1
|
Mahoney P, McFarlane G, Taurozzi AJ, Madupe PP, O'Hara MC, Molopyane K, Cappellini E, Hawks J, Skinner MM, Berger L. Human-like enamel growth in Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24893. [PMID: 38180115 DOI: 10.1002/ajpa.24893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES A modern pattern (rate and duration) of dental development occurs relatively recently during human evolution. Given the temporal overlap of Homo naledi with the first appearance of fossil Homo sapiens in Africa, this small-bodied and small-brained hominin presents an opportunity to elucidate the evolution of enamel growth in the hominin clade. Here we conduct the first histological study of two permanent mandibular canines and one permanent maxillary first molar, representing three individuals attributed to H. naledi. We reconstruct the rate and duration of enamel growth and compare these findings to those reported for other fossil hominins and recent humans. MATERIALS AND METHODS Thin sections of each tooth were produced using standard histological methods. Daily and longer period incremental markings were measured to reconstruct enamel secretion and extension rates, Retzius periodicity, canine crown and molar cusp formation time. RESULTS Daily enamel secretion rates overlapped with those from recent hominins. Canine crown formation time is similar to that observed in recent Europeans but is longer than canine formation times reported for most other hominins including Australopithecus and H. neanderthalensis. The extended period of canine formation appears to be due to a relatively tall enamel crown and a sustained slow rate of enamel extension in the cervical portion of the crown. A Retzius periodicity of 11 days for the canines, and nine days for the molar, in H. naledi parallel results found in recent humans. An 11-day periodicity has not been reported for Late Pleistocene Homo (H. erectus, H. neanderthalensis) and is rarely found in Australopithecus and Paranthropus species. DISCUSSION Enamel growth of H. naledi is most similar to recent humans though comparative data are limited for most fossil hominin species. The high Retzius periodicity values do not follow expectations for a small-brained hominin.
Collapse
Affiliation(s)
- Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Gina McFarlane
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alberto J Taurozzi
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Palesa P Madupe
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Mackie C O'Hara
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Keneiloe Molopyane
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
| | - Enrico Cappellini
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, USA
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
- The Carnegie Institution for Science, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Hu R, Du B, Zhao L. Retzius periodicity in the Late Miocene hominoid Lufengpithecus lufengensis from Southwest China: Implications for dental development and life history. J Hum Evol 2023; 181:103400. [PMID: 37307694 DOI: 10.1016/j.jhevol.2023.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Rong Hu
- Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Baopu Du
- Department of Anatomy, Histology and Embryology, Capital Medical University, Beijing, 100069, China
| | - Lingxia Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| |
Collapse
|
3
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
4
|
Distinguishing primate taxa with enamel incremental variables. J Hum Evol 2022; 164:103139. [PMID: 35123173 DOI: 10.1016/j.jhevol.2021.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022]
Abstract
Enamel has long been of interest for its functional and phylogenetic significance among fossil hominins and other primates. Previous studies demonstrated that enamel incremental features distinguish among hominin fossil taxa, suggesting utility for highlighting taxonomy. However, not all features appear to be useful in mixed samples of fossils, living humans, and apes. Here we tested enamel incremental data from closely related primate taxa to determine which features, if any, distinguish among them. Enamel incremental variables were measured from the M2 of 40 living primate taxa, and we tested our variables using discriminant function analysis at the taxonomic ranks of parvorder, family, tribe, and genus. We then included enamel incremental data from Australopithecus afarensis, Australopithecus africanus, Paranthropus aethiopicus, Paranthropus boisei, and Paranthropus robustus to determine if these features distinguished fossil taxa from living humans and apes. Our initial results show that enamel incremental variables distinguish among primate taxa, but with low classification rates. Further testing with jackknifing methods shows overlap between groups at all taxonomic ranks, suggesting enamel incremental variables are unreliable for taxonomy. The addition of many common enamel incremental growth variables also resulted in multicollinearity in our multivariate analysis. As the dentition and isolated teeth remain a significant portion of the hominin fossil record, verifying enamel incremental features as a useful taxonomic tool is fundamentally important for hominin paleobiology.
Collapse
|
5
|
Interpopulational variation in human brain size: implications for hominin cognitive phylogeny. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.2478/anre-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Throughout the hominin lineage brain size is believed to have increased threefold – increase which, it is argued by some researchers, results in the enhanced brain power that distinguishes humans from any other living being. However, as we demonstrate in this article this supposed increase is the result of comparing the species mean of contemporary humans with other great apes and fossil hominins. This method obscures both interpopulational variation among modern humans, and the fact that the putative increases in the mean are the result of an increase in the upper limit in some populations, which has the result of obscuring the relative stasis in the lower limit over the last 600k years. For example, populations such as Aboriginal Australians have a range that is more different from Danes than it is from that of Asian H. erectus over the last 600ka. Yet Aboriginal Australians, whose unique anatomy seems to be related to the climatic conditions of Australia, possess all of the socio-cognitive traits characteristic of all other modern-day populations – yet they seemed not to have undergone increase in brain size to the degree that many other populations have. In this instance brain size seems to be unrelated to cognition. In this article we present a statistical analysis of interpopulational variation in contemporary humans and why such an analysis is crucial for our understanding of hominin cognitive, social and technological evolution. We also suggest how such variation may add to our understanding of hominin ontogeny or life history. Additionally, we develop a model based on humanity’s unique form of embodied social cognition that results from our upright bipedal posture and hand morphology. This model is then used to explain the results of our statistical analysis and the possible factors underpinning the human emergence.
Collapse
|
6
|
O'Hara MC, Guatelli-Steinberg D. Reconstructing tooth crown heights and enamel caps: A comparative test of three existing methods with recommendations for their use. Anat Rec (Hoboken) 2022; 305:123-143. [PMID: 33843152 DOI: 10.1002/ar.24637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023]
Abstract
Studies of enamel growth and thickness, whether in paleoanthropology, bioarchaeology, or primatology, require measurements of crown height (CH), cuspal enamel thickness (CET), average (AET), and/or regional enamel thickness (RegAET) on complete, unworn crowns. Yet because fully unworn crowns are uncommon, three methods to bolster sample sizes by reconstructing slightly worn teeth have been developed: Profile, Polynomial, and Pen Tool. Although these methods have been tested for accuracy, no study has yet directly compared the three methods to assess their performance across CH, CET, AET, and RegAET measurements. Moreover, it is currently unclear how accurate the methods are when reconstructing crowns with varying degrees of wear. The present study addresses this gap in our understanding of how these methods perform on four key dental measurements, evaluates the degree of wear for which accurate crown reconstructions can be completed, and offers recommendations for applying these methods. Here, the methods are compared on Paranthropus robustus mandibular molars, a sample chosen because it exhibits variable morphology, presenting a challenge for reconstruction methods. For minimally worn teeth, Profile, Polynomial, and Pen Tool methods can be employed (in that order) for all measurements except CET, which cannot be reliably measured on reconstructions. For teeth with wear that obliterates the nadir of the occlusal basin or dentin horns, CH and AET can be measured using Profile and Polynomial reconstructions; however, no other measurements or methods were reliable. Recommendations provided here will make it possible to increase sample sizes and replicability, enhancing studies of enamel thickness and growth.
Collapse
Affiliation(s)
- Mackie C O'Hara
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
7
|
Nava A, Mahoney P, Bondioli L, Coppa A, Cristiani E, Fattore L, McFarlane G, Dreossi D, Mancini L. Virtual histology of archaeological human deciduous prenatal enamel through synchrotron X-ray computed microtomography images. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:247-253. [PMID: 34985442 PMCID: PMC8733994 DOI: 10.1107/s160057752101208x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
Virtual histology is increasingly utilized to reconstruct the cell mechanisms underlying dental morphology for fragile fossils when physical thin sections are not permitted. Yet, the comparability of data derived from virtual and physical thin sections is rarely tested. Here, the results from archaeological human deciduous incisor physical sections are compared with virtual ones obtained by phase-contrast synchrotron radiation computed microtomography (SRµCT) of intact specimens using a multi-scale approach. Moreover, virtual prenatal daily enamel secretion rates are compared with those calculated from physical thin sections of the same tooth class from the same archaeological skeletal series. Results showed overall good visibility of the enamel microstructures in the virtual sections which are comparable to that of physical ones. The highest spatial resolution SRµCT setting (effective pixel size = 0.9 µm) produced daily secretion rates that matched those calculated from physical sections. Rates obtained using the lowest spatial resolution setup (effective pixel size = 2.0 µm) were higher than those obtained from physical sections. The results demonstrate that virtual histology can be applied to the investigated samples to obtain reliable and quantitative measurements of prenatal daily enamel secretion rates.
Collapse
Affiliation(s)
- Alessia Nava
- School of Anthropology and Conservation, University of Kent, Giles Lane, Canterbury CT2 7NZ, United Kingdom
- Department of Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, Rome 00161, Italy
| | - Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Giles Lane, Canterbury CT2 7NZ, United Kingdom
| | - Luca Bondioli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, Ravenna 48121, Italy
| | - Alfredo Coppa
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, Rome 00185, Italy
| | - Emanuela Cristiani
- Department of Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, Rome 00161, Italy
| | - Luciano Fattore
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, Rome 00184, Italy
| | - Gina McFarlane
- School of Anthropology and Conservation, University of Kent, Giles Lane, Canterbury CT2 7NZ, United Kingdom
| | - Diego Dreossi
- Elettra Sincrotrone Trieste SCpA, SS 14 Area Science Park, Basovizza, Trieste 34149 Italy
| | - Lucia Mancini
- Elettra Sincrotrone Trieste SCpA, SS 14 Area Science Park, Basovizza, Trieste 34149 Italy
| |
Collapse
|
8
|
Ren HY, Kum KY, Zhao YS, Yoo YJ, Jeong JS, Perinpanayagam H, Wang XY, Li GJ, Wang F, Fang H, Gu Y. Maxillary molar root and canal morphology of Neolithic and modern Chinese. Arch Oral Biol 2021; 131:105272. [PMID: 34600333 DOI: 10.1016/j.archoralbio.2021.105272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE This study aimed to characterize Neolithic human maxillary molars from archeological remains at the Jiaojia site, Shandong, China, and compare their ultrastructural features with sex and age-matched modern locals. DESIGN Maxillary first (n = 86) and second (n = 80) molars in 5000-year-old individuals (n = 50) from the Jiaojia site were scanned by cone-beam computed tomography (CBCT). Sex and age-matched control groups were assigned from oral surgical patients at Shandong University. Images were analyzed for crown size, root length, root morphology, canal inter-orifice distances, mesiobuccal canal morphology, and second mesiobuccal (MB2) canal prevalence and location. Neolithic and modern values were compared statistically using Chi-squared and Mann-Whitney test at p < .05. RESULTS Crown and root size were smaller, and canal inter-orifice distances were shorter in Neolithic maxillary molars than their modern counterparts. For mesiobuccal roots, Weine's Type I single canals were the most prevalent in Neolithic and modern first and second molars. MB2 canal prevalence were not significantly different (p > .05) in Neolithic (53.3%) or modern (60.5%) first molars, and Neolithic (11.3%) or modern (21.3%) second molars. But, MB2 prevalence was significantly higher for modern than ancient male first (p = .032) and second (p = .005) molars. Additionally, MB2 were located more mesially and closer to MB1 in Neolithic than modern molars. CONCLUSIONS Maxillary molar root and canal morphology of ancient 5000-year-old remains at the Jiaojia site resemble that of local patients. A trend towards larger tooth size, and more dispersed MB2 canals over this short evolutionary period warrants additional investigation.
Collapse
Affiliation(s)
- H Y Ren
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Province, PR China
| | - K Y Kum
- Department of Conservative Dentistry, Dental Research Institute, National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Y S Zhao
- Institute of Cultural and Heritage, Shandong University, Qingdao, PR China
| | - Y J Yoo
- Department of Conservative Dentistry, Dental Research Institute, National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - J S Jeong
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Shandong Province, PR China
| | - Hiran Perinpanayagam
- Division of Restorative Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - X Y Wang
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Province, PR China
| | - G J Li
- Department of Radiology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Province, PR China
| | - F Wang
- Department of Radiology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Province, PR China
| | - H Fang
- School of History and Culture, Shandong University, Jinan, PR China
| | - Y Gu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Province, PR China.
| |
Collapse
|
9
|
Wu X, Pei S, Cai Y, Tong H, Xing S, Jashashvili T, Carlson KJ, Liu W. Morphological description and evolutionary significance of 300 ka hominin facial bones from Hualongdong, China. J Hum Evol 2021; 161:103052. [PMID: 34601289 DOI: 10.1016/j.jhevol.2021.103052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022]
Abstract
Late Middle Pleistocene hominins in Africa displaying key modern morphologies by 315 ka are claimed as the earliest Homo sapiens. Evolutionary relationships among East Asian hominins appear complex due to a growing fossil record of late Middle Pleistocene hominins from the region, reflecting mosaic morphologies that contribute to a lack of consensus on when and how the transition to modern humans transpired. Newly discovered 300 ka hominin fossils from Hualongdong, China, provide further evidence to clarify these relationships in the region. In this study, facial morphology of the juvenile partial cranium (HLD 6) is described and qualitatively and quantitatively compared with that of other key Early, Middle, and Late Pleistocene hominins from East Asia, Africa, West Asia, and Europe and with a sample of modern humans. Qualitatively, facial morphology of HLD 6 resembles that of Early and Middle Pleistocene hominins from Zhoukoudian, Nanjing, Dali, and Jinniushan in China, as well as others from Java, Africa, and Europe in some of these features (e.g., supraorbital and malar regions), and Late Pleistocene hominins and modern humans from East Asia, Africa, and Europe in other features (e.g., weak prognathism, flat face and features in nasal and hard plate regions). Comparisons of HLD 6 measurements to group means and multivariate analyses support close affinities of HLD 6 to Late Pleistocene hominins and modern humans. Expression of a mosaic morphological pattern in the HLD 6 facial skeleton further complicates evolutionary interpretations of regional morphological diversity in East Asia. The prevalence of modern features in HLD 6 suggests that the hominin population to which HLD 6 belonged may represent the earliest pre-modern humans in East Asia. Thus, the transition from archaic to modern morphology in East Asian hominins may have occurred at least by 300 ka, which is 80,000 to 100,000 years earlier than previously recognized.
Collapse
Affiliation(s)
- Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Shuwen Pei
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Haowen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California Los Angeles, CA, 90033, USA; Department of Geology and Paleontology, Georgian National Museum, Tbilisi, 0105, Georgia
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California Los Angeles, CA, 90033, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2000 South Africa.
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| |
Collapse
|
10
|
A comprehensive survey of Retzius periodicities in fossil hominins and great apes. J Hum Evol 2020; 149:102896. [DOI: 10.1016/j.jhevol.2020.102896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
|
11
|
French JC, Chamberlain AT. Demographic uniformitarianism: the theoretical basis of prehistoric demographic research and its cross-disciplinary challenges. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190720. [PMID: 33250031 DOI: 10.1098/rstb.2019.0720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A principle of demographic uniformitarianism underpins all research into prehistoric demography (palaeodemography). This principle-which argues for continuity in the evolved mechanisms underlying modern human demographic processes and their response to environmental stimuli between past and present-provides the cross-disciplinary basis for palaeodemographic reconstruction and analysis. Prompted by the recent growth and interest in the field of prehistoric demography, this paper reviews the principle of demographic uniformitarianism, evaluates how it relates to two key debates in palaeodemographic research and seeks to delimit its range of applicability to past human and hominin populations. This article is part of the theme issue 'Cross-disciplinary approaches to prehistoric demography'.
Collapse
Affiliation(s)
- Jennifer C French
- Department of Archaeology, Classics, and Egyptology, University of Liverpool, 12-14 Abercromby Square, L69 7WZ, UK
| | - Andrew T Chamberlain
- Department of Earth and Environmental Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Xing S, Tafforeau P, O'Hara MC, Modesto-Mata M, Martín-Francés L, Martinón-Torres M, Schepartz LA, Bermúdez de Castro JM, Guatelli-Steinberg D. A broader perspective on estimating dental age for the Xujiayao juvenile, a late Middle Pleistocene archaic hominin from East Asia. J Hum Evol 2020; 148:102850. [PMID: 32718693 DOI: 10.1016/j.jhevol.2020.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China; Centro Nacional de Investigación Sobre La Evolución Humana, Paseo Sierra de Atapuerca S/n, 09002, Burgos, Spain.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, CS-40220, 38043, Grenoble Cedex 09, France
| | - Mackie C O'Hara
- Department of Anthropology, The Ohio State University, Columbus, OH, 43210, USA
| | - Mario Modesto-Mata
- Centro Nacional de Investigación Sobre La Evolución Humana, Paseo Sierra de Atapuerca S/n, 09002, Burgos, Spain; Equipo Primeros Pobladores de Extremadura, Casa de La Cultura Rodríguez Moñino, Av. Cervantes S/n, 10003, Cáceres, Spain; Anthropology Department, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Laura Martín-Francés
- Centro Nacional de Investigación Sobre La Evolución Humana, Paseo Sierra de Atapuerca S/n, 09002, Burgos, Spain; UMR5189 PACEA Université de Bordeaux CNRS MCC, France
| | - María Martinón-Torres
- Centro Nacional de Investigación Sobre La Evolución Humana, Paseo Sierra de Atapuerca S/n, 09002, Burgos, Spain; Anthropology Department, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Lynne A Schepartz
- HVIRU, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - José María Bermúdez de Castro
- Centro Nacional de Investigación Sobre La Evolución Humana, Paseo Sierra de Atapuerca S/n, 09002, Burgos, Spain; Anthropology Department, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Debbie Guatelli-Steinberg
- Department of Anthropology, The Ohio State University, Columbus, OH, 43210, USA; Department of Anthropology/Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA; School of Anthropology and Conservation, The University of Kent, Canterbury, Kent, CT2 7NR, UK
| |
Collapse
|
13
|
Šešelj M, Konigsberg LW. A different interpretation of dental development stages in Xujiayao 1 Middle to Late Pleistocene Homo. J Hum Evol 2020; 148:102745. [PMID: 32216959 DOI: 10.1016/j.jhevol.2020.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Maja Šešelj
- Department of Anthropology, Bryn Mawr College, 101 N Merion Ave, Bryn Mawr, PA, 19010, USA.
| | - Lyle W Konigsberg
- Department of Anthropology, University of Illinois Urbana-Champaign, 607 S Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Modesto-Mata M, Dean MC, Lacruz RS, Bromage TG, García-Campos C, Martínez de Pinillos M, Martín-Francés L, Martinón-Torres M, Carbonell E, Arsuaga JL, Bermúdez de Castro JM. Short and long period growth markers of enamel formation distinguish European Pleistocene hominins. Sci Rep 2020; 10:4665. [PMID: 32170098 PMCID: PMC7069994 DOI: 10.1038/s41598-020-61659-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/29/2020] [Indexed: 11/23/2022] Open
Abstract
Characterizing dental development in fossil hominins is important for distinguishing between them and for establishing where and when the slow overall growth and development of modern humans appeared. Dental development of australopiths and early Homo was faster than modern humans. The Atapuerca fossils (Spain) fill a barely known gap in human evolution, spanning ~1.2 to ~0.4 million years (Ma), during which H. sapiens and Neandertal dental growth characteristics may have developed. We report here perikymata counts, perikymata distributions and periodicities of all teeth belonging to the TE9 level of Sima del Elefante, level TD6.2 of Gran Dolina (H. antecessor) and Sima de los Huesos. We found some components of dental growth in the Atapuerca fossils resembled more recent H. sapiens. Mosaic evolution of perikymata counts and distribution generate three distinct clusters: H. antecessor, Sima de los Huesos and H. sapiens.
Collapse
Affiliation(s)
- Mario Modesto-Mata
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain. .,Department of Anthropology, University College London, London, WC1H 0BW, UK. .,Equipo Primeros Pobladores de Extremadura, Casa de Cultura Rodríguez Moñino, Cáceres, Spain.
| | - M Christopher Dean
- Centre for Human Evolution Research (CHER), Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK.,Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, USA
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, USA
| | - Cecilia García-Campos
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.,Department of Anthropology, University College London, London, WC1H 0BW, UK
| | - Marina Martínez de Pinillos
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain
| | - Laura Martín-Francés
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.,University of Bordeaux, CNRS, MCC, PACE, UMR 5199 F_33615, Pessac, Cedex, France
| | - María Martinón-Torres
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.,Department of Anthropology, University College London, London, WC1H 0BW, UK
| | - Eudald Carbonell
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Zona Educacional 4, Campus Sescelades, Edifici W3, Universitat Rovira i Virgili, Tarragona, Spain.,Àrea de Prehistòria, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain
| | - Juan Luis Arsuaga
- Centro mixto UCM-ISCIII de Evolución y Comportamiento humanos, Madrid, Spain.,Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Bermúdez de Castro
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.,Department of Anthropology, University College London, London, WC1H 0BW, UK
| |
Collapse
|
15
|
Zanolli C, Schillinger B, Kullmer O, Schrenk F, Kelley J, Rössner GE, Macchiarelli R. When X-Rays Do Not Work. Characterizing the Internal Structure of Fossil Hominid Dentognathic Remains Using High-Resolution Neutron Microtomographic Imaging. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
16
|
Abstract
Editorial summaries of selected papers relevant to Quaternary science published in high-impact multidisciplinary journals between December 2018 and February 2019 [...]
Collapse
|