as low as 7 nM. The BenzoTag system was also found to be sufficiently orthogonal to the HaloTag7-silicon rhodamine system to enable multiplexed no-wash labeling in live cells. The BenzoTag system will be immediately useful for a large variety of cell-based assays monitoring biological processes and drug action in real time.
Collapse
Affiliation(s)
- Bryan J Lampkin
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | | | | |
Collapse
|
5
|
Streit JO, Bukvin IV, Chan SHS, Bashir S, Woodburn LF, Włodarski T, Figueiredo AM, Jurkeviciute G, Sidhu HK, Hornby CR, Waudby CA, Cabrita LD, Cassaignau AME, Christodoulou J. The ribosome lowers the entropic penalty of protein folding. Nature 2024; 633:232-239. [PMID: 39112704 PMCID: PMC11374706 DOI: 10.1038/s41586-024-07784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V Bukvin
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - Shahzad Bashir
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F Woodburn
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Gabija Jurkeviciute
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Haneesh K Sidhu
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Charity R Hornby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
- Department of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
6
|
Dall NR, Mendonça CATF, Torres Vera HL, Marqusee S. The importance of the location of the N-terminus in successful protein folding in vivo and in vitro. Proc Natl Acad Sci U S A 2024; 121:e2321999121. [PMID: 39145938 PMCID: PMC11348275 DOI: 10.1073/pnas.2321999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Protein folding in the cell often begins during translation. Many proteins fold more efficiently cotranslationally than when refolding from a denatured state. Changing the vectorial synthesis of the polypeptide chain through circular permutation could impact functional, soluble protein expression and interactions with cellular proteostasis factors. Here, we measure the solubility and function of every possible circular permutant (CP) of HaloTag in Escherichia coli cell lysate using a gel-based assay, and in living E. coli cells via FACS-seq. We find that 78% of HaloTag CPs retain protein function, though a subset of these proteins are also highly aggregation-prone. We examine the function of each CP in E. coli cells lacking the cotranslational chaperone trigger factor and the intracellular protease Lon and find no significant changes in function as a result of modifying the cellular proteostasis network. Finally, we biophysically characterize two topologically interesting CPs in vitro via circular dichroism and hydrogen-deuterium exchange coupled with mass spectrometry to reveal changes in global stability and folding kinetics with circular permutation. For CP33, we identify a change in the refolding intermediate as compared to wild-type (WT) HaloTag. Finally, we show that the strongest predictor of aggregation-prone expression in cells is the introduction of termini within the refolding intermediate. These results, in addition to our finding that termini insertion within the conformationally restrained core is most disruptive to protein function, indicate that successful folding of circular permutants may depend more on changes in folding pathway and termini insertion in flexible regions than on the availability of proteostasis factors.
Collapse
Affiliation(s)
- Natalie R. Dall
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | | | - Héctor L. Torres Vera
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| |
Collapse
|
7
|
Roeselová A, Maslen SL, Shivakumaraswamy S, Pellowe GA, Howell S, Joshi D, Redmond J, Kjær S, Skehel JM, Balchin D. Mechanism of chaperone coordination during cotranslational protein folding in bacteria. Mol Cell 2024; 84:2455-2471.e8. [PMID: 38908370 DOI: 10.1016/j.molcel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.
Collapse
Affiliation(s)
- Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Grant A Pellowe
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Dhira Joshi
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Joanna Redmond
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
8
|
Rajasekaran N, Kaiser CM. Navigating the complexities of multi-domain protein folding. Curr Opin Struct Biol 2024; 86:102790. [PMID: 38432063 DOI: 10.1016/j.sbi.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Proteome complexity has expanded tremendously over evolutionary time, enabling biological diversification. Much of this complexity is achieved by combining a limited set of structural units into long polypeptides. This widely used evolutionary strategy poses challenges for folding of the resulting multi-domain proteins. As a consequence, their folding differs from that of small single-domain proteins, which generally fold quickly and reversibly. Co-translational processes and chaperone interactions are important aspects of multi-domain protein folding. In this review, we discuss some of the recent experimental progress toward understanding these processes.
Collapse
Affiliation(s)
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
9
|
Yoon J, Zhang YM, Her C, Grant RA, Ponomarenko AI, Ackermann BE, Hui T, Lin YS, Debelouchina GT, Shoulders MD. The immune-evasive proline-283 substitution in influenza nucleoprotein increases aggregation propensity without altering the native structure. SCIENCE ADVANCES 2024; 10:eadl6144. [PMID: 38640233 PMCID: PMC11029814 DOI: 10.1126/sciadv.adl6144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yu Meng Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cheenou Her
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Robert A. Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna I. Ponomarenko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Tiffani Hui
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Lampkin BJ, Goldberg BJ, Kritzer JA. BenzoHTag, a fluorogenic self-labeling protein developed using molecular evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564634. [PMID: 38617361 PMCID: PMC11014480 DOI: 10.1101/2023.10.29.564634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Self-labeling proteins are powerful tools in chemical biology as they enable the precise cellular localization of a synthetic molecule, often a fluorescent dye, with the genetic specificity of a protein fusion. HaloTag7 is the most popular self-labeling protein due to its fast labeling kinetics and the simplicity of its chloroalkane ligand. Reaction rates of HaloTag7 with different chloroalkane-containing substrates is highly variable and rates are only very fast for rhodamine-based dyes. This is a major limitation for the HaloTag system because fast labeling rates are critical for live-cell assays. Here, we report a molecular evolution system for HaloTag using yeast surface display that enables the screening of libraries up to 108 variants to improve reaction rates with any substrate of interest. We applied this method to produce a HaloTag variant, BenzoHTag, which has improved performance with a fluorogenic benzothiadiazole dye. The resulting system has improved brightness and conjugation kinetics, allowing for robust, no-wash fluorescent labeling in live cells. The new BenzoHTag-benzothiadiazole system has improved performance in live-cell assays compared to the existing HaloTag7-silicon rhodamine system, including saturation of intracellular enzyme in under 100 seconds and robust labeling at dye concentrations as low as 7 nM. It was also found to be orthogonal to the silicon HaloTag7-rhodamine system, enabling multiplexed no-wash labeling in live cells. The BenzoHTag system, and the ability to optimize HaloTag for a broader collection of substrates using molecular evolution, will be very useful for the development of cell-based assays for chemical biology and drug development.
Collapse
|
11
|
Yoon J, Zhang YM, Her C, Grant RA, Ponomarenko AM, Ackermann BE, Debelouchina GT, Shoulders MD. The Immune-Evasive Proline 283 Substitution in Influenza Nucleoprotein Increases Aggregation Propensity Without Altering the Native Structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556894. [PMID: 37745335 PMCID: PMC10515774 DOI: 10.1101/2023.09.08.556894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. In human cells, the interferon induced Myxovirus resistance protein 1 (MxA) binds to NP and restricts influenza replication. This selection pressure has caused NP to evolve a few critical MxA-resistant mutations, particularly the highly conserved Pro283 substitution. Previous work showed that this essential Pro283 substitution impairs influenza growth, and the fitness defect becomes particularly prominent at febrile temperature (39 °C) when host chaperones are depleted. Here, we biophysically characterize Pro283 NP and Ser283 NP to test if the fitness defect is owing to Pro283 substitution introducing folding defects. We show that the Pro283 substitution changes the folding pathway of NP without altering the native structure, making NP more aggregation prone during folding. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape. Teaser Pro283 substitution in flu nucleoprotein introduces folding defects, and makes influenza uniquely dependent on host chaperones.
Collapse
|
12
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Bitran A, Park K, Serebryany E, Shakhnovich EI. Co-translational formation of disulfides guides folding of the SARS-CoV-2 receptor binding domain. Biophys J 2023; 122:3238-3253. [PMID: 37422697 PMCID: PMC10465708 DOI: 10.1016/j.bpj.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/27/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Many secreted proteins, including viral proteins, contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that the RBD can only refold reversibly if its native disulfides are present before folding. But in their absence, the RBD spontaneously misfolds into a nonnative, molten-globule-like state that is structurally incompatible with complete disulfide formation and that is highly prone to aggregation. Thus, the RBD native structure represents a metastable state on the protein's energy landscape with reduced disulfides, indicating that nonequilibrium mechanisms are needed to ensure native disulfides form before folding. Our atomistic simulations suggest that this may be achieved via co-translational folding during RBD secretion into the endoplasmic reticulum. Namely, at intermediate translation lengths, native disulfide pairs are predicted to come together with high probability, and thus, under suitable kinetic conditions, this process may lock the protein into its native state and circumvent highly aggregation-prone nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; PhD Program in Biophysics, Harvard University, Cambridge, Massachusetts.
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
14
|
Bitran A, Park K, Serebryany E, Shakhnovich EI. Cotranslational formation of disulfides guides folding of the SARS COV-2 receptor binding domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.10.516025. [PMID: 36380756 PMCID: PMC9665344 DOI: 10.1101/2022.11.10.516025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many secreted proteins contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that, whereas RBD can refold reversibly when its disulfides are intact, their disruption causes misfolding into a nonnative molten-globule state that is highly prone to aggregation and disulfide scrambling. Thus, non-equilibrium mechanisms are needed to ensure disulfides form prior to folding in vivo. Our simulations suggest that co-translational folding may accomplish this, as native disulfide pairs are predicted to form with high probability at intermediate lengths, ultimately committing the RBD to its metastable native state and circumventing nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.
Collapse
|
15
|
Credle JJ, Gunn J, Sangkhapreecha P, Monaco DR, Zheng XA, Tsai HJ, Wilbon A, Morgenlander WR, Rastegar A, Dong Y, Jayaraman S, Tosi L, Parekkadan B, Baer AN, Roederer M, Bloch EM, Tobian AAR, Zyskind I, Silverberg JI, Rosenberg AZ, Cox AL, Lloyd T, Mammen AL, Benjamin Larman H. Unbiased discovery of autoantibodies associated with severe COVID-19 via genome-scale self-assembled DNA-barcoded protein libraries. Nat Biomed Eng 2022; 6:992-1003. [PMID: 35986181 PMCID: PMC10034860 DOI: 10.1038/s41551-022-00925-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2022] [Indexed: 12/13/2022]
Abstract
Pathogenic autoreactive antibodies that may be associated with life-threatening coronavirus disease 2019 (COVID-19) remain to be identified. Here, we show that self-assembled genome-scale libraries of full-length proteins covalently coupled to unique DNA barcodes for analysis by sequencing can be used for the unbiased identification of autoreactive antibodies in plasma samples. By screening 11,076 DNA-barcoded proteins expressed from a sequence-verified human ORFeome library, the method, which we named MIPSA (for Molecular Indexing of Proteins by Self-Assembly), allowed us to detect circulating neutralizing type-I and type-III interferon (IFN) autoantibodies in five plasma samples from 55 patients with life-threatening COVID-19. In addition to identifying neutralizing type-I IFN-α and IFN-ω autoantibodies and other previously known autoreactive antibodies in patient plasma, MIPSA enabled the detection of as yet unidentified neutralizing type-III anti-IFN-λ3 autoantibodies that were not seen in healthy plasma samples or in convalescent plasma from ten non-hospitalized individuals with COVID-19. The low cost and simple workflow of MIPSA will facilitate unbiased high-throughput analyses of protein-antibody, protein-protein and protein-small-molecule interactions.
Collapse
Affiliation(s)
- Joel J Credle
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Gunn
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Puwanat Sangkhapreecha
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Monaco
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuwen Alice Zheng
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hung-Ji Tsai
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Azaan Wilbon
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Morgenlander
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andre Rastegar
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Dong
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Tosi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Alan N Baer
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York City, NY, USA
- Department of Pediatrics, Maimonides Medical Center, Brooklyn, NY, USA
| | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Avi Z Rosenberg
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom Lloyd
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew L Mammen
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Fedorov AN. Biosynthetic Protein Folding and Molecular Chaperons. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S128-S19. [PMID: 35501992 DOI: 10.1134/s0006297922140115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of linear polypeptide chain folding into a unique tertiary structure is one of the fundamental scientific challenges. The process of folding cannot be fully understood without its biological context, especially for big multidomain and multisubunit proteins. The principal features of biosynthetic folding are co-translational folding of growing nascent polypeptide chains and involvement of molecular chaperones in the process. The review summarizes available data on the early events of nascent chain folding, as well as on later advanced steps, including formation of elements of native structure. The relationship between the non-uniformity of translation rate and folding of the growing polypeptide is discussed. The results of studies on the effect of biosynthetic folding features on the parameters of folding as a physical process, its kinetics and mechanisms, are presented. Current understanding and hypotheses on the relationship of biosynthetic folding with the fundamental physical parameters and current views on polypeptide folding in the context of energy landscapes are discussed.
Collapse
Affiliation(s)
- Alexey N Fedorov
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
17
|
Reiche MA, Aaron JS, Boehm U, DeSantis MC, Hobson CM, Khuon S, Lee RM, Chew TL. When light meets biology - how the specimen affects quantitative microscopy. J Cell Sci 2022; 135:274812. [PMID: 35319069 DOI: 10.1242/jcs.259656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fluorescence microscopy images should not be treated as perfect representations of biology. Many factors within the biospecimen itself can drastically affect quantitative microscopy data. Whereas some sample-specific considerations, such as photobleaching and autofluorescence, are more commonly discussed, a holistic discussion of sample-related issues (which includes less-routine topics such as quenching, scattering and biological anisotropy) is required to appropriately guide life scientists through the subtleties inherent to bioimaging. Here, we consider how the interplay between light and a sample can cause common experimental pitfalls and unanticipated errors when drawing biological conclusions. Although some of these discrepancies can be minimized or controlled for, others require more pragmatic considerations when interpreting image data. Ultimately, the power lies in the hands of the experimenter. The goal of this Review is therefore to survey how biological samples can skew quantification and interpretation of microscopy data. Furthermore, we offer a perspective on how to manage many of these potential pitfalls.
Collapse
Affiliation(s)
- Michael A Reiche
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Ulrike Boehm
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Michael C DeSantis
- Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| | - Chad M Hobson
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| |
Collapse
|
18
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Tao P, Xiao Y. Role of cotranslational folding for β-sheet-enriched proteins: A perspective from molecular dynamics simulations. Phys Rev E 2022; 105:024402. [PMID: 35291071 DOI: 10.1103/physreve.105.024402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The formations of correct three-dimensional structures of proteins are essential to their functions. Cotranslational folding is vital for proteins to form correct structures in vivo. Although some experiments have shown that cotranslational folding can improve the efficiency of folding, its microscopic mechanism is not yet clear. Previously, we built a model of the ribosomal exit tunnel and investigated the cotranslational folding of a three-helix protein by using all-atom molecular dynamics simulations. Here we study the cotranslational folding of three β-sheet-enriched proteins using the same method. The results show that cotranslational folding can enhance the helical population in most cases and reduce non-native long-range contacts before emerging from the ribosomal exit tunnel. After exiting the tunnel, all proteins fall into local minimal states and the structural ensembles of cotranslational folding show more helical conformations than those of free folding. In particular, for one of the three proteins, the GTT WW domain, we find that one local minimum state of the cotranslational folding is the known folding intermediate, which is not found in free folding. This result suggests that the cotranslational folding may increase the folding efficiency by accelerating the sampling more than by avoiding the misfolded state, which is presently a mainstream viewpoint.
Collapse
Affiliation(s)
- Peng Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
20
|
CHEN W, YOUNIS MH, ZHAO Z, CAI W. Recent biomedical advances enabled by HaloTag technology. BIOCELL 2022; 46:1789-1801. [PMID: 35601815 PMCID: PMC9119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The knowledge of interactions among functional proteins helps researchers understand disease mechanisms and design potential strategies for treatment. As a general approach, the fluorescent and affinity tags were employed for exploring this field by labeling the Protein of Interest (POI). However, the autofluorescence and weak binding strength significantly reduce the accuracy and specificity of these tags. Conversely, HaloTag, a novel self-labeling enzyme (SLE) tag, could quickly form a covalent bond with its ligand, enabling fast and specific labeling of POI. These desirable features greatly increase the accuracy and specificity, making the HaloTag a valuable system for various applications ranging from imaging to immobilization of POI. Notably, the HaloTag technique has already been successfully employed in a series of studies with excellent efficiency. In this review, we summarize the development of HaloTag and recent advanced investigations associated with HaloTag, including in vitro imaging (e.g., POI imaging, cellular condition monitoring, microorganism imaging, system development), in vivo imaging, biomolecule immobilization (e.g., POI collection, protein/nuclear acid interaction and protein structure analysis), targeted degradation (e.g., L-AdPROM), and more. We also present a systematic discussion regarding the future direction and challenges of the HaloTag technique.
Collapse
Affiliation(s)
- Weiyu CHEN
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Muhsin H. YOUNIS
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA
| | - Zhongkuo ZHAO
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| | - Weibo CAI
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| |
Collapse
|
21
|
McBride JM, Tlusty T. Slowest-first protein translation scheme: Structural asymmetry and co-translational folding. Biophys J 2021; 120:5466-5477. [PMID: 34813729 PMCID: PMC8715247 DOI: 10.1016/j.bpj.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Proteins are translated from the N to the C terminus, raising the basic question of how this innate directionality affects their evolution. To explore this question, we analyze 16,200 structures from the Protein Data Bank (PDB). We find remarkable enrichment of α helices at the C terminus and β strands at the N terminus. Furthermore, this α-β asymmetry correlates with sequence length and contact order, both determinants of folding rate, hinting at possible links to co-translational folding (CTF). Hence, we propose the "slowest-first" scheme, whereby protein sequences evolved structural asymmetry to accelerate CTF: the slowest of the cooperatively folding segments are positioned near the N terminus so they have more time to fold during translation. A phenomenological model predicts that CTF can be accelerated by asymmetry in folding rate, up to double the rate, when folding time is commensurate with translation time; analysis of the PDB predicts that structural asymmetry is indeed maximal in this regime. This correspondence is greater in prokaryotes, which generally require faster protein production. Altogether, this indicates that accelerating CTF is a substantial evolutionary force whose interplay with stability and functionality is encoded in secondary structure asymmetry.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea; Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
22
|
Gamiz-Arco G, Risso VA, Gaucher EA, Gavira JA, Naganathan AN, Ibarra-Molero B, Sanchez-Ruiz JM. Combining Ancestral Reconstruction with Folding-Landscape Simulations to Engineer Heterologous Protein Expression. J Mol Biol 2021; 433:167321. [PMID: 34687715 DOI: 10.1016/j.jmb.2021.167321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
Obligate symbionts typically exhibit high evolutionary rates. Consequently, their proteins may differ considerably from their modern and ancestral homologs in terms of both sequence and properties, thus providing excellent models to study protein evolution. Also, obligate symbionts are challenging to culture in the lab and proteins from uncultured organisms must be produced in heterologous hosts using recombinant DNA technology. Obligate symbionts thus replicate a fundamental scenario of metagenomics studies aimed at the functional characterization and biotechnological exploitation of proteins from the bacteria in soil. Here, we use the thioredoxin from Candidatus Photodesmus katoptron, an uncultured symbiont of flashlight fish, to explore evolutionary and engineering aspects of protein folding in heterologous hosts. The symbiont protein is a standard thioredoxin in terms of 3D-structure, stability and redox activity. However, its folding outside the original host is severely impaired, as shown by a very slow refolding in vitro and an inefficient expression in E. coli that leads mostly to insoluble protein. By contrast, resurrected Precambrian thioredoxins express efficiently in E. coli, plausibly reflecting an ancient adaptation to unassisted folding. We have used a statistical-mechanical model of the folding landscape to guide back-to-ancestor engineering of the symbiont protein. Remarkably, we find that the efficiency of heterologous expression correlates with the in vitro (i.e., unassisted) folding rate and that the ancestral expression efficiency can be achieved with only 1-2 back-to-ancestor replacements. These results demonstrate a minimal-perturbation, sequence-engineering approach to rescue inefficient heterologous expression which may potentially be useful in metagenomics efforts targeting recent adaptations.
Collapse
Affiliation(s)
- Gloria Gamiz-Arco
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jose A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain. https://twitter.com/Gavirius
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain.
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
23
|
Vu QV, Jiang Y, Li MS, O'Brien EP. The driving force for co-translational protein folding is weaker in the ribosome vestibule due to greater water ordering. Chem Sci 2021; 12:11851-11857. [PMID: 34659725 PMCID: PMC8442680 DOI: 10.1039/d1sc01008e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023] Open
Abstract
Interactions between the ribosome and nascent chain can destabilize folded domains in the ribosome exit tunnel's vestibule, the last 3 nm of the exit tunnel where tertiary folding can occur. Here, we test if a contribution to this destabilization is a weakening of hydrophobic association, the driving force for protein folding. Using all-atom molecular dynamics simulations, we calculate the potential-of-mean force between two methane molecules along the center line of the ribosome exit tunnel and in bulk solution. Associated methanes, we find, are half as stable in the ribosome's vestibule as compared to bulk solution, demonstrating that the hydrophobic effect is weakened by the presence of the ribosome. This decreased stability arises from a decrease in the amount of water entropy gained upon the association of the methanes. And this decreased entropy gain originates from water molecules being more ordered in the vestibule as compared to bulk solution. Therefore, the hydrophobic effect is weaker in the vestibule because waters released from the first solvation shell of methanes upon association do not gain as much entropy in the vestibule as they do upon release in bulk solution. These findings mean that nascent proteins pass through a ribosome vestibule environment that can destabilize folded structures, which has the potential to influence co-translational protein folding pathways, energetics, and kinetics.
Collapse
Affiliation(s)
- Quyen V. Vu
- Institute of Physics, Polish Academy of SciencesAl. Lotnikow 32/4602-668 WarsawPoland
| | - Yang Jiang
- Department of Chemistry, Penn State UniversityUniversity ParkPennsylvaniaUSA
| | - Mai Suan Li
- Institute of Physics, Polish Academy of SciencesAl. Lotnikow 32/4602-668 WarsawPoland,Institute for Computational Sciences and TechnologyQuang Trung Software City, Tan Chanh Hiep Ward, District 12Ho Chi Minh CityVietnam
| | - Edward P. O'Brien
- Department of Chemistry, Penn State UniversityUniversity ParkPennsylvaniaUSA,Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Penn State UniversityUniversity ParkPennsylvaniaUSA,Institute for Computational and Data Sciences, Penn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
24
|
Abstract
Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.
Collapse
Affiliation(s)
- Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| |
Collapse
|
25
|
Cotranslational Translocation and Folding of a Periplasmic Protein Domain in Escherichia coli. J Mol Biol 2021; 433:167047. [PMID: 33989648 DOI: 10.1016/j.jmb.2021.167047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 01/26/2023]
Abstract
In Gram-negative bacteria, periplasmic domains in inner membrane proteins are cotranslationally translocated across the inner membrane through the SecYEG translocon. To what degree such domains also start to fold cotranslationally is generally difficult to determine using currently available methods. Here, we apply Force Profile Analysis (FPA) - a method where a translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide - to follow the cotranslational translocation and folding of the large periplasmic domain of the E. coli inner membrane protease LepB in vivo. Membrane insertion of LepB's two N-terminal transmembrane helices is initiated when their respective N-terminal ends reach 45-50 residues away from the peptidyl transferase center (PTC) in the ribosome. The main folding transition in the periplasmic domain involves all but the ~15 most C-terminal residues of the protein and happens when the C-terminal end of the folded part is ~70 residues away from the PTC; a smaller putative folding intermediate is also detected. This implies that wildtype LepB folds post-translationally in vivo, and shows that FPA can be used to study both co- and post-translational protein folding in the periplasm.
Collapse
|
26
|
Tao P, Wang E, Xiao Y. Pathway regulation mechanism revealed by cotranslational folding of villin headpiece subdomain HP35. Phys Rev E 2021; 101:052403. [PMID: 32575289 DOI: 10.1103/physreve.101.052403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/13/2020] [Indexed: 01/07/2023]
Abstract
Cotranslational folding is one of the most important features of protein folding in vivo. Although many studies have shown that the folding pathways of cotranslational folding are different from free folding in vitro, the detailed mechanism of folding dynamics is lacking. Here we combine all-atom molecular simulations with an ideal ribosome tunnel model to investigate the cotranslational folding of villin headpiece subdomain HP35. By comparing the folding dynamics between cotranslational folding and free folding, we found that cotranslational folding tends to fold along the pathway that is easier to fold into native state in the latter. In addition, the roles of the ribosome tunnel and sequential folding are analyzed separately. Our results show that the ribosome can prevent the untimely folding of the C segment of HP35 to reduce the non-native interactions, while the translation speed can regulate the amounts of native and non-native interactions and the balance between them. Overall, these results give insights into the general mechanisms of cotranslational protein folding.
Collapse
Affiliation(s)
- Peng Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Ercheng Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
27
|
Credle JJ, Gunn J, Sangkhapreecha P, Monaco DR, Zheng XA, Tsai HJ, Wilbon A, Morgenlander WR, Dong Y, Jayaraman S, Tosi L, Parekkadan B, Baer AN, Roederer M, Bloch EM, Tobian AAR, Zyskind I, Silverberg JI, Rosenberg AZ, Cox AL, Lloyd T, Mammen AL, Larman HB. Neutralizing IFNL3 Autoantibodies in Severe COVID-19 Identified Using Molecular Indexing of Proteins by Self-Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.02.432977. [PMID: 33688651 PMCID: PMC7941622 DOI: 10.1101/2021.03.02.432977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Unbiased antibody profiling can identify the targets of an immune reaction. A number of likely pathogenic autoreactive antibodies have been associated with life-threatening SARS-CoV-2 infection; yet, many additional autoantibodies likely remain unknown. Here we present Molecular Indexing of Proteins by Self Assembly (MIPSA), a technique that produces ORFeome-scale libraries of proteins covalently coupled to uniquely identifying DNA barcodes for analysis by sequencing. We used MIPSA to profile circulating autoantibodies from 55 patients with severe COVID-19 against 11,076 DNA-barcoded proteins of the human ORFeome library. MIPSA identified previously known autoreactivities, and also detected undescribed neutralizing interferon lambda 3 (IFN-λ3) autoantibodies. At-risk individuals with anti- IFN-λ3 antibodies may benefit from interferon supplementation therapies, such as those currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Joel J. Credle
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Jonathan Gunn
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Puwanat Sangkhapreecha
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Daniel R. Monaco
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Xuwen Alice Zheng
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Hung-Ji Tsai
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston; Birmingham, United Kingdom
| | - Azaan Wilbon
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - William R. Morgenlander
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Yi Dong
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Lorenzo Tosi
- Department of Biomedical Engineering, Rutgers University; Piscataway, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University; Piscataway, NJ, USA
| | - Alan N. Baer
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH; Bethesda, MD, USA
| | - Evan M. Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Aaron A. R. Tobian
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, NY and Maimonides Medical Center; Brooklyn, NY, USA
| | - Jonathan I. Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences; Washington, DC, USA
| | - Avi Z. Rosenberg
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University; Baltimore, MD, USA
| | - Andrea L. Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University; Baltimore, MD, USA
| | - Tom Lloyd
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Andrew L. Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH; Bethesda, MD, USA and Departments of Neurology and Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| |
Collapse
|
28
|
The road less traveled in protein folding: evidence for multiple pathways. Curr Opin Struct Biol 2020; 66:83-88. [PMID: 33220553 DOI: 10.1016/j.sbi.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
Free Energy Landscape theory of Protein Folding, introduced over 20 years ago, implies that a protein has many paths to the folded conformation with the lowest free energy. Despite the knowledge in principle, it has been remarkably hard to detect such pathways. The lack of such observations is primarily due to the fact that no one experimental technique can detect many parts of the protein simultaneously with the time resolution necessary to see such differences in paths. However, recent technical developments and employment of multiple experimental probes and folding prompts have illuminated multiple folding pathways in a number of proteins that had all previously been described with a single path.
Collapse
|
29
|
Bitran A, Jacobs WM, Shakhnovich E. Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. PLoS Comput Biol 2020; 16:e1008323. [PMID: 33196646 PMCID: PMC7704049 DOI: 10.1371/journal.pcbi.1008323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 10/17/2020] [Indexed: 11/19/2022] Open
Abstract
Atomistic simulations can provide valuable, experimentally-verifiable insights into protein folding mechanisms, but existing ab initio simulation methods are restricted to only the smallest proteins due to severe computational speed limits. The folding of larger proteins has been studied using native-centric potential functions, but such models omit the potentially crucial role of non-native interactions. Here, we present an algorithm, entitled DBFOLD, which can predict folding pathways for a wide range of proteins while accounting for the effects of non-native contacts. In addition, DBFOLD can predict the relative rates of different transitions within a protein's folding pathway. To accomplish this, rather than directly simulating folding, our method combines equilibrium Monte-Carlo simulations, which deploy enhanced sampling, with unfolding simulations at high temperatures. We show that under certain conditions, trajectories from these two types of simulations can be jointly analyzed to compute unknown folding rates from detailed balance. This requires inferring free energies from the equilibrium simulations, and extrapolating transition rates from the unfolding simulations to lower, physiologically-reasonable temperatures at which the native state is marginally stable. As a proof of principle, we show that our method can accurately predict folding pathways and Monte-Carlo rates for the well-characterized Streptococcal protein G. We then show that our method significantly reduces the amount of computation time required to compute the folding pathways of large, misfolding-prone proteins that lie beyond the reach of existing direct simulation. Our algorithm, which is available online, can generate detailed atomistic models of protein folding mechanisms while shedding light on the role of non-native intermediates which may crucially affect organismal fitness and are frequently implicated in disease.
Collapse
Affiliation(s)
- Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard University Program in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America
| | - William M. Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
30
|
Liutkute M, Maiti M, Samatova E, Enderlein J, Rodnina MV. Gradual compaction of the nascent peptide during cotranslational folding on the ribosome. eLife 2020; 9:60895. [PMID: 33112737 PMCID: PMC7593090 DOI: 10.7554/elife.60895] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nascent polypeptides begin to fold in the constrained space of the ribosomal peptide exit tunnel. Here we use force-profile analysis (FPA) and photo-induced energy-transfer fluorescence correlation spectroscopy (PET-FCS) to show how a small α-helical domain, the N-terminal domain of HemK, folds cotranslationally. Compaction starts vectorially as soon as the first α-helical segments are synthesized. As nascent chain grows, emerging helical segments dock onto each other and continue to rearrange at the vicinity of the ribosome. Inside or in the proximity of the ribosome, the nascent peptide undergoes structural fluctuations on the µs time scale. The fluctuations slow down as the domain moves away from the ribosome. Mutations that destabilize the packing of the domain's hydrophobic core have little effect on folding within the exit tunnel, but abolish the final domain stabilization. The results show the power of FPA and PET-FCS in solving the trajectory of cotranslational protein folding and in characterizing the dynamic properties of folding intermediates.
Collapse
Affiliation(s)
- Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manisankar Maiti
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
31
|
Ghosh K. (Almost) Everything in Cotranslational Folding Makes Sense in the Light of Evolution. Biophys J 2020; 119:1045-1047. [DOI: 10.1016/j.bpj.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
|
32
|
Shishido H, Yoon JS, Yang Z, Skach WR. CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates. Nat Commun 2020; 11:4258. [PMID: 32848127 PMCID: PMC7450043 DOI: 10.1038/s41467-020-18101-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
33
|
Effect of Protein Structure on Evolution of Cotranslational Folding. Biophys J 2020; 119:1123-1134. [PMID: 32857962 DOI: 10.1016/j.bpj.2020.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Cotranslational folding depends on the folding speed and stability of the nascent protein. It remains difficult, however, to predict which proteins cotranslationally fold. Here, we simulate evolution of model proteins to investigate how native structure influences evolution of cotranslational folding. We developed a model that connects protein folding during and after translation to cellular fitness. Model proteins evolved improved folding speed and stability, with proteins adopting one of two strategies for folding quickly. Low contact order proteins evolve to fold cotranslationally. Such proteins adopt native conformations early on during the translation process, with each subsequently translated residue establishing additional native contacts. On the other hand, high contact order proteins tend not to be stable in their native conformations until the full chain is nearly extruded. We also simulated evolution of slowly translating codons, finding that slower translation speeds at certain positions enhances cotranslational folding. Finally, we investigated real protein structures using a previously published data set that identified evolutionarily conserved rare codons in Escherichia coli genes and associated such codons with cotranslational folding intermediates. We found that protein substructures preceding conserved rare codons tend to have lower contact orders, in line with our finding that lower contact order proteins are more likely to fold cotranslationally. Our work shows how evolutionary selection pressure can cause proteins with local contact topologies to evolve cotranslational folding.
Collapse
|
34
|
Jensen MK, Samelson AJ, Steward A, Clarke J, Marqusee S. The folding and unfolding behavior of ribonuclease H on the ribosome. J Biol Chem 2020; 295:11410-11417. [PMID: 32527724 PMCID: PMC7450101 DOI: 10.1074/jbc.ra120.013909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
The health of a cell depends on accurate translation and proper protein folding, whereas misfolding can lead to aggregation and disease. The first opportunity for a protein to fold occurs during translation, when the ribosome and surrounding environment can affect the nascent chain energy landscape. However, quantifying these environmental effects is challenging because ribosomal proteins and rRNA preclude most spectroscopic measurements of protein energetics. Here, we have applied two gel-based approaches, pulse proteolysis and force-profile analysis, to probe the folding and unfolding pathways of RNase H (RNH) nascent chains stalled on the prokaryotic ribosome in vitro. We found that ribosome-stalled RNH has an increased unfolding rate compared with free RNH. Because protein stability is related to the ratio of the unfolding and folding rates, this increase completely accounts for the observed change in protein stability and indicates that the folding rate is unchanged. Using arrest peptide–based force-profile analysis, we assayed the force generated during the folding of RNH on the ribosome. Surprisingly, we found that population of the RNH folding intermediate is required to generate sufficient force to release a stall induced by the SecM stalling sequence and that readthrough of SecM directly correlates with the stability of the RNH folding intermediate. Together, these results imply that the folding pathway of RNH is unchanged on the ribosome. Furthermore, our findings indicate that the ribosome promotes RNH unfolding while the nascent chain is proximal to the ribosome, which may limit the deleterious effects of RNH misfolding and assist in folding fidelity.
Collapse
Affiliation(s)
- Madeleine K Jensen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Avi J Samelson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Annette Steward
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA .,Institute for Quantitative Biosciences (QB3)-Berkeley, University of California, Berkeley, California, USA.,Department of Chemistry, University of California, Berkeley, California, USA
| |
Collapse
|
35
|
Addabbo RM, Dalphin MD, Mecha MF, Liu Y, Staikos A, Guzman-Luna V, Cavagnero S. Complementary Role of Co- and Post-Translational Events in De Novo Protein Biogenesis. J Phys Chem B 2020; 124:6488-6507. [DOI: 10.1021/acs.jpcb.0c03039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Yue Liu
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
36
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
37
|
Oltrogge LM, Chaijarasphong T, Chen AW, Bolin ER, Marqusee S, Savage DF. Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation. Nat Struct Mol Biol 2020; 27:281-287. [PMID: 32123388 PMCID: PMC7337323 DOI: 10.1038/s41594-020-0387-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022]
Abstract
Carboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO2-concentrating mechanism by facilitating high CO2 concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein-protein interactions that drive the assembly process. Here, studies on the α-carboxysome from Halothiobacillus neapolitanus demonstrate that Rubisco interacts with the N-terminus of CsoS2, a multivalent, intrinsically disordered protein. X-ray structural analysis of the CsoS2 interaction motif bound to Rubisco reveals a series of conserved electrostatic interactions that are only made with properly assembled hexadecameric Rubisco. Although biophysical measurements indicate this single interaction is weak, its implicit multivalency induces high-affinity binding through avidity. Taken together, our results indicate CsoS2 acts as an interaction hub to condense Rubisco and enable efficient α-carboxysome formation.
Collapse
Affiliation(s)
- Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Thawatchai Chaijarasphong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Allen W Chen
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Eric R Bolin
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
38
|
Cotranslational Folding of Proteins on the Ribosome. Biomolecules 2020; 10:biom10010097. [PMID: 31936054 PMCID: PMC7023365 DOI: 10.3390/biom10010097] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/04/2023] Open
Abstract
Many proteins in the cell fold cotranslationally within the restricted space of the polypeptide exit tunnel or at the surface of the ribosome. A growing body of evidence suggests that the ribosome can alter the folding trajectory in many different ways. In this review, we summarize the recent examples of how translation affects folding of single-domain, multiple-domain and oligomeric proteins. The vectorial nature of translation, the spatial constraints of the exit tunnel, and the electrostatic properties of the ribosome-nascent peptide complex define the onset of early folding events. The ribosome can facilitate protein compaction, induce the formation of intermediates that are not observed in solution, or delay the onset of folding. Examples of single-domain proteins suggest that early compaction events can define the folding pathway for some types of domain structures. Folding of multi-domain proteins proceeds in a domain-wise fashion, with each domain having its role in stabilizing or destabilizing neighboring domains. Finally, the assembly of protein complexes can also begin cotranslationally. In all these cases, the ribosome helps the nascent protein to attain a native fold and avoid the kinetic traps of misfolding.
Collapse
|
39
|
Waudby CA, Dobson CM, Christodoulou J. Nature and Regulation of Protein Folding on the Ribosome. Trends Biochem Sci 2019; 44:914-926. [PMID: 31301980 PMCID: PMC7471843 DOI: 10.1016/j.tibs.2019.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
Co-translational protein folding is an essential process by which cells ensure the safe and efficient production and assembly of new proteins in their functional native states following biosynthesis on the ribosome. In this review, we describe recent progress in probing the changes during protein synthesis of the free energy landscapes that underlie co-translational folding and discuss the critical coupling between these landscapes and the rate of translation that ultimately determines the success or otherwise of the folding process. Recent developments have revealed a variety of mechanisms by which both folding and translation can be modulated or regulated, and we discuss how these effects are utilised by the cell to optimise the outcome of protein biosynthesis.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
40
|
Non-equilibrium dynamics of a nascent polypeptide during translation suppress its misfolding. Nat Commun 2019; 10:2709. [PMID: 31221966 PMCID: PMC6586675 DOI: 10.1038/s41467-019-10647-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Protein folding can begin co-translationally. Due to the difference in timescale between folding and synthesis, co-translational folding is thought to occur at equilibrium for fast-folding domains. In this scenario, the folding kinetics of stalled ribosome-bound nascent chains should match the folding of nascent chains in real time. To test if this assumption is true, we compare the folding of a ribosome-bound, multi-domain calcium-binding protein stalled at different points in translation with the nascent chain as is it being synthesized in real-time, via optical tweezers. On stalled ribosomes, a misfolded state forms rapidly (1.5 s). However, during translation, this state is only attained after a long delay (63 s), indicating that, unexpectedly, the growing polypeptide is not equilibrated with its ensemble of accessible conformations. Slow equilibration on the ribosome can delay premature folding until adequate sequence is available and/or allow time for chaperone binding, thus promoting productive folding. Co-translational protein folding is thought to occur at equilibrium for fast-folding domains. Here authors use optical tweezers to show that the folding kinetics of stalled ribosome-bound nascent chains do not match the folding of nascent chains in real time.
Collapse
|
41
|
Kemp G, Kudva R, de la Rosa A, von Heijne G. Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays. J Mol Biol 2019; 431:1308-1314. [DOI: 10.1016/j.jmb.2019.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
|
42
|
Kudva R, Tian P, Pardo-Avila F, Carroni M, Best RB, Bernstein HD, von Heijne G. The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding. eLife 2018; 7:36326. [PMID: 30475203 PMCID: PMC6298777 DOI: 10.7554/elife.36326] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The E. coli ribosome exit tunnel can accommodate small folded proteins, while larger ones fold outside. It remains unclear, however, to what extent the geometry of the tunnel influences protein folding. Here, using E. coli ribosomes with deletions in loops in proteins uL23 and uL24 that protrude into the tunnel, we investigate how tunnel geometry determines where proteins of different sizes fold. We find that a 29-residue zinc-finger domain normally folding close to the uL23 loop folds deeper in the tunnel in uL23 Δloop ribosomes, while two ~ 100 residue proteins normally folding close to the uL24 loop near the tunnel exit port fold at deeper locations in uL24 Δloop ribosomes, in good agreement with results obtained by coarse-grained molecular dynamics simulations. This supports the idea that cotranslational folding commences once a protein domain reaches a location in the exit tunnel where there is sufficient space to house the folded structure.
Collapse
Affiliation(s)
- Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Stanford, United States
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
43
|
Abstract
Most proteins need to fold into a specific 3D structure to function. The mechanism by which isolated proteins fold has been thoroughly studied by experiment and theory. However, in the cell proteins do not fold in isolation but are synthesized as linear chains by the ribosome during translation. It is therefore natural to ask at which point during synthesis proteins fold, and whether this differs from the folding of isolated protein molecules. By studying folding of a well-characterized protein domain, titin I27, stalled at different points during translation, we show that it already folds in the mouth of the ribosome exit tunnel and that the mechanism is almost identical to that of the isolated protein. Proteins that fold cotranslationally may do so in a restricted configurational space, due to the volume occupied by the ribosome. How does this environment, coupled with the close proximity of the ribosome, affect the folding pathway of a protein? Previous studies have shown that the cotranslational folding process for many proteins, including small, single domains, is directly affected by the ribosome. Here, we investigate the cotranslational folding of an all-β Ig domain, titin I27. Using an arrest peptide-based assay and structural studies by cryo-EM, we show that I27 folds in the mouth of the ribosome exit tunnel. Simulations that use a kinetic model for the force dependence of escape from arrest accurately predict the fraction of folded protein as a function of length. We used these simulations to probe the folding pathway on and off the ribosome. Our simulations—which also reproduce experiments on mutant forms of I27—show that I27 folds, while still sequestered in the mouth of the ribosome exit tunnel, by essentially the same pathway as free I27, with only subtle shifts of critical contacts from the C to the N terminus.
Collapse
|
44
|
A small single-domain protein folds through the same pathway on and off the ribosome. Proc Natl Acad Sci U S A 2018; 115:12206-12211. [PMID: 30409803 DOI: 10.1073/pnas.1810517115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In vivo, proteins fold and function in a complex environment subject to many stresses that can modulate a protein's energy landscape. One aspect of the environment pertinent to protein folding is the ribosome, since proteins have the opportunity to fold while still bound to the ribosome during translation. We use a combination of force and chemical denaturant (chemomechanical unfolding), as well as point mutations, to characterize the folding mechanism of the src SH3 domain both as a stalled ribosome nascent chain and free in solution. Our results indicate that src SH3 folds through the same pathway on and off the ribosome. Molecular simulations also indicate that the ribosome does not affect the folding pathway for this small protein. Taken together, we conclude that the ribosome does not alter the folding mechanism of this small protein. These results, if general, suggest the ribosome may exert a bigger influence on the folding of multidomain proteins or protein domains that can partially fold before the entire domain sequence is outside the ribosome exit tunnel.
Collapse
|
45
|
Izadi D, Chen Y, Whitmore ML, Slivka JD, Ching K, Lapidus LJ, Comstock MJ. Combined Force Ramp and Equilibrium High-Resolution Investigations Reveal Multipath Heterogeneous Unfolding of Protein G. J Phys Chem B 2018; 122:11155-11165. [DOI: 10.1021/acs.jpcb.8b06199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dena Izadi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yujie Chen
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Miles L. Whitmore
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Joseph D. Slivka
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin Ching
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa J. Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Matthew J. Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|