1
|
Zhang J, Yuan P, Nichols CG, Maksaev G. Molecular basis of TRPV3 channel blockade by intracellular polyamines. Commun Biol 2025; 8:727. [PMID: 40348873 PMCID: PMC12065880 DOI: 10.1038/s42003-025-08103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
ThermoTRPV1-4 channels are involved in the regulation of multiple physiological processes, including thermo- and pain perception, thermoregulation, itch, and nociception and therefore tight control of their activity is a critical requirement for correct perception of noxious stimuli and pain. We previously reported a voltage-dependent inhibition of TRPV1-4 channels by intracellular polyamines that could be explained by high affinity spermine binding in, and passage through, the permeation path. Here, using electrophysiology and cryo-electron microscopy, we elucidate molecular details of TRPV3 blockade by endogenous spermine and its analog NASPM. We identify a high-affinity polyamine interaction site at the intracellular side of the pore, formed by residues E679 and E682, with no significant contribution of residues at the channel selectivity filter. A cryo-EM structure of TRPV3 in the presence of NASPM reveals conformational changes coupled to polyamine blockade. Paradoxically, although the TRPV3 'gating switch' is in the 'activated' configuration, the pore is closed at both gates. A modified blocking model, in which spermine interacts with the cytoplasmic entrance to the channel, from which spermine may permeate, or cause closure of the channel, provides a unifying explanation for electrophysiological and structural data and furnishes the essential background for further exploitation of this regulatory process.
Collapse
Affiliation(s)
- Jingying Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Yuan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Grigory Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Talyzina IA, Nadezhdin KD, Sobolevsky AI. Forty sites of TRP channel regulation. Curr Opin Chem Biol 2025; 84:102550. [PMID: 39615427 PMCID: PMC11788071 DOI: 10.1016/j.cbpa.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Transient receptor potential (TRP) channels are polymodal molecular sensors that integrate chemical, thermal, mechanical and electrical stimuli and convert them into ionic currents that regulate senses of taste, smell, vision, hearing, touch and contribute to perception of temperature and pain. TRP channels are implicated in the pathogenesis of numerous human diseases, including cancers, and represent one of the most ardently pursued drug targets. Recent advances in structural biology, particularly associated with the cryo-EM "resolution revolution", yielded numerous TRP channel structures in complex with ligands that might have therapeutic potential. In this review, we describe the recent progress in TRP channel structural biology, focusing on the description of identified binding sites for small molecules, their relationship to membrane lipids, and interaction of TRP channels with other proteins. The characterized binding sites and interfaces create a diversity of druggable targets and provide a roadmap to aid in the design of new molecules for tuning TRP channel function in disease conditions.
Collapse
Affiliation(s)
- Irina A Talyzina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Neuberger A, Shalygin A, Trofimov YA, Veretenenko II, Nadezhdin KD, Krylov NA, Gudermann T, Efremov RG, Chubanov V, Sobolevsky AI. Structure-function analyses of human TRPV6 ancestral and derived haplotypes. Structure 2025; 33:91-103.e5. [PMID: 39500315 PMCID: PMC11698656 DOI: 10.1016/j.str.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
TRPV6 is a Ca2+ selective channel that mediates calcium uptake in the gut and contributes to the development and progression of human cancers. TRPV6 is represented by the ancestral and derived haplotypes that differ by three non-synonymous polymorphisms, located in the N-terminal ankyrin repeat domain (C157R), S1-S2 extracellular loop (M378V), and C-terminus (M681T). The ancestral and derived haplotypes were proposed to serve as genomic factors causing a different outcome for cancer patients of African ancestry. We solved cryoelectron microscopy (cryo-EM) structures of ancestral and derived TRPV6 in the open and calmodulin (CaM)-bound inactivated states. Neither state shows substantial structural differences caused by the non-synonymous polymorphisms. Functional properties assessed by electrophysiological recordings and Ca2+ uptake measurements, and water and ion permeation evaluated by molecular modeling also appear similar between the haplotypes. Therefore, ancestral and derived TRPV6 have similar structure and function, implying that other factors are responsible for the differences in susceptibility to cancer.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Alexey Shalygin
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Irina I Veretenenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Comprehensive Pneumology Center, German Center for Lung Research, 81377 Munich, Germany
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
Sanders JH, Taiwo KM, Adekanye GA, Bali A, Zhang Y, Paulsen CE. Calmodulin binding is required for calcium mediated TRPA1 desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627969. [PMID: 39713425 PMCID: PMC11661184 DOI: 10.1101/2024.12.11.627969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Calcium (Ca2+) ions affect nearly all aspects of biology. Excessive Ca2+ entry is cytotoxic and Ca2+-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca2+-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca2+ regulation with initial channel potentiation followed by rapid desensitization. The molecular mechanisms of TRPA1 Ca2+ regulation and whether CaM plays a role remain elusive. We find that TRPA1 binds CaM best at basal Ca2+ concentration, that they co-localize in resting cells, and that CaM suppresses TRPA1 activity. Combining biochemical, biophysical, modeling, NMR spectroscopy, and functional approaches, we identify an evolutionarily conserved, high-affinity CaM binding element in the distal TRPA1 C-terminus (DCTCaMBE). Genetic or biochemical perturbation of Ca2+/CaM binding to the TRPA1 DCTCaMBE yields hyperactive channels that exhibit drastic slowing of desensitization with no effect on potentiation. Ca2+/CaM TRPA1 regulation does not require the N-lobe, raising the possibility that CaM is not the Ca2+ sensor, per se. Higher extracellular Ca2+ can partially rescue slowed desensitization suggesting Ca2+/CaM binding to the TRPA1 DCTCaMBE primes an intrinsic TRPA1 Ca2+ binding site that, upon binding Ca2+, triggers rapid desensitization. Collectively, our results identify a critical regulatory element in an unstructured TRPA1 region highlighting the importance of these domains, they reveal Ca2+/CaM is an essential TRPA1 auxiliary subunit required for rapid desensitization that establishes proper channel function with implications for all future TRPA1 work, and they uncover a mechanism for receptor regulation by Ca2+/CaM that expands the scope of CaM biology.
Collapse
Affiliation(s)
- Justin H. Sanders
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kehinde M. Taiwo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Glory A. Adekanye
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Avnika Bali
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yuekang Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Candice E. Paulsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Sood S, Methven L, Cheng Q. Role of taste receptors in salty taste perception of minerals and amino acids and developments in salt reduction strategies: A review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38907620 DOI: 10.1080/10408398.2024.2365962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Salt (sodium chloride) plays a key role in maintaining the textural, microbiological, and sensorial aspects of the foods. However high dietary salt intake in the population has led to a series of health problems. Currently manufacturers are under pressure to reduce the sodium levels in foods without compromising the consumer experience. Because of the clean salty taste produced by sodium chloride, it has been challenging for the food industry to develop a suitable salt substitute. Studies have shown that different components within a food matrix can influence the perception of saltiness. This review aims to comprehend the potential synergistic effect of compounds such as minerals and amino acids on the perception of saltiness and covers the mechanism of perception where relevant to taste resulting from sodium ions and other metallic ions (such as K, Mg, Ca), as well as various amino acids and their derivatives. Finally, the review summarizes various salt reduction strategies explored by researchers, government organizations and food industry, including the potential use of plant-based extracts.
Collapse
Affiliation(s)
- Saumya Sood
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
7
|
Liu W, Deng W, Hu L, Zou H. Advances in TRPV6 inhibitors for tumors by targeted therapies: Macromolecular proteins, synthetic small molecule compounds, and natural compounds. Eur J Med Chem 2024; 270:116379. [PMID: 38588625 DOI: 10.1016/j.ejmech.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.
Collapse
Affiliation(s)
- Weikang Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wenwen Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
8
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 DOI: 0.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 10/14/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
9
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 PMCID: PMC10968549 DOI: 10.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Y.W.); (X.D.); (R.Z.); (H.L.); (S.X.); (D.G.); (C.Z.)
| |
Collapse
|
10
|
Rohacs T. Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era. Annu Rev Physiol 2024; 86:329-355. [PMID: 37871124 DOI: 10.1146/annurev-physiol-042022-013956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
11
|
Humer C, Radiskovic T, Horváti K, Lindinger S, Groschner K, Romanin C, Höglinger C. Bidirectional Allosteric Coupling between PIP 2 Binding and the Pore of the Oncochannel TRPV6. Int J Mol Sci 2024; 25:618. [PMID: 38203789 PMCID: PMC10779433 DOI: 10.3390/ijms25010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The epithelial ion channel TRPV6 plays a pivotal role in calcium homeostasis. Channel function is intricately regulated at different stages, involving the lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Given that dysregulation of TRPV6 is associated with various diseases, including different types of cancer, there is a compelling need for its pharmacological targeting. Structural studies provide insights on how TRPV6 is affected by different inhibitors, with some binding to sites else occupied by lipids. These include the small molecule cis-22a, which, however, also binds to and thereby blocks the pore. By combining calcium imaging, electrophysiology and optogenetics, we identified residues within the pore and the lipid binding site that are relevant for regulation by cis-22a and PIP2 in a bidirectional manner. Yet, mutation of the cytosolic pore exit reduced inhibition by cis-22a but preserved sensitivity to PIP2 depletion. Our data underscore allosteric communication between the lipid binding site and the pore and vice versa for most sites along the pore.
Collapse
Affiliation(s)
- Christina Humer
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Tamara Radiskovic
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Kata Horváti
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - Sonja Lindinger
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, 8010 Graz, Austria;
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| |
Collapse
|
12
|
Yan C, Gao Q, Yang M, Shao Q, Xu X, Zhang Y, Luan S. Ca 2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence. NATURE PLANTS 2024; 10:145-160. [PMID: 38168609 DOI: 10.1038/s41477-023-01578-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Plants rely on systemic signalling mechanisms to establish whole-body defence in response to insect and nematode attacks. GLUTAMATE RECEPTOR-LIKE (GLR) genes have been implicated in long-distance transmission of wound signals to initiate the accumulation of the defence hormone jasmonate (JA) at undamaged distal sites. The systemic signalling entails the activation of Ca2+-permeable GLR channels by wound-released glutamate, triggering membrane depolarization and cytosolic Ca2+ influx throughout the whole plant. The systemic electrical and calcium signals rapidly dissipate to restore the resting state, partially due to desensitization of the GLR channels. Here we report the discovery of calmodulin-mediated, Ca2+-dependent desensitization of GLR channels, revealing a negative feedback loop in the orchestration of plant systemic wound responses. A CRISPR-engineered GLR3.3 allele with impaired desensitization showed prolonged systemic electrical signalling and Ca2+ waves, leading to enhanced plant defence against herbivores. Moreover, this Ca2+/calmodulin-mediated desensitization of GLR channels is a highly conserved mechanism in plants, providing a potential target for engineering anti-herbivore defence in crops.
Collapse
Affiliation(s)
- Chun Yan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mai Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaolin Shao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Yongbiao Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Mesquita G, Haustrate A, Mihalache A, Soret B, Cordier C, Desruelles E, Duval E, Pethö Z, Prevarskaya N, Schwab A, Lehen’kyi V. TRPV6 Channel Is Involved in Pancreatic Ductal Adenocarcinoma Aggressiveness and Resistance to Chemotherapeutics. Cancers (Basel) 2023; 15:5769. [PMID: 38136316 PMCID: PMC10741494 DOI: 10.3390/cancers15245769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as a highly aggressive and lethal cancer, characterized by a grim prognosis and scarce treatment alternatives. Within this context, TRPV6, a calcium-permeable channel, emerges as a noteworthy candidate due to its overexpression in various cancers, capable of influencing the cell behavior in different cancer entities. Nonetheless, the exact expression pattern and functional significance of TRPV6 in the context of PDAC remains enigmatic. This study scrutinizes the expression of TRPV6 in tissue specimens obtained from 46 PDAC patients across distinct stages and grades. We manipulated TRPV6 expression (knockdown, overexpression) in the human PDAC cell lines Panc-1 and Capan-1. Subsequently, we analyzed its impact on multiple facets, encompassing Ca2+ influx, proliferation, apoptosis, migration, chemoresistance, and tumor growth, both in vitro and in vivo. Notably, the data indicate a direct correlation between TRPV6 expression levels, tumor stage, and grade, establishing a link between TRPV6 and PDAC proliferation in tissue samples. Decreasing TRPV6 expression via knockdown hampered Ca2+ influx, resulting in diminished proliferation and viability in both cell lines, and cell cycle progression in Panc-1. The knockdown simultaneously led to an increase in apoptotic rates and increased the susceptibility of cells to 5-FU and gemcitabine treatments. Moreover, it accelerated migration and promoted collective movement among Panc-1 cells. Conversely, TRPV6 overexpression yielded opposing outcomes in terms of proliferation in Panc-1 and Capan-1, and the migration of Panc-1 cells. Intriguingly, both TRPV6 knockdown and overexpression diminished the process of tumor formation in vivo. This intricate interplay suggests that PDAC aggressiveness relies on a fine-tuned TRPV6 expression, raising its profile as a putative therapeutic target.
Collapse
Affiliation(s)
- Gonçalo Mesquita
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Adriana Mihalache
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), 59000 Lille, France; (A.M.); (E.D.)
| | - Benjamin Soret
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Clément Cordier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Emilie Desruelles
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Erika Duval
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), 59000 Lille, France; (A.M.); (E.D.)
| | - Zoltan Pethö
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27b, 48149 Muenster, Germany;
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France (E.D.); (N.P.)
| |
Collapse
|
14
|
Neuberger A, Sobolevsky AI. Molecular pharmacology of the onco-TRP channel TRPV6. Channels (Austin) 2023; 17:2266669. [PMID: 37838981 PMCID: PMC10578198 DOI: 10.1080/19336950.2023.2266669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
TRPV6, a representative of the vanilloid subfamily of TRP channels, serves as the principal calcium uptake channel in the gut. Dysregulation of TRPV6 results in disturbed calcium homeostasis leading to a variety of human diseases, including many forms of cancer. Inhibitors of this oncochannel are therefore particularly needed. In this review, we provide an overview of recent advances in structural pharmacology that uncovered the molecular mechanisms of TRPV6 inhibition by a variety of small molecules, including synthetic and natural, plant-derived compounds as well as some prospective and clinically approved drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | |
Collapse
|
15
|
Gu Y, Li Y, Ma B, Ren K, Cao C, Gu N. Probing Conformational Transition of TRPV5 Induced by Mechanical Force Using Coarse-Grained Molecular Dynamics. J Chem Inf Model 2023; 63:6768-6777. [PMID: 37871325 DOI: 10.1021/acs.jcim.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential vanilloid 5 (TRPV5) is a calcium-selective TRP channel that plays a crucial role in calcium homeostasis regulation. However, there are still many issues that need to be addressed, such as the specific conformational transition of TRPV5 and the specific functions of each structure in cation gating. Here, we build a model of the calcium ion transport protein from Xenopus oocytes in the presence of the lipid membrane and water molecules. Due to the activation process of ion channels are global and collective, coarse-grained molecular dynamics (CG-MD) simulations of the potential of mean force along the conformational transition pathway are performed. The CG-MD simulations show that the S6 helix plays a vital role in the TRPV5 conformational transition. Most importantly, these simulated trajectories indicate that the activation of ion channels happens before the extension and rotation of S6 helices, revealing that TRPV5 has a unique gating mechanism different from TRPV6. The present work demonstrates how the mechanical force acting on the S6 helix opens the TRPV5 channel gates. These results deepen our understanding of the TRPV5 gating mechanism.
Collapse
Affiliation(s)
- Yinwei Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Baocai Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ke Ren
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Chen Cao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
- Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
17
|
Lee BH, De Jesús Pérez JJ, Moiseenkova-Bell V, Rohacs T. Structural basis of the activation of TRPV5 channels by long-chain acyl-Coenzyme-A. Nat Commun 2023; 14:5883. [PMID: 37735536 PMCID: PMC10514044 DOI: 10.1038/s41467-023-41577-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Long-chain acyl-coenzyme A (LC-CoA) is a crucial metabolic intermediate that plays important cellular regulatory roles, including activation and inhibition of ion channels. The structural basis of ion channel regulation by LC-CoA is not known. Transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6) are epithelial calcium-selective ion channels. Here, we demonstrate that LC-CoA activates TRPV5 and TRPV6 in inside-out patches, and both exogenously supplied and endogenously produced LC-CoA can substitute for the natural ligand phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in maintaining channel activity in intact cells. Utilizing cryo-electron microscopy, we determined the structure of LC-CoA-bound TRPV5, revealing an open configuration with LC-CoA occupying the same binding site as PI(4,5)P2 in previous studies. This is consistent with our finding that PI(4,5)P2 could not further activate the channels in the presence of LC-CoA. Our data provide molecular insights into ion channel regulation by a metabolic signaling molecule.
Collapse
Affiliation(s)
- Bo-Hyun Lee
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
- Department of Physiology, Gyeongsang National University Medical School, Jinju, Korea
| | - José J De Jesús Pérez
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
18
|
Mo S, Wang Y, Wu W, Zhao H, Jiang H, Qin S. Identifying target ion channel-related genes to construct a diagnosis model for insulinoma. Front Genet 2023; 14:1181307. [PMID: 37772258 PMCID: PMC10523017 DOI: 10.3389/fgene.2023.1181307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Insulinoma is the most common functional pancreatic neuroendocrine tumor (PNET) with abnormal insulin hypersecretion. The etiopathogenesis of insulinoma remains indefinable. Based on multiple bioinformatics methods and machine learning algorithms, this study proposed exploring the molecular mechanism from ion channel-related genes to establish a genetic diagnosis model for insulinoma. Methods: The mRNA expression profile dataset of GSE73338 was applied to the analysis, which contains 17 insulinoma samples, 63 nonfunctional PNET (NFPNET) samples, and four normal islet samples. Differently expressed ion channel-related genes (DEICRGs) enrichment analyses were performed. We utilized the protein-protein interaction (PPI) analysis and machine learning of LASSO and support vector machine-recursive feature elimination (SVM-RFE) to identify the target genes. Based on these target genes, a nomogram diagnostic model was constructed and verified by a receiver operating characteristic (ROC) curve. Moreover, immune infiltration analysis, single-gene gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were executed. Finally, a drug-gene interaction network was constructed. Results: We identified 29 DEICRGs, and enrichment analyses indicated they were primarily enriched in ion transport, cellular ion homeostasis, pancreatic secretion, and lysosome. Moreover, the PPI network and machine learning recognized three target genes (MCOLN1, ATP6V0E1, and ATP4A). Based on these target genes, we constructed an efficiently predictable diagnosis model for identifying insulinomas with a nomogram and validated it with the ROC curve (AUC = 0.801, 95% CI 0.674-0.898). Then, single-gene GSEA analysis revealed that these target genes had a significantly positive correlation with insulin secretion and lysosome. In contrast, the TGF-beta signaling pathway was negatively associated with them. Furthermore, statistically significant discrepancies in immune infiltration were revealed. Conclusion: We identified three ion channel-related genes and constructed an efficiently predictable diagnosis model to offer a novel approach for diagnosing insulinoma.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaying Zhao
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixing Jiang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Khau J, Nadezhdin KD, Khosrof LS, Krylov NA, Efremov RG, Sobolevsky AI. Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin. Nat Commun 2023; 14:4630. [PMID: 37532722 PMCID: PMC10397291 DOI: 10.1038/s41467-023-40362-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
The calcium-selective oncochannel TRPV6 is an important driver of cell proliferation in human cancers. Despite increasing interest of pharmacological research in developing synthetic inhibitors of TRPV6, natural compounds acting at this channel have been largely neglected. On the other hand, pharmacokinetics of natural small-molecule antagonists optimized by nature throughout evolution endows these compounds with a medicinal potential to serve as potent and safe next-generation anti-cancer drugs. Here we report the structure of human TRPV6 in complex with tetrahydrocannabivarin (THCV), a natural cannabinoid inhibitor extracted from Cannabis sativa. We use cryo-electron microscopy combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to identify THCV binding sites in the portals that connect the membrane environment surrounding the protein to the central cavity of the channel pore and to characterize the allosteric mechanism of TRPV6 inhibition. We also propose the molecular pathway taken by THCV to reach its binding site. Our study provides a foundation for the development of new TRPV6-targeting drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jeffrey Khau
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lena S Khosrof
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Wang L, Cai R, Chen XZ, Peng JB. Molecular insights into the structural and dynamical changes of calcium channel TRPV6 induced by its interaction with phosphatidylinositol 4,5-bisphosphate. J Biomol Struct Dyn 2023; 41:6559-6568. [PMID: 35950523 PMCID: PMC9918602 DOI: 10.1080/07391102.2022.2109752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Transient receptor potential vanilloid subfamily member 6 (TRPV6) is an epithelial calcium channel that regulates the initial step of the transcellular calcium transport pathway. TRPV6 is expressed in the kidney, intestine, placenta, and other tissues, and the dysregulation of the channel is implicated in several human cancers. It has been reported that phosphatidylinositol 4,5-bisphosphate (PIP2) activates TRPV6 and its close homologue TRPV5; however, the underlying molecular mechanism is less clear. Recently, a structure of rabbit TRPV5 in complex with dioctanoyl (diC8) PIP2, a soluble form of PIP2, was determined by cryo-electron microscopy. Based on this structure, the structural model of human TRPV6 with PIP2 was set up, and then molecular dynamics simulations were performed for TRPV6 with and without PIP2. Simulation results show that the positively charged residues responsible for TRPV5 binding of diC8 PIP2 are conserved in the interactions between TRPV6 and PIP2. The binding of PIP2 to TRPV6 increases the distance between the diagonally opposed residues D542 in the selectivity filter and that between the diagonally opposed M578 residues in the lower gate of TRPV6. A secondary structural analysis reveals that residues M578 in TRPV6 undergo structural and position changes during the binding of PIP2 with TRPV6. In addition, principal component analysis indicates that the binding of PIP2 increases the dynamical motions of both the selectivity filter and the lower gate of TRPV6. These changes induced by PIP2 favor the channel opening. Thus, this study provides a basis for understanding the mechanism underlying the PIP2-induced TRPV6 channel activation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ruiqi Cai
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7 Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7 Edmonton, AB, Canada
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
21
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
22
|
Nadezhdin KD, Talyzina IA, Parthasarathy A, Neuberger A, Zhang DX, Sobolevsky AI. Structure of human TRPV4 in complex with GTPase RhoA. Nat Commun 2023; 14:3733. [PMID: 37353478 PMCID: PMC10290124 DOI: 10.1038/s41467-023-39346-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Transient receptor potential (TRP) channel TRPV4 is a polymodal cellular sensor that responds to moderate heat, cell swelling, shear stress, and small-molecule ligands. It is involved in thermogenesis, regulation of vascular tone, bone homeostasis, renal and pulmonary functions. TRPV4 is implicated in neuromuscular and skeletal disorders, pulmonary edema, and cancers, and represents an important drug target. The cytoskeletal remodeling GTPase RhoA has been shown to suppress TRPV4 activity. Here, we present a structure of the human TRPV4-RhoA complex that shows RhoA interaction with the membrane-facing surface of the TRPV4 ankyrin repeat domains. The contact interface reveals residues that are mutated in neuropathies, providing an insight into the disease pathogenesis. We also identify the binding sites of the TRPV4 agonist 4α-PDD and the inhibitor HC-067047 at the base of the S1-S4 bundle, and show that agonist binding leads to pore opening, while channel inhibition involves a π-to-α transition in the pore-forming helix S6. Our structures elucidate the interaction interface between hTRPV4 and RhoA, as well as residues at this interface that are involved in TRPV4 disease-causing mutations. They shed light on TRPV4 activation and inhibition and provide a template for the design of future therapeutics for treatment of TRPV4-related diseases.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Irina A Talyzina
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, 10032, USA
| | - Aravind Parthasarathy
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - David X Zhang
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Nadezhdin KD, Krylov NA, Efremov RG, Sobolevsky AI. Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein. Nat Commun 2023; 14:2659. [PMID: 37160865 PMCID: PMC10169861 DOI: 10.1038/s41467-023-38352-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Liu X, Wang Y, Weng Z, Xu Q, Zhou C, Tang J, Chen XZ. Inhibition of TRPP3 by calmodulin through Ca 2+/calmodulin-dependent protein kinase II. CELL INSIGHT 2023; 2:100088. [PMID: 37193065 PMCID: PMC10134200 DOI: 10.1016/j.cellin.2023.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Transient receptor potential (TRP) polycystin-3 (TRPP3) is a non-selective cation channel activated by Ca2+ and protons and is involved in regulating ciliary Ca2+ concentration, hedgehog signaling and sour tasting. The TRPP3 channel function and regulation are still not well understood. Here we investigated regulation of TRPP3 by calmodulin (CaM) by means of electrophysiology and Xenopus oocytes as an expression model. We found that TRPP3 channel function is enhanced by calmidazolium, a CaM antagonist, and inhibited by CaM through binding of the CaM N-lobe to a TRPP3 C-terminal domain not overlapped with the EF-hand. We further revealed that the TRPP3/CaM interaction promotes phosphorylation of TRPP3 at threonine 591 by Ca2+/CaM-dependent protein kinase II, which mediates the inhibition of TRPP3 by CaM.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
| | - Yifang Wang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Ziyi Weng
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qinyi Xu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - JingFeng Tang
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| |
Collapse
|
25
|
Haustrate A, Shapovalov G, Spriet C, Cordier C, Kondratskyi A, Noyer L, Foulquier F, Prevarskaya N, Lehen'kyi V. TRPV6 Calcium Channel Targeting by Antibodies Raised against Extracellular Epitopes Induces Prostate Cancer Cell Apoptosis. Cancers (Basel) 2023; 15:cancers15061825. [PMID: 36980711 PMCID: PMC10046753 DOI: 10.3390/cancers15061825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The TRPV6 calcium channel is known to be up-regulated in various tumors. The efforts to target the TRPV6 channel in vivo are still ongoing to propose an effective therapy against cancer. Here, we report the generation of two antibodies raised against extracellular epitopes corresponding to the extracellular loop between S1 and S2 (rb79) and the pore region (rb82). These antibodies generated a complex biphasic response with the transient activation of the TRPV6 channel. Store-operated calcium entry was consequently potentiated in the prostate cancer cell line LNCaP upon the treatment. Both rb79 and rb82 antibodies significantly decreased cell survival rate in a dose-dependent manner as compared to the control antibodies of the same isotype. This decrease was due to the enhanced cell death via apoptosis revealed using a sub-G1 peak in a cell cycle assay, TUNEL assay, and a Hoechst staining, having no effects in the PC3Mtrpv6-/- cell line. Moreover, all TUNEL-positive cells had TRPV6 membrane staining as compared to the control antibody treatment where TRPV6-positive cells were all TUNEL negative. These data clearly demonstrate that TRPV6 channel targeting using rb79 and rb82 antibodies is fatal and may be successfully used in the anticancer therapies.
Collapse
Affiliation(s)
- Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France
- FONDATION ARC, 9 rue Guy Môquet, 94830 Villejuif, France
| | - George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France
| | - Corentin Spriet
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS, UMR 8576, Université de Lille, 59000 Lille, France
| | - Clément Cordier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France
| | - Artem Kondratskyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France
| | - Lucile Noyer
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France
| | - François Foulquier
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS, UMR 8576, Université de Lille, 59000 Lille, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France
| | - V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d'Ascq, France
- FONDATION ARC, 9 rue Guy Môquet, 94830 Villejuif, France
| |
Collapse
|
26
|
Flores-Aldama L, Bustos D, Cabezas-Bratesco D, Gonzalez W, Brauchi SE. Intracellular Helix-Loop-Helix Domain Modulates Inactivation Kinetics of Mammalian TRPV5 and TRPV6 Channels. Int J Mol Sci 2023; 24:4470. [PMID: 36901904 PMCID: PMC10003196 DOI: 10.3390/ijms24054470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
TRPV5 and TRPV6 are calcium-selective ion channels expressed at the apical membrane of epithelial cells. Important for systemic calcium (Ca2+) homeostasis, these channels are considered gatekeepers of this cation transcellular transport. Intracellular Ca2+ exerts a negative control over the activity of these channels by promoting inactivation. TRPV5 and TRPV6 inactivation has been divided into fast and slow phases based on their kinetics. While slow inactivation is common to both channels, fast inactivation is characteristic of TRPV6. It has been proposed that the fast phase depends on Ca2+ binding and that the slow phase depends on the binding of the Ca2+/Calmodulin complex to the internal gate of the channels. Here, by means of structural analyses, site-directed mutagenesis, electrophysiology, and molecular dynamic simulations, we identified a specific set of amino acids and interactions that determine the inactivation kinetics of mammalian TRPV5 and TRPV6 channels. We propose that the association between the intracellular helix-loop-helix (HLH) domain and the TRP domain helix (TDh) favors the faster inactivation kinetics observed in mammalian TRPV6 channels.
Collapse
Affiliation(s)
- Lisandra Flores-Aldama
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Deny Cabezas-Bratesco
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Wendy Gonzalez
- Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3460000, Chile
- Millennium Nucleus of Ion Channel-associated Diseases (MiNICAD), Valdivia 5110566, Chile
| | - Sebastian E. Brauchi
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile
- Millennium Nucleus of Ion Channel-associated Diseases (MiNICAD), Valdivia 5110566, Chile
| |
Collapse
|
27
|
Saward BG, Leissing TM, Clifton IJ, Tumber A, Timperley CM, Hopkinson RJ, Schofield CJ. Biochemical and Structural Insights into FIH-Catalysed Hydroxylation of Transient Receptor Potential Ankyrin Repeat Domains. Chembiochem 2023; 24:e202200576. [PMID: 36448355 PMCID: PMC10946520 DOI: 10.1002/cbic.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Transient receptor potential (TRP) channels have important roles in environmental sensing in animals. Human TRP subfamily A member 1 (TRPA1) is responsible for sensing allyl isothiocyanate (AITC) and other electrophilic sensory irritants. TRP subfamily vanilloid member 3 (TRPV3) is involved in skin maintenance. TRPV3 is a reported substrate of the 2-oxoglutarate oxygenase factor inhibiting hypoxia-inducible factor (FIH). We report biochemical and structural studies concerning asparaginyl hydroxylation of the ankyrin repeat domains (ARDs) of TRPA1 and TRPV3 catalysed by FIH. The results with ARD peptides support a previous report on FIH-catalysed TRPV3 hydroxylation and show that, of the 12 potential TRPA1 sequences investigated, one sequence (TRPA1 residues 322-348) undergoes hydroxylation at Asn336. Structural studies reveal that the TRPA1 and TRPV3 ARDs bind to FIH with a similar overall geometry to most other reported FIH substrates. However, the binding mode of TRPV3 to FIH is distinct from that of other substrates.
Collapse
Affiliation(s)
- Benjamin G. Saward
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | - Thomas M. Leissing
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | - Ian J. Clifton
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | - Anthony Tumber
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | | | - Richard J. Hopkinson
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
- Present address: Leicester Institute for Structural and Chemical Biology and School of ChemistryUniversity of LeicesterHenry Wellcome Building, Lancaster RoadLeicesterLE1 7RHUK
| | - Christopher J. Schofield
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| |
Collapse
|
28
|
Abstract
The ability to detect stimuli from the environment plays a pivotal role in our survival. The molecules that allow the detection of such signals include ion channels, which are proteins expressed in different cells and organs. Among these ion channels, the transient receptor potential (TRP) family responds to the presence of diverse chemicals, temperature, and osmotic changes, among others. This family of ion channels includes the TRPV or vanilloid subfamily whose members serve several physiological functions. Although these proteins have been studied intensively for the last two decades, owing to their structural and functional complexities, a number of controversies regarding their function still remain. Here, we discuss some salient features of their regulation in light of these controversies and outline some of the efforts pushing the field forward.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neuroscience Division, Institute for Cellular Physiology, National Autonomous University of Mexico, Coyoacán, México;
| | - León D Islas
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Coyoacán, México
| |
Collapse
|
29
|
Zuidscherwoude M, van Goor MK, Roig SR, Thijssen N, van Erp M, Fransen J, van der Wijst J, Hoenderop JG. Functional basis for calmodulation of the TRPV5 calcium channel. J Physiol 2023; 601:859-878. [PMID: 36566502 DOI: 10.1113/jp282952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/26/2022] Open
Abstract
Within the transient receptor potential (TRP) superfamily of ion channels, TRPV5 is a highly Ca2+ -selective channel important for active reabsorption of Ca2+ in the kidney. Its channel activity is controlled by a negative feedback mechanism involving calmodulin (CaM) binding. Combining advanced microscopy techniques and biochemical assays, this study characterized the dynamic lobe-specific CaM regulation. We demonstrate for the first time that functional (full-length) TRPV5 interacts with CaM in the absence of Ca2+ , and this interaction is intensified at increasing Ca2+ concentrations sensed by the CaM C-lobe that achieves channel pore blocking. Channel inactivation occurs without requiring CaM N-lobe calcification. Moreover, we show a Ca2+ -dependent binding stoichiometry at the single channel level. In conclusion, our study proposes a new model for CaM-dependent regulation - calmodulation - of this uniquely Ca2+ -selective TRP channel TRPV5 that involves apoCaM interaction and lobe-specific actions, which may be of significant physiological relevance given its role as gatekeeper of Ca2+ transport in the kidney. KEY POINTS: The renal Ca2+ channel TRPV5 is an important player in maintenance of the body's Ca2+ homeostasis. Activity of TRPV5 is controlled by a negative feedback loop that involves calmodulin (CaM), a protein with two Ca2+ -binding lobes. We investigated the dynamics of the interaction between TRPV5 and CaM with advanced fluorescence microscopy techniques. Our data support a new model for CaM-dependent regulation of TRPV5 channel activity with CaM lobe-specific actions and demonstrates Ca2+ -dependent binding stoichiometries. This study improves our understanding of the mechanism underlying fast channel inactivation, which is physiologically relevant given the gatekeeper function of TRPV5 in Ca2+ reabsorption in the kidney.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark K van Goor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sara R Roig
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Niky Thijssen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Merijn van Erp
- Radboudumc Technology Centre Microscopy, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Fransen
- Radboudumc Technology Centre Microscopy, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
31
|
Rohacs T, Fluck EC, De Jesús-Pérez JJ, Moiseenkova-Bell VY. What structures did, and did not, reveal about the function of the epithelial Ca 2+ channels TRPV5 and TRPV6. Cell Calcium 2022; 106:102620. [PMID: 35834842 PMCID: PMC11500022 DOI: 10.1016/j.ceca.2022.102620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
Transient Receptor Potential Vanilloid 5 and 6 (TRPV5 and TRPV6) are Ca2+ selective epithelial ion channels. They are the products of a relatively recent gene duplication in mammals, and have high sequence homology to each other. Their functional properties are also much more similar to each other than to other members of the TRPV subfamily. They are both constitutively active, and this activity depends on the endogenous cofactor phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Both channels undergo Ca2+-induced inactivation, which is mediated by direct binding of the ubiquitous Ca2+ binding protein calmodulin (CaM) to the channels, and by a decrease in PI(4,5)P2 levels by Ca2+ -induced activation of phospholipase C (PLC). Recent cryo electron microscopy (cryo-EM) and X-ray crystallography structures provided detailed structural information for both TRPV5 and TRPV6. This review will discuss this structural information in the context of the function of these channels focusing on the mechanism of CaM inhibition, activation by PI(4,5)P2 and binding of pharmacological modulators.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA.
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
32
|
Zhang Y, Liang P, Yang L, Shan KZ, Feng L, Chen Y, Liedtke W, Coyne CB, Yang H. Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. eLife 2022; 11:e78840. [PMID: 35670667 PMCID: PMC9236608 DOI: 10.7554/elife.78840] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liheng Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Ke Zoe Shan
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical CentreDurhamUnited States
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghaiChina
| | - Yong Chen
- Department of Neurology, Duke University Medical CenterDurhamUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical CenterDurhamUnited States
- Department of Anesthesiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- College of Dentistry, Department of Molecular Pathobiology, NYUNew YorkUnited States
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke UniversityDurhamUnited States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
33
|
Yelshanskaya MV, Sobolevsky AI. Ligand-Binding Sites in Vanilloid-Subtype TRP Channels. Front Pharmacol 2022; 13:900623. [PMID: 35652046 PMCID: PMC9149226 DOI: 10.3389/fphar.2022.900623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/02/2023] Open
Abstract
Vanilloid-subfamily TRP channels TRPV1-6 play important roles in various physiological processes and are implicated in numerous human diseases. Advances in structural biology, particularly the "resolution revolution" in cryo-EM, have led to breakthroughs in molecular characterization of TRPV channels. Structures with continuously improving resolution uncover atomic details of TRPV channel interactions with small molecules and protein-binding partners. Here, we provide a classification of structurally characterized binding sites in TRPV channels and discuss the progress that has been made by structural biology combined with mutagenesis, functional recordings, and molecular dynamics simulations toward understanding of the molecular mechanisms of ligand action. Given the similarity in structural architecture of TRP channels, 16 unique sites identified in TRPV channels may be shared between TRP channel subfamilies, although the chemical identity of a particular ligand will likely depend on the local amino-acid composition. The characterized binding sites and molecular mechanisms of ligand action create a diversity of druggable targets to aid in the design of new molecules for tuning TRP channel function in disease conditions.
Collapse
Affiliation(s)
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
34
|
Fluck EC, Yazici AT, Rohacs T, Moiseenkova-Bell VY. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. Cell Rep 2022; 39:110737. [PMID: 35476976 PMCID: PMC9088182 DOI: 10.1016/j.celrep.2022.110737] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 5 (TRPV5) is a kidney-specific Ca2+-selective ion channel that plays a key role in Ca2+ homeostasis. The basal activity of TRPV5 is balanced through activation by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and inhibition by Ca2+-bound calmodulin (CaM). Parathyroid hormone (PTH), the key extrinsic regulator of Ca2+ homeostasis, increases the activity of TRPV5 via protein kinase A (PKA)-mediated phosphorylation. Metabolic acidosis leads to reduced TRPV5 activity independent of PTH, causing hypercalciuria. Using cryoelectron microscopy (cryo-EM), we show that low pH inhibits TRPV5 by precluding PI(4,5)P2 activation. We capture intermediate conformations at low pH, revealing a transition from open to closed state. In addition, we demonstrate that PI(4,5)P2 is the primary modulator of channel gating, yet PKA controls TRPV5 activity by preventing CaM binding and channel inactivation. Our data provide detailed molecular mechanisms for regulation of TRPV5 by two key extrinsic modulators, low pH and PKA.
Collapse
Affiliation(s)
- Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
36
|
Hernández-Cruz EY, Silva-Islas CA, Maldonado PD, Pedraza-Chaverri J, Carballo-Villalobos AI. The antinociceptive effect of garlic, garlic preparations, and derivative compounds. Eur J Pain 2022; 26:947-964. [PMID: 35263014 DOI: 10.1002/ejp.1935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 03/06/2022] [Indexed: 11/08/2022]
Abstract
The antinociceptive effects of garlic have shown promise in treating different chronic diseases in humans, such as knee osteoarthritis, rheumatoid arthritis, and peripheral arterial occlusive disease stage II. The most common garlic products are garlic powder (dried garlic), steam distilled garlic oils, garlic oil macerate, and aged garlic extract. These commercial products contain organosulfur compounds (OSC) that have been extensively evaluated in preclinical models and some clinical assays to treat different diseases against pain. In this review, we describe the importance of some bioactive compounds found in garlic and its role in treating pain. A systematic search of the literature in Dimensions, PubMed, Scopus, Web of Science was performed. Terms and preselected keywords relating to garlic, its derivates and organusulfur compunds in pain, were used to perform a systematic literature search. Two independent reviewers screened papers for inclusion and assessed the methodological quality. The antinociceptive activity of garlic and its OSC is related to its antioxidant and anti-inflammatory properties, which may be explained by the ability to block the synthesis of PGs, pro-inflammatory cytokines and interferon-γ, by the reduction COX- 2 activity and by increases the levels of anti-inflammatory cytokines. Besides, garlic extract is an activator of TRPA1 and TRPV1, where the principal responsible for this activation are OSC. The relationship between these pathways allows a better understanding how garlic and its derivates could be carrying out its pharmacological action over the management of acute and chronic pain and provide a base by further investigations.
Collapse
Affiliation(s)
- Estefani Yaquelin Hernández-Cruz
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CDMX, 04510, México
| | - Carlos Alfredo Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, 14269, México
| | - Perla D Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, 14269, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, México
| | - Azucena Ibeth Carballo-Villalobos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, México
| |
Collapse
|
37
|
Bousova K, Zouharova M, Herman P, Vymetal J, Vetyskova V, Jiraskova K, Vondrasek J. TRPM5 Channel Binds Calcium-Binding Proteins Calmodulin and S100A1. Biochemistry 2022; 61:413-423. [PMID: 35225608 DOI: 10.1021/acs.biochem.1c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melastatin transient receptor potential (TRPM) channels belong to one of the most significant subgroups of the transient receptor potential (TRP) channel family. Here, we studied the TRPM5 member, the receptor exposed to calcium-mediated activation, resulting in taste transduction. It is known that most TRP channels are highly modulated through interactions with extracellular and intracellular agents. The binding sites for these ligands are usually located at the intracellular N- and C-termini of the TRP channels, and they can demonstrate the character of an intrinsically disordered protein (IDP), which allows such a region to bind various types of molecules. We explored the N-termini of TRPM5 and found the intracellular regions for calcium-binding proteins (CBPs) the calmodulin (CaM) and calcium-binding protein S1 (S100A1) by in vitro binding assays. Furthermore, molecular docking and molecular dynamics simulations (MDs) of the discovered complexes confirmed their known common binding interface patterns and the uniqueness of the basic residues present in the TRPM binding regions for CaM/S100A1.
Collapse
Affiliation(s)
- Kristyna Bousova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Monika Zouharova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Jiri Vymetal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Veronika Vetyskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Katerina Jiraskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| |
Collapse
|
38
|
Henry C, Carreras-Sureda A, Demaurex N. Enforced tethering elongates the cortical endoplasmic reticulum and limits store-operated calcium entry. J Cell Sci 2022; 135:274483. [PMID: 35191477 PMCID: PMC8995094 DOI: 10.1242/jcs.259313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Recruitment of STIM proteins to cortical endoplasmic reticulum (cER) domains forming membrane contact sites (MCSs) mediate the store-operated Ca2+ entry (SOCE) pathway essential for human immunity. The cER is dynamically regulated by STIM and tethering proteins during SOCE, but the ultrastructural rearrangement and functional consequences of cER remodeling are unknown. Here, we express natural (E-Syt1 and E-Syt2) and artificial (MAPPER-S and MAPPER-L) protein tethers in HEK-293T cells and correlate the changes in cER length and gap distance, as measured by electron microscopy, with ionic fluxes. We found that native cER cisternae extended during store depletion and remained elongated at a constant ER-plasma membrane (PM) gap distance during subsequent Ca2+ elevations. Tethering proteins enhanced store-dependent cER expansion, anchoring the enlarged cER at tether-specific gap distances of 12-15 nm (E-Syts) and 5-9 nm (MAPPERs). Cells with artificially extended cER had reduced SOCE and reduced agonist-induced Ca2+ release. SOCE remained modulated by calmodulin and exhibited enhanced Ca2+-dependent inhibition. We propose that cER expansion mediated by ER-PM tethering at a close distance negatively regulates SOCE by confining STIM-ORAI complexes to the periphery of enlarged cER sheets, a process that might participate in the termination of store-operated Ca2+ entry. Summary: ER-PM tethering at close distance limits Ca2+ entry by confining STIM-ORAI complexes to the periphery of contact sites.
Collapse
Affiliation(s)
- Christopher Henry
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
39
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
40
|
Humer C, Romanin C, Höglinger C. Highlighting the Multifaceted Role of Orai1 N-Terminal- and Loop Regions for Proper CRAC Channel Functions. Cells 2022; 11:371. [PMID: 35159181 PMCID: PMC8834118 DOI: 10.3390/cells11030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Orai1, the Ca2+-selective pore in the plasma membrane, is one of the key components of the Ca2+release-activated Ca2+ (CRAC) channel complex. Activated by the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, stromal interaction molecule 1 (STIM1), via direct interaction when ER luminal Ca2+ levels recede, Orai1 helps to maintain Ca2+ homeostasis within a cell. It has already been proven that the C-terminus of Orai1 is indispensable for channel activation. However, there is strong evidence that for CRAC channels to function properly and maintain all typical hallmarks, such as selectivity and reversal potential, additional parts of Orai1 are needed. In this review, we focus on these sites apart from the C-terminus; namely, the second loop and N-terminus of Orai1 and on their multifaceted role in the functioning of CRAC channels.
Collapse
Affiliation(s)
| | | | - Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (C.R.)
| |
Collapse
|
41
|
Ding J, Tang J, Cai C, Cao D, Rao W, Guo W, Yu L. Coordination Strategy to Achieve Instant Dissolution of a Biomedical Polymer in Water via Manual Shaking. Biomater Sci 2022; 10:4561-4575. [DOI: 10.1039/d2bm00814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic polymers with condensed long chains are kinetically slow to be dissolved in their solvents, particularly in water, which has significantly hindered their potential applications as soon as an instant...
Collapse
|
42
|
Bousova K, Zouharova M, Herman P, Vetyskova V, Jiraskova K, Vondrasek J. TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1. Heliyon 2021; 7:e08490. [PMID: 34917797 PMCID: PMC8645431 DOI: 10.1016/j.heliyon.2021.e08490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.
Collapse
Affiliation(s)
- Kristyna Bousova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Corresponding author.
| | - Monika Zouharova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Patobiochemistry, Second Faculty of Medicine, Charles University, 150 06 Prague 5, V Uvalu 84, Czech Republic
| | - Petr Herman
- Department Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
| | - Veronika Vetyskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Katerina Jiraskova
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000 Prague, Czech Republic
| |
Collapse
|
43
|
Neuberger A, Nadezhdin KD, Sobolevsky AI. Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole. Nat Commun 2021; 12:6284. [PMID: 34725357 PMCID: PMC8560856 DOI: 10.1038/s41467-021-26608-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022] Open
Abstract
TRPV6 is a calcium-selective ion channel implicated in epithelial Ca2+ uptake. TRPV6 inhibitors are needed for the treatment of a broad range of diseases associated with disturbed calcium homeostasis, including cancers. Here we combine cryo-EM, calcium imaging, and mutagenesis to explore molecular bases of human TRPV6 inhibition by the antifungal drug econazole and the universal ion channel blocker ruthenium red (RR). Econazole binds to an allosteric site at the channel's periphery, where it replaces a lipid. In contrast, RR inhibits TRPV6 by binding in the middle of the ion channel's selectivity filter and plugging its pore like a bottle cork. Despite different binding site locations, both inhibitors induce similar conformational changes in the channel resulting in closure of the gate formed by S6 helices bundle crossing. The uncovered molecular mechanisms of TRPV6 inhibition can guide the design of a new generation of clinically useful inhibitors.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
44
|
Amini M, Chang Y, Wissenbach U, Flockerzi V, Schlenstedt G, Beck A. Activity of the yeast vacuolar TRP channel TRPY1 is inhibited by Ca 2+-calmodulin binding. J Biol Chem 2021; 297:101126. [PMID: 34461097 PMCID: PMC8449268 DOI: 10.1016/j.jbc.2021.101126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.
Collapse
Affiliation(s)
- Mahnaz Amini
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland; Department of Medical Biochemistry and Molecular Biology/PZMS, Medical School, Saarland University, Homburg, Germany
| | - Yiming Chang
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland; Department of Medical Biochemistry and Molecular Biology/PZMS, Medical School, Saarland University, Homburg, Germany
| | - Ulrich Wissenbach
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland
| | - Gabriel Schlenstedt
- Department of Medical Biochemistry and Molecular Biology/PZMS, Medical School, Saarland University, Homburg, Germany
| | - Andreas Beck
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland.
| |
Collapse
|
45
|
Abstract
The transient receptor potential (TRP) channel superfamily consists of a large group of non-selective cation channels that serve as cellular sensors for a wide spectrum of physical and environmental stimuli. The 28 mammalian TRPs, categorized into six subfamilies, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin) and TRPP (polycystin), are widely expressed in different cells and tissues. TRPs exhibit a variety of unique features that not only distinguish them from other superfamilies of ion channels, but also confer diverse physiological functions. Located at the plasma membrane or in the membranes of intracellular organelles, TRPs are the cellular safeguards that sense various cell stresses and environmental stimuli and translate this information into responses at the organismal level. Loss- or gain-of-function mutations of TRPs cause inherited diseases and pathologies in different physiological systems, whereas up- or down-regulation of TRPs is associated with acquired human disorders. In this Cell Science at a Glance article and the accompanying poster, we briefly summarize the history of the discovery of TRPs, their unique features, recent advances in the understanding of TRP activation mechanisms, the structural basis of TRP Ca2+ selectivity and ligand binding, as well as potential roles in mammalian physiology and pathology.
Collapse
Affiliation(s)
- Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Cao E. Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 2021; 152:133640. [PMID: 31972006 PMCID: PMC7054860 DOI: 10.1085/jgp.201811998] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are evolutionarily ancient sensory proteins that detect and integrate a wide range of physical and chemical stimuli. TRP channels are fundamental for numerous biological processes and are therefore associated with a multitude of inherited and acquired human disorders. In contrast to many other major ion channel families, high-resolution structures of TRP channels were not available before 2013. Remarkably, however, the subsequent “resolution revolution” in cryo-EM has led to an explosion of TRP structures in the last few years. These structures have confirmed that TRP channels assemble as tetramers and resemble voltage-gated ion channels in their overall architecture. But beyond the relatively conserved transmembrane core embedded within the lipid bilayer, each TRP subtype appears to be endowed with a unique set of soluble domains that may confer diverse regulatory mechanisms. Importantly, TRP channel structures have revealed sites and mechanisms of action of numerous synthetic and natural compounds, as well as those for endogenous ligands such as lipids, Ca2+, and calmodulin. Here, I discuss these recent findings with a particular focus on the conserved transmembrane region and how these structures may help to rationally target this important class of ion channels for the treatment of numerous human conditions.
Collapse
Affiliation(s)
- Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
47
|
Yu Q, Anderson DE, Kaur R, Fisher AJ, Ames JB. The Crystal Structure of Calmodulin Bound to the Cardiac Ryanodine Receptor (RyR2) at Residues Phe4246-Val4271 Reveals a Fifth Calcium Binding Site. Biochemistry 2021; 60:1088-1096. [PMID: 33754699 PMCID: PMC8211408 DOI: 10.1021/acs.biochem.1c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calmodulin (CaM) regulates the activity of a Ca2+ channel known as the cardiac ryanodine receptor (RyR2), which facilitates the release of Ca2+ from the sarcoplasmic reticulum during excitation-contraction coupling in cardiomyocytes. Mutations that disrupt this CaM-dependent channel inactivation result in cardiac arrhythmias. RyR2 contains three different CaM binding sites: CaMBD1 (residues 1940-1965), CaMBD2 (residues 3580-3611), and CaMBD3 (residues 4246-4275). Here, we report a crystal structure of Ca2+-bound CaM bound to RyR2 CaMBD3. The structure reveals Ca2+ bound to the four EF-hands of CaM as well as a fifth Ca2+ bound to CaM in the interdomain linker region involving Asp81 and Glu85. The CaM mutant E85A abolishes the binding of the fifth Ca2+ and weakens the binding of CaMBD3 to Ca2+-bound CaM. Thus, the binding of the fifth Ca2+ is important for stabilizing the complex in solution and is not a crystalline artifact. The CaMBD3 peptide in the complex adopts an α-helix (between Phe4246 and Val4271) that interacts with both lobes of CaM. Hydrophobic residues in the CaMBD3 helix (Leu4255 and Leu4259) form intermolecular contacts with the CaM N-lobe, and the CaMBD3 mutations (L4255A and L4259A) each weaken the binding of CaM to RyR2. Aromatic residues on the opposite side of the CaMBD3 helix (Phe4246 and Tyr4250) interact with the CaM C-lobe, but the mutants (F4246A and Y4250A) have no detectable effect on CaM binding in solution. We suggest that the binding of CaM to CaMBD3 and the binding of a fifth Ca2+ to CaM may contribute to the regulation of RyR2 channel function.
Collapse
Affiliation(s)
- Qinhong Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - David E Anderson
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ramanjeet Kaur
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - James B Ames
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
48
|
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021; 433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these "missing" regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant 'unstructural' biology.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jean-Martin Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
49
|
Nett V, Erhardt N, Wyatt A, Wissenbach U. Human TRPV6-pathies caused by gene mutations. Biochim Biophys Acta Gen Subj 2021; 1865:129873. [PMID: 33610740 DOI: 10.1016/j.bbagen.2021.129873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
The TRP-family of ion channels consists of 27 members in humans. Most TRP channels are non- selective cation channels with the exception of TRPV5 and TRPV6 which exhibit a high permeability for Ca2+ ions. A functional channel is formed by 4 identical subunits [1]. A growing number of mutations are present in human TRPV6 genes which alter channel function and can lead to elevated blood levels of the parathyroid hormone accompanied by transient hyperparathyroidism. Recent publications suggest that TRPV6 mutations could also trigger non-alcoholic chronic pancreatitis. This review summarises the consequences of these mutations within the TRPV6 gene.
Collapse
Affiliation(s)
- Verena Nett
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Nicole Erhardt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Amanda Wyatt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
50
|
Involvement of pore helix in voltage-dependent inactivation of TRPM5 channel. Heliyon 2021; 7:e06102. [PMID: 33553759 PMCID: PMC7848652 DOI: 10.1016/j.heliyon.2021.e06102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/21/2020] [Accepted: 01/22/2021] [Indexed: 12/05/2022] Open
Abstract
The transient receptor potential melastatin 5 (TRPM5) channel is a monovalent-permeable cation channel that is activated by intracellular Ca2+. Expression of TRPM5 has been shown in taste cells, pancreas, brainstem and olfactory epithelium, and this channel is thought to be involved in controlling membrane potentials. In whole-cell patch-clamp recordings, TRPM5 exhibited voltage-dependent inactivation at negative membrane potentials and time constant of voltage-dependent inactivation of TRPM5 did not depend on the intracellular Ca2+ concentrations between 100 and 500 nM. Alanine substitution at Y913 and I916 in the pore helix of TRPM5 increased time constant of voltage-dependent inactivation. Meanwhile, voltage-dependent inactivation was reduced in TRPM5 mutants having glycine substitution at L901, Y913, Q915 and I916 in the pore helix. From these results, we conclude that the pore helix in the outer pore loop might play a role in voltage-dependent inactivation of TRPM5.
Collapse
|