1
|
Seeber M, Stangl M, Vallejo Martelo M, Topalovic U, Hiller S, Halpern CH, Langevin JP, Rao VR, Fried I, Eliashiv D, Suthana N. Human neural dynamics of real-world and imagined navigation. Nat Hum Behav 2025; 9:781-793. [PMID: 40065137 PMCID: PMC12018265 DOI: 10.1038/s41562-025-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/17/2025] [Indexed: 03/16/2025]
Abstract
The ability to form episodic memories and later imagine them is integral to the human experience, influencing our recollection of the past and envisioning of the future. While rodent studies suggest the medial temporal lobe, especially the hippocampus, is involved in these functions, its role in human imagination remains uncertain. In human participants, imaginations can be explicitly instructed and reported. Here we investigate hippocampal theta oscillations during real-world and imagined navigation using motion capture and intracranial electroencephalographic recordings from individuals with chronically implanted medial temporal lobe electrodes. Our results revealed intermittent theta dynamics, particularly within the hippocampus, encoding spatial information and partitioning navigational routes into linear segments during real-world navigation. During imagined navigation, theta dynamics exhibited similar patterns despite the absence of external cues. A statistical model successfully reconstructed real-world and imagined positions, providing insights into the neural mechanisms underlying human navigation and imagination, with implications for understanding memory in real-world settings.
Collapse
Affiliation(s)
- Martin Seeber
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| | - Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering and Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Neurophotonics Center, Boston University, Boston, MA, USA
| | - Mauricio Vallejo Martelo
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Uros Topalovic
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Perelman School of Medicine, Richards Medical Research Laboratories, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Itzhak Fried
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Llana T, Mendez M, Juan MC, Mendez-Lopez M. Navigational object-location memory assessment in real and virtual environments: A systematic review. Behav Brain Res 2025; 480:115388. [PMID: 39644996 DOI: 10.1016/j.bbr.2024.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Navigational object-location memory (OLM) is a form of spatial memory involving actual or virtual body displacement for repositioning previously encoded objects within an environment. Despite its potential for higher ecological validity measures, navigational OLM has been less frequently assessed than static OLM. The present systematic review aims to characterize the methodology and devices used for OLM assessment in navigational real and virtual environments and synthesize recent literature to offer a comprehensive overview of OLM performance in both pathological and non-pathological adult samples. A search through four different databases was conducted, identifying 39 studies. Most studies assessed navigational OLM in healthy adults by 2-dimensional or 3-dimensional computerized tasks, although immersive Virtual Reality (VR) devices were also frequently employed. Small environments and objects with high-semantic value were predominantly used, with assessment mainly conducted immediately after learning through free-recall tasks. The findings revealed that healthy samples outperformed clinical ones in navigational OLM. Men showed superior performance compared to women when cues or landmarks were used, but this advantage disappeared in their absence. Better results were also noted with shorter intervals between learning and recall. Fewer OLM errors occurred in real environments compared to both immersive and non-immersive VR. Influences of environmental features, object semantics, and participant characteristics on OLM performance were also observed. These results highlight the need for standardized methodologies, the inclusion of a broader age range in populations, and careful control over the devices, environments, and objects used in navigational OLM assessments.
Collapse
Affiliation(s)
- Tania Llana
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, Oviedo, Asturias 33011, Spain.
| | - Marta Mendez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, Oviedo, Asturias 33011, Spain.
| | - M-Carmen Juan
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, Valencia 46022, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, Aragón 50009, Spain; IIS Aragón, San Juan Bosco, 13, Zaragoza, Aragón 50009, Spain.
| |
Collapse
|
3
|
Rau EMB, Fellner MC, Heinen R, Zhang H, Yin Q, Vahidi P, Kobelt M, Asano E, Kim-McManus O, Sattar S, Lin JJ, Auguste KI, Chang EF, King-Stephens D, Weber PB, Laxer KD, Knight RT, Johnson EL, Ofen N, Axmacher N. Reinstatement and transformation of memory traces for recognition. SCIENCE ADVANCES 2025; 11:eadp9336. [PMID: 39970226 PMCID: PMC11838014 DOI: 10.1126/sciadv.adp9336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Episodic memory relies on the formation and retrieval of content-specific memory traces. In addition to their veridical reactivation, previous studies have indicated that traces may undergo substantial transformations. However, the exact time course and regional distribution of reinstatement and transformation during recognition memory have remained unclear. We applied representational similarity analysis to human intracranial electroencephalography to track the spatiotemporal dynamics underlying the reinstatement and transformation of memory traces. Specifically, we examined how reinstatement and transformation of item-specific representations across occipital, ventral visual, and lateral parietal cortices contribute to successful memory formation and recognition. Our findings suggest that reinstatement in temporal cortex and transformation in parietal cortex coexist and provide complementary strategies for recognition. Further, we find that generalization and differentiation of neural representations contribute to memory and probe memory-specific correspondence with deep neural network (DNN) model features. Our results suggest that memory formation is particularly supported by generalized and mnemonic representational formats beyond the visual features of a DNN.
Collapse
Affiliation(s)
- Elias M. B. Rau
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Rebekka Heinen
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Qin Yin
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Parisa Vahidi
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, USA
| | - Malte Kobelt
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Eishi Asano
- Departments of Pediatrics and Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Olivia Kim-McManus
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Division of Child Neurology, Rady Children’s Hospital, San Diego, CA, USA
| | - Shifteh Sattar
- Division of Child Neurology, Rady Children’s Hospital, San Diego, CA, USA
| | - Jack J. Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Kurtis I. Auguste
- Department of Pediatric Neurosurgery, Benioff Children's Hospital, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Peter B. Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Kenneth D. Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Robert T. Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Elizabeth L. Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Morrow E, Clewett D. Distortion of overlapping memories relates to arousal and anxiety. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:154-172. [PMID: 39379767 DOI: 10.3758/s13415-024-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Everyday experiences often overlap, challenging our ability to maintain distinct episodic memories. One way to resolve such interference is by exaggerating subtle differences between remembered events, a phenomenon known as memory repulsion. Here, we tested whether repulsion is influenced by emotional arousal, when resolving memory interference is perhaps most needed. We adapted an existing paradigm in which participants repeatedly studied object-face associations. Participants studied two different-colored versions of each object: a to-be-tested "target" and its not-to-be-tested "competitor" pair mate. The level of interference between target and competitor pair mates was manipulated by making the object colors either highly similar or less similar, depending on the participant group. To manipulate arousal, the competitor object-face associations were preceded by either a neutral tone or an aversive and arousing burst of white noise. Memory distortion for the color of the target objects was tested after each study round to examine whether memory distortions emerge after learning. We found that participants with greater sound-induced pupil dilations, an index of physiological arousal, showed greater memory attraction of target colors towards highly similar competitor colors. Greater memory attraction was also correlated with greater memory interference in the last round of learning. Additionally, individuals who self-reported higher trait anxiety showed greater memory attraction when one of the overlapping memories was associated with something aversive. Our findings suggest that memories of similar neutral and arousing events may blur together after repeated exposures, especially in individuals who show higher arousal responses and symptoms of anxiety.
Collapse
Affiliation(s)
- Erin Morrow
- Department of Psychology, University of California, Los Angeles, 5558 Pritzker Hall, Los Angeles, CA, 90095, USA
| | - David Clewett
- Department of Psychology, University of California, Los Angeles, 5558 Pritzker Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Meziane HB, Jabès A, Klencklen G, Banta Lavenex P, Lavenex P. EEG markers of successful allocentric spatial working memory maintenance in humans. Eur J Neurosci 2024; 60:4421-4436. [PMID: 38863237 DOI: 10.1111/ejn.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Several brain regions in the frontal, occipital and medial temporal lobes are known to contribute to spatial information processing. In contrast, the oscillatory patterns contributing to allocentric spatial working memory maintenance are poorly understood, especially in humans. Here, we tested twenty-three 21- to 32-year-old and twenty-two 64- to 76-year-old healthy right-handed adults in a real-world, spatial working memory task and recorded electroencephalographic (EEG) activity during the maintenance period. We established criteria for designating recall trials as perfect (no errors) or failed (errors and random search) and identified 8 young and 13 older adults who had at least 1 perfect and 1 failed trial amongst 10 recall trials. Individual alpha frequency-based analyses were used to identify oscillatory patterns during the maintenance period of perfect and failed trials. Spectral scalp topographies showed that individual theta frequency band relative power was stronger in perfect than in failed trials in the frontal midline and posterior regions. Similarly, gamma band (30-40 Hz) relative power was stronger in perfect than in failed trials over the right motor cortex. Exact low-resolution brain electromagnetic tomography in the frequency domain identified greater theta power in perfect than in failed trials in the secondary visual area (BA19) and greater gamma power in perfect than in failed trials in the right supplementary motor area. The findings of this exploratory study suggest that theta oscillations in the occipital lobe and gamma oscillations in the secondary motor cortex (BA6) play a particular role in successful allocentric spatial working memory maintenance.
Collapse
Affiliation(s)
- Hadj Boumediene Meziane
- Faculty of Psychology, Swiss Distance University Institute, Brig, Switzerland
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Adeline Jabès
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Giuliana Klencklen
- Faculty of Psychology, Swiss Distance University Institute, Brig, Switzerland
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Pamela Banta Lavenex
- Faculty of Psychology, Swiss Distance University Institute, Brig, Switzerland
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Pierre Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Guth TA, Brandt A, Reinacher PC, Schulze-Bonhage A, Jacobs J, Kunz L. Theta-phase locking of single neurons during human spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599841. [PMID: 38948829 PMCID: PMC11212943 DOI: 10.1101/2024.06.20.599841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The precise timing of single-neuron activity in relation to local field potentials may support various cognitive functions. Extensive research in rodents, along with some evidence in humans, suggests that single-neuron activity at specific phases of theta oscillations plays a crucial role in memory processes. Our fundamental understanding of such theta-phase locking in humans and its dependency on basic electrophysiological properties of the local field potential is still limited, however. Here, using single-neuron recordings in epilepsy patients performing a spatial memory task, we thus aimed at improving our understanding of factors modulating theta-phase locking in the human brain. Combining a generalized-phase approach for frequency-adaptive theta-phase estimation with time-resolved spectral parameterization, our results show that theta-phase locking is a strong and prevalent phenomenon across human medial temporal lobe regions, both during spatial memory encoding and retrieval. Neuronal theta-phase locking increased during periods of elevated theta power, when clear theta oscillations were present, and when aperiodic activity exhibited steeper slopes. Theta-phase locking was similarly strong during successful and unsuccessful memory, and most neurons activated at similar theta phases between encoding and retrieval. Some neurons changed their preferred theta phases between encoding and retrieval, in line with the idea that different memory processes are separated within the theta cycle. Together, these results help disentangle how different properties of local field potentials and memory states influence theta-phase locking of human single neurons. This contributes to a better understanding of how interactions between single neurons and local field potentials may support human spatial memory.
Collapse
Affiliation(s)
- Tim A. Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Lin R, Meng X, Chen F, Li X, Jensen O, Theeuwes J, Wang B. Neural evidence for attentional capture by salient distractors. Nat Hum Behav 2024; 8:932-944. [PMID: 38538771 DOI: 10.1038/s41562-024-01852-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Salient objects often capture our attention, serving as distractors and hindering our current goals. It remains unclear when and how salient distractors interact with our goals, and our knowledge on the neural mechanisms responsible for attentional capture is limited to a few brain regions recorded from non-human primates. Here we conducted a multivariate analysis on human intracranial signals covering most brain regions and successfully dissociated distractor-specific representations from target-arousal signals in the high-frequency (60-100 Hz) activity. We found that salient distractors were processed rapidly around 220 ms, while target-tuning attention was attenuated simultaneously, supporting initial capture by distractors. Notably, neuronal activity specific to the distractor representation was strongest in the superior and middle temporal gyrus, amygdala and anterior cingulate cortex, while there were smaller contributions from the parietal and frontal cortices. These results provide neural evidence for attentional capture by salient distractors engaging a much larger network than previously appreciated.
Collapse
Affiliation(s)
- Rongqi Lin
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Fuyong Chen
- Department of Neurosurgery, University of Hongkong Shenzhen Hospital, Shenzhen, China
| | - Xinyu Li
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Benchi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
8
|
Yang D, Kang MK, Huang G, Eggebrecht AT, Hong KS. Repetitive Transcranial Alternating Current Stimulation to Improve Working Memory: An EEG-fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1257-1266. [PMID: 38498739 DOI: 10.1109/tnsre.2024.3377138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Transcranial electrical stimulation has demonstrated the potential to enhance cognitive functions such as working memory, learning capacity, and attentional allocation. Recently, it was shown that periodic stimulation within a specific duration could augment the human brain's neuroplasticity. This study investigates the effects of repetitive transcranial alternating current stimulation (tACS; 1 mA, 5 Hz, 2 min duration) on cognitive function, functional connectivity, and topographic changes using both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Fifteen healthy subjects were recruited to measure brain activity in the pre-, during-, and post-stimulation sessions under tACS and sham stimulation conditions. Fourteen trials of working memory tasks and eight repetitions of tACS/sham stimulation with a 1-minute intersession interval were applied to the frontal cortex of the participants. The working memory score, EEG band-wise powers, EEG topography, concentration changes of oxygenated hemoglobin, and functional connectivity (FC) were individually analyzed to quantify the behavioral and neurophysiological effects of tACS. Our results indicate that tACS increases: i) behavioral scores (i.e., 15.08, ) and EEG band-wise powers (i.e., theta and beta bands) compared to the sham stimulation condition, ii) FC of both EEG-fNIRS signals, especially in the large-scale brain network communication and interhemispheric connections, and iii) the hemodynamic response in comparison to the pre-stimulation session and the sham condition. Conclusively, the repetitive theta-band tACS stimulation improves the working memory capacity regarding behavioral and neuroplasticity perspectives. Additionally, the proposed fNIRS biomarkers (mean, slope), EEG band-wise powers, and FC can be used as neuro-feedback indices for closed-loop brain stimulation.
Collapse
|
9
|
Boecker H, Daamen M, Kunz L, Geiß M, Müller M, Neuss T, Henschel L, Stirnberg R, Upadhyay N, Scheef L, Martin JA, Stöcker T, Radbruch A, Attenberger U, Axmacher N, Maurer A. Hippocampal subfield plasticity is associated with improved spatial memory. Commun Biol 2024; 7:271. [PMID: 38443439 PMCID: PMC10914736 DOI: 10.1038/s42003-024-05949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Physical exercise studies are generally underrepresented in young adulthood. Seventeen subjects were randomized into an intervention group (24.2 ± 3.9 years; 3 trainings/week) and 10 subjects into a passive control group (23.7 ± 4.2 years), over a duration of 6 months. Every two months, performance diagnostics, computerized spatial memory tests, and 3 Tesla magnetic resonance imaging were conducted. Here we find that the intervention group, compared to controls, showed increased cardiorespiratory fitness, spatial memory performance and subregional hippocampal volumes over time. Time-by-condition interactions occurred in right cornu ammonis 4 body and (trend only) dentate gyrus, left hippocampal tail and left subiculum. Increases in spatial memory performance correlated with hippocampal body volume changes and, subregionally, with left subicular volume changes. In conclusion, findings support earlier reports of exercise-induced subregional hippocampal volume changes. Such exercise-related plasticity may not only be of interest for young adults with clinical disorders of hippocampal function, but also for sedentary normal cohorts.
Collapse
Affiliation(s)
- Henning Boecker
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany.
| | - Marcel Daamen
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Melanie Geiß
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Moritz Müller
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Neuss
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Leonie Henschel
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Rüdiger Stirnberg
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lukas Scheef
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jason A Martin
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| |
Collapse
|
10
|
Kunz L, Staresina BP, Reinacher PC, Brandt A, Guth TA, Schulze-Bonhage A, Jacobs J. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat Neurosci 2024; 27:587-599. [PMID: 38366143 PMCID: PMC10917673 DOI: 10.1038/s41593-023-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
Associative memory enables the encoding and retrieval of relations between different stimuli. To better understand its neural basis, we investigated whether associative memory involves temporally correlated spiking of medial temporal lobe (MTL) neurons that exhibit stimulus-specific tuning. Using single-neuron recordings from patients with epilepsy performing an associative object-location memory task, we identified the object-specific and place-specific neurons that represented the separate elements of each memory. When patients encoded and retrieved particular memories, the relevant object-specific and place-specific neurons activated together during hippocampal ripples. This ripple-locked coactivity of stimulus-specific neurons emerged over time as the patients' associative learning progressed. Between encoding and retrieval, the ripple-locked timing of coactivity shifted, suggesting flexibility in the interaction between MTL neurons and hippocampal ripples according to behavioral demands. Our results are consistent with a cellular account of associative memory, in which hippocampal ripples coordinate the activity of specialized cellular populations to facilitate links between stimuli.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim A Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Köster M. The theta-gamma code in predictive processing and mnemonic updating. Neurosci Biobehav Rev 2024; 158:105529. [PMID: 38176633 DOI: 10.1016/j.neubiorev.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Predictive processing has become a leading theory about how the brain works. Yet, it remains an open question how predictive processes are realized in the brain. Here I discuss theta-gamma coupling as one potential neural mechanism for prediction and model updating. Building on Lisman and colleagues SOCRATIC model, theta-gamma coupling has been associated with phase precession and learning phenomena in medio-temporal lobe of rodents, where it completes and retains a sequence of places or items (i.e., predictive models). These sequences may be updated upon prediction errors (i.e., model updating), signaled by dopaminergic inputs from prefrontal networks. This framework, spanning the molecular to the network level, matches excitingly well with recent findings on predictive processing, mnemonic updating, and perceptual foraging for the theta-gamma code in human cognition. In sum, I use the case of theta-gamma coupling to link the predictive processing account, a very general concept of how the brain works, to specific neural processes which may implement predictive processing and model updating at the cognitive, network, cellular and molecular level.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Sedanstraße 1, 93055 Regensburg, Germany.
| |
Collapse
|
12
|
Noguchi Y. Harmonic memory signals in the human cerebral cortex induced by semantic relatedness of words. NPJ SCIENCE OF LEARNING 2024; 9:6. [PMID: 38355685 PMCID: PMC10866900 DOI: 10.1038/s41539-024-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
When we memorize multiple words simultaneously, semantic relatedness among those words assists memory. For example, the information about "apple", "banana," and "orange" will be connected via a common concept of "fruits" and become easy to retain and recall. Neural mechanisms underlying this semantic integration in verbal working memory remain unclear. Here I used electroencephalography (EEG) and investigated neural signals when healthy human participants memorized five nouns semantically related (Sem trial) or not (NonSem trial). The regularity of oscillatory signals (8-30 Hz) during the retention period was found to be lower in NonSem than Sem trials, indicating that memorizing words unrelated to each other induced a non-harmonic (irregular) waveform in the temporal cortex. These results suggest that (i) semantic features of a word are retained as a set of neural oscillations at specific frequencies and (ii) memorizing words sharing a common semantic feature produces harmonic brain responses through a resonance or integration (sharing) of the oscillatory signals.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
13
|
Yang L, Chen X, Yang L, Li M, Shang Z. Phase-Amplitude Coupling between Theta Rhythm and High-Frequency Oscillations in the Hippocampus of Pigeons during Navigation. Animals (Basel) 2024; 14:439. [PMID: 38338082 PMCID: PMC10854523 DOI: 10.3390/ani14030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Navigation is a complex task in which the hippocampus (Hp), which plays an important role, may be involved in interactions between different frequency bands. However, little is known whether this cross-frequency interaction exists in the Hp of birds during navigation. Therefore, we examined the electrophysiological characteristics of hippocampal cross-frequency interactions of domestic pigeons (Columba livia domestica) during navigation. Two goal-directed navigation tasks with different locomotor modes were designed, and the local field potentials (LFPs) were recorded for analysis. We found that the amplitudes of high-frequency oscillations in Hp were dynamically modulated by the phase of co-occurring theta-band oscillations both during ground-based maze and outdoor flight navigation. The high-frequency amplitude sub-frequency bands modulated by the hippocampal theta phase were different at different tasks, and this process was independent of the navigation path and goal. These results suggest that phase-amplitude coupling (PAC) in the avian Hp may be more associated with the ongoing cognitive demands of navigational processes. Our findings contribute to the understanding of potential mechanisms of hippocampal PAC on multi-frequency informational interactions in avian navigation and provide valuable insights into cross-species evolution.
Collapse
Affiliation(s)
- Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Xi Chen
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Schonhaut DR, Rao AM, Ramayya AG, Solomon EA, Herweg NA, Fried I, Kahana MJ. MTL neurons phase-lock to human hippocampal theta. eLife 2024; 13:e85753. [PMID: 38193826 PMCID: PMC10948143 DOI: 10.7554/elife.85753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/08/2024] [Indexed: 01/10/2024] Open
Abstract
Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2-4 Hz) or fast (6-10 Hz) theta bands, with a significant subset exhibiting nested slow theta × beta frequency (13-20 Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.
Collapse
Affiliation(s)
- Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Aditya M Rao
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Ashwin G Ramayya
- Department of Neurosurgery, University of PennsylvaniaPhiladelphiaUnited States
| | - Ethan A Solomon
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Nora A Herweg
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Itzhak Fried
- Department of Neurosurgery, Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos AngelesUnited States
- Faculty of Medicine, Tel-Aviv UniversityTel-AvivIsrael
| | - Michael J Kahana
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
15
|
Ideriha T, Ushiyama J. Behavioral fluctuation reflecting theta-rhythmic activation of sequential working memory. Sci Rep 2024; 14:550. [PMID: 38177622 PMCID: PMC10767028 DOI: 10.1038/s41598-023-51128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024] Open
Abstract
Sequential working memory, the ability to actively maintain sequential information, is essential for human cognition. The neural representation of each item in sequential working memory is thought to be activated rhythmically within the theta (3-7 Hz) range of human electrophysiology. In the current study, we predicted that if neural representations of sequential working memory items were truly activated rhythmically, periodic fluctuations in behavior would be evident. That is, the ease and speed of recalling each memory item would oscillate depending on the interval between memory encoding and recall, affected by the rhythmic neural representation. We conducted detailed analyses of reaction times for retrieving sequential and non-sequential information in eight experiments (total n = 125). The results revealed that reaction times for recalling sequential information showed fluctuation in the theta range as a function of the interval between memory encoding and recall, which was significantly stronger than that observed when the task did not require participants to remember the sequential order. Taken together, the current findings revealed that participants' behavior exhibited theta-rhythmic fluctuation when recalling sequential information in a relatively large sample, supporting theta phase-dependent coding of sequential working memory.
Collapse
Affiliation(s)
- Takuya Ideriha
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan.
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Muhle-Karbe PS, Sheahan H, Pezzulo G, Spiers HJ, Chien S, Schuck NW, Summerfield C. Goal-seeking compresses neural codes for space in the human hippocampus and orbitofrontal cortex. Neuron 2023; 111:3885-3899.e6. [PMID: 37725981 DOI: 10.1016/j.neuron.2023.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
Humans can navigate flexibly to meet their goals. Here, we asked how the neural representation of allocentric space is distorted by goal-directed behavior. Participants navigated an agent to two successive goal locations in a grid world environment comprising four interlinked rooms, with a contextual cue indicating the conditional dependence of one goal location on another. Examining the neural geometry by which room and context were encoded in fMRI signals, we found that map-like representations of the environment emerged in both hippocampus and neocortex. Cognitive maps in hippocampus and orbitofrontal cortices were compressed so that locations cued as goals were coded together in neural state space, and these distortions predicted successful learning. This effect was captured by a computational model in which current and prospective locations are jointly encoded in a place code, providing a theory of how goals warp the neural representation of space in macroscopic neural signals.
Collapse
Affiliation(s)
- Paul S Muhle-Karbe
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; School of Psychology, University of Birmingham, Birmingham B15 2SA, UK; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, UK.
| | - Hannah Sheahan
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Google DeepMind, London EC4A 3TW, UK
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy
| | - Hugo J Spiers
- Department of Experimental Psychology, University College London, London WC1E 6BT, UK
| | - Samson Chien
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, 14195 Berlin, Germany; Institute of Psychology, Universität Hamburg, 20146 Hamburg, Germany
| | - Christopher Summerfield
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, UK.
| |
Collapse
|
17
|
Thornberry C, Caffrey M, Commins S. Theta oscillatory power decreases in humans are associated with spatial learning in a virtual water maze task. Eur J Neurosci 2023; 58:4341-4356. [PMID: 37957526 DOI: 10.1111/ejn.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Theta oscillations (4-8 Hz) in humans play a role in navigation processes, including spatial encoding, retrieval and sensorimotor integration. Increased theta power at frontal and parietal midline regions is known to contribute to successful navigation. However, the dynamics of cortical theta and its role in spatial learning are not fully understood. This study aimed to investigate theta oscillations via electroencephalogram (EEG) during spatial learning in a virtual water maze. Participants were separated into a learning group (n = 25) who learned the location of a hidden goal across 12 trials, or a time-matched non-learning group (n = 25) who were required to simply navigate the same arena, but without a goal. We compared all trials, at two phases of learning, the trial start and the goal approach. We also compared the first six trials with the last six trials within-groups. The learning group showed reduced low-frequency theta power at the frontal and parietal midline during the start phase and largely reduced theta combined with a short increase at both midlines during the goal-approach phase. These patterns were not found in the non-learning group, who instead displayed extensive increases in low-frequency oscillations at both regions during the trial start and at the parietal midline during goal approach. Our results support the theory that theta plays a crucial role in spatial encoding during exploration, as opposed to sensorimotor integration. We suggest our findings provide evidence for a link between learning and a reduction of theta oscillations in humans.
Collapse
Affiliation(s)
- Conor Thornberry
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Michelle Caffrey
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
18
|
Wu Y, Chen ZS. Computational models for state-dependent traveling waves in hippocampal formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541436. [PMID: 37292865 PMCID: PMC10245836 DOI: 10.1101/2023.05.19.541436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hippocampal theta (4-10 Hz) oscillations have been identified as traveling waves in both rodents and humans. In freely foraging rodents, the theta traveling wave is a planar wave propagating from the dorsal to ventral hippocampus along the septotemporal axis. Motivated from experimental findings, we develop a spiking neural network of excitatory and inhibitory neurons to generate state-dependent hippocampal traveling waves to improve current mechanistic understanding of propagating waves. Model simulations demonstrate the necessary conditions for generating wave propagation and characterize the traveling wave properties with respect to model parameters, running speed and brain state of the animal. Networks with long-range inhibitory connections are more suitable than networks with long-range excitatory connections. We further generalize the spiking neural network to model traveling waves in the medial entorhinal cortex (MEC) and predict that traveling theta waves in the hippocampus and entorhinal cortex are in sink.
Collapse
|
19
|
Liu J, Chen D, Xiao X, Zhang H, Zhou W, Liang S, Kunz L, Schulze-Bonhage A, Axmacher N, Wang L. Multi-scale goal distance representations in human hippocampus during virtual spatial navigation. Curr Biol 2023; 33:2024-2033.e3. [PMID: 37148875 DOI: 10.1016/j.cub.2023.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Goal-directed navigation relies on both coarse and fine-grained coding of spatial distance between the current position of a navigating subject and a goal destination. However, the neural signatures underlying goal distance coding remain poorly understood. Using intracranial EEG recordings from the hippocampus of drug-resistant epilepsy patients who performed a virtual spatial navigation task, we found that the right hippocampal theta power was significantly modulated by goal distance and decreased with goal proximity. This modulation varied along the hippocampal longitudinal axis such that theta power in the posterior hippocampus decreased more strongly with goal proximity. Similarly, neural timescale, reflecting the duration across which information can be maintained, increased gradually from the posterior to anterior hippocampus. Taken together, this study provides empirical evidence for multi-scale spatial representations of goal distance in the human hippocampus and links the hippocampal processing of spatial information to its intrinsic temporal dynamics.
Collapse
Affiliation(s)
- Jiali Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China
| | - Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China
| | - Xue Xiao
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Wenjing Zhou
- Department of Epilepsy Center, Tsinghua University Yuquan Hospital, 5 Shijingshan Rd, Beijing 100040, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Rd, Beijing 100045, China
| | - Lukas Kunz
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China.
| |
Collapse
|
20
|
Saint Amour di Chanaz L, Pérez-Bellido A, Wu X, Lonzano-Soldevilla D, Pacheco-Estefan D, Lehongre K, Conde-Blanco E, Roldan P, Adam C, Lambrecq V, Frazzini V, Donaire A, Carreño M, Navarro V, Valero-Cabré A, Fuentemilla L. Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Curr Biol 2023; 33:1836-1843.e6. [PMID: 37060906 DOI: 10.1016/j.cub.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.
Collapse
Affiliation(s)
- Ludovico Saint Amour di Chanaz
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Alexis Pérez-Bellido
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Xiongbo Wu
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diego Lonzano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Km. 38, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Pedro Roldan
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, CNRS UMR 7225, INSERM U1127, Paris, France; Faculty of Health and Science, Cognitive Neurolab, Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Avinguda del Tibidabo, 39-43, 08035 Barcelona, Spain; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 72 E Concord Street, Boston, MA 02118, USA
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute for Biomedical Research of Bellvitge, C/ Feixa Llarga, s/n - Pavelló de Govern -Edifici Modular, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
21
|
Page WK, Sulon DW, Duffy CJ. Neural activity during monkey vehicular wayfinding. J Neurol Sci 2023; 446:120593. [PMID: 36827811 DOI: 10.1016/j.jns.2023.120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Navigation gets us from place to place, creating a path to arrive at a goal. We trained a monkey to steer a motorized cart in a large room, beginning at its trial-by-trial start location and ending at a trial-by-trial cued goal location. While the monkey steered its autonomously chosen path to its goal, we recorded neural activity simultaneously in both the hippocampus (HPC) and medial superior temporal (MST) cortex. Local field potentials (LFPs) in these sites show similar patterns of activity with the 15-30 Hz band highlighting specific room locations. In contrast, 30-100 Hz LFPs support a unified map of the behaviorally relevant start and goal locations. The single neuron responses (SNRs) do not substantially contribute to room or start-goal maps. Rather, the SNRs form a continuum from neurons that are most active when the monkey is moving on a path toward the goal, versus other neurons that are most active when the monkey deviates from paths toward the goal. Granger analyses suggest that HPC firing precedes MST firing during cueing at the trial start location, mainly mediated by off-path neurons. In contrast, MST precedes HPC firing during steering, mainly mediated by on-path neurons. Interactions between MST and HPC are mediated by the parallel activation of on-path and off-path neurons, selectively activated across stages of this wayfinding task.
Collapse
Affiliation(s)
- William K Page
- Dept. of Neurology, University of Rochester Medical Ctr., Rochester, NY 14642, USA
| | - David W Sulon
- Dept. of Neurology, Penn State Health Medical Ctr., Hershey, PA 17036, USA
| | - Charles J Duffy
- Dept. of Neurology, University of Rochester Medical Ctr., Rochester, NY 14642, USA; Dept. of Neurology, Penn State Health Medical Ctr., Hershey, PA 17036, USA; Dept. of Neurology, University Hospitals and Case Western Reserve University, Cleveland, OH 44122, USA.
| |
Collapse
|
22
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
23
|
Kerrén C, van Bree S, Griffiths BJ, Wimber M. Phase separation of competing memories along the human hippocampal theta rhythm. eLife 2022; 11:e80633. [PMID: 36394367 PMCID: PMC9671495 DOI: 10.7554/elife.80633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Competition between overlapping memories is considered one of the major causes of forgetting, and it is still unknown how the human brain resolves such mnemonic conflict. In the present magnetoencephalography (MEG) study, we empirically tested a computational model that leverages an oscillating inhibition algorithm to minimise overlap between memories. We used a proactive interference task, where a reminder word could be associated with either a single image (non-competitive condition) or two competing images, and participants were asked to always recall the most recently learned word-image association. Time-resolved pattern classifiers were trained to detect the reactivated content of target and competitor memories from MEG sensor patterns, and the timing of these neural reactivations was analysed relative to the phase of the dominant hippocampal 3 Hz theta oscillation. In line with our pre-registered hypotheses, target and competitor reactivations locked to different phases of the hippocampal theta rhythm after several repeated recalls. Participants who behaviourally experienced lower levels of interference also showed larger phase separation between the two overlapping memories. The findings provide evidence that the temporal segregation of memories, orchestrated by slow oscillations, plays a functional role in resolving mnemonic competition by separating and prioritising relevant memories under conditions of high interference.
Collapse
Affiliation(s)
- Casper Kerrén
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Sander van Bree
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Benjamin J Griffiths
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Maria Wimber
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
24
|
Higgins C, van Es MWJ, Quinn AJ, Vidaurre D, Woolrich MW. The relationship between frequency content and representational dynamics in the decoding of neurophysiological data. Neuroimage 2022; 260:119462. [PMID: 35872176 PMCID: PMC10565838 DOI: 10.1016/j.neuroimage.2022.119462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses. We therefore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. However, this does not negate the accompanying interpretational challenges. We show that these can be resolved by decoding paradigms that utilise both a signal's instantaneous magnitude and its local gradient information as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are higher, more stable over time, and free of the technical and interpretational challenges previously characterised. We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations of decoding results by linking them more clearly to the underlying signal characteristics that drive them.
Collapse
Affiliation(s)
- Cameron Higgins
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mats W J van Es
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Köster M, Gruber T. Rhythms of human attention and memory: An embedded process perspective. Front Hum Neurosci 2022; 16:905837. [PMID: 36277046 PMCID: PMC9579292 DOI: 10.3389/fnhum.2022.905837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
It remains a dogma in cognitive neuroscience to separate human attention and memory into distinct modules and processes. Here we propose that brain rhythms reflect the embedded nature of these processes in the human brain, as evident from their shared neural signatures: gamma oscillations (30-90 Hz) reflect sensory information processing and activated neural representations (memory items). The theta rhythm (3-8 Hz) is a pacemaker of explicit control processes (central executive), structuring neural information processing, bit by bit, as reflected in the theta-gamma code. By representing memory items in a sequential and time-compressed manner the theta-gamma code is hypothesized to solve key problems of neural computation: (1) attentional sampling (integrating and segregating information processing), (2) mnemonic updating (implementing Hebbian learning), and (3) predictive coding (advancing information processing ahead of the real time to guide behavior). In this framework, reduced alpha oscillations (8-14 Hz) reflect activated semantic networks, involved in both explicit and implicit mnemonic processes. Linking recent theoretical accounts and empirical insights on neural rhythms to the embedded-process model advances our understanding of the integrated nature of attention and memory - as the bedrock of human cognition.
Collapse
Affiliation(s)
- Moritz Köster
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
26
|
Safron A, Çatal O, Verbelen T. Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition. Front Syst Neurosci 2022; 16:787659. [PMID: 36246500 PMCID: PMC9563348 DOI: 10.3389/fnsys.2022.787659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneous localization and mapping (SLAM) represents a fundamental problem for autonomous embodied systems, for which the hippocampal/entorhinal system (H/E-S) has been optimized over the course of evolution. We have developed a biologically-inspired SLAM architecture based on latent variable generative modeling within the Free Energy Principle and Active Inference (FEP-AI) framework, which affords flexible navigation and planning in mobile robots. We have primarily focused on attempting to reverse engineer H/E-S "design" properties, but here we consider ways in which SLAM principles from robotics may help us better understand nervous systems and emergent minds. After reviewing LatentSLAM and notable features of this control architecture, we consider how the H/E-S may realize these functional properties not only for physical navigation, but also with respect to high-level cognition understood as generalized simultaneous localization and mapping (G-SLAM). We focus on loop-closure, graph-relaxation, and node duplication as particularly impactful architectural features, suggesting these computational phenomena may contribute to understanding cognitive insight (as proto-causal-inference), accommodation (as integration into existing schemas), and assimilation (as category formation). All these operations can similarly be describable in terms of structure/category learning on multiple levels of abstraction. However, here we adopt an ecological rationality perspective, framing H/E-S functions as orchestrating SLAM processes within both concrete and abstract hypothesis spaces. In this navigation/search process, adaptive cognitive equilibration between assimilation and accommodation involves balancing tradeoffs between exploration and exploitation; this dynamic equilibrium may be near optimally realized in FEP-AI, wherein control systems governed by expected free energy objective functions naturally balance model simplicity and accuracy. With respect to structure learning, such a balance would involve constructing models and categories that are neither too inclusive nor exclusive. We propose these (generalized) SLAM phenomena may represent some of the most impactful sources of variation in cognition both within and between individuals, suggesting that modulators of H/E-S functioning may potentially illuminate their adaptive significances as fundamental cybernetic control parameters. Finally, we discuss how understanding H/E-S contributions to G-SLAM may provide a unifying framework for high-level cognition and its potential realization in artificial intelligences.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Ozan Çatal
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| | - Tim Verbelen
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| |
Collapse
|
27
|
Xue G. From remembering to reconstruction: The transformative neural representation of episodic memory. Prog Neurobiol 2022; 219:102351. [PMID: 36089107 DOI: 10.1016/j.pneurobio.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Although memory has long been recognized as a generative process, neural research of memory in recent decades has been predominantly influenced by Tulving's "mental time traveling" perspective and focused on the reactivation and consolidation of encoded memory representations. With the development of multiple powerful analytical approaches to characterize the contents and formats of neural representations, recent studies are able to provide detailed examinations of the representations at various processing stages and have provided exciting new insights into the transformative nature of episodic memory. These studies have revealed the rapid, substantial, and continuous transformation of memory representation during the encoding, maintenance, consolidation, and retrieval of both single and multiple events, as well as event sequences. These transformations are characterized by the abstraction, integration, differentiation, and reorganization of memory representations, enabling the long-term retention and generalization of memory. These studies mark a significant shift in perspective from remembering to reconstruction, which might better reveal the nature of memory and its roles in supporting more effective learning, adaptive decision-making, and creative problem solving.
Collapse
Affiliation(s)
- Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China; Chinese Institute for Brain Research, Beijing 102206, PR China.
| |
Collapse
|
28
|
Min Park Y, Park J, Young Kim I, Koo Kang J, Pyo Jang D. Interhemispheric Theta Coherence in the Hippocampus for Successful Object-Location Memory in Human Intracranial Encephalography. Neurosci Lett 2022; 786:136769. [DOI: 10.1016/j.neulet.2022.136769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
29
|
Scalp recorded theta activity is modulated by reward, direction, and speed during virtual navigation in freely moving humans. Sci Rep 2022; 12:2041. [PMID: 35132101 PMCID: PMC8821620 DOI: 10.1038/s41598-022-05955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Theta oscillations (~ 4–12 Hz) are dynamically modulated by speed and direction in freely moving animals. However, due to the paucity of electrophysiological recordings of freely moving humans, this mechanism remains poorly understood. Here, we combined mobile-EEG with fully immersive virtual-reality to investigate theta dynamics in 22 healthy adults (aged 18–29 years old) freely navigating a T-maze to find rewards. Our results revealed three dynamic periods of theta modulation: (1) theta power increases coincided with the participants’ decision-making period; (2) theta power increased for fast and leftward trials as subjects approached the goal location; and (3) feedback onset evoked two phase-locked theta bursts over the right temporal and frontal-midline channels. These results suggest that recording scalp EEG in freely moving humans navigating a simple virtual T-maze can be utilized as a powerful translational model by which to map theta dynamics during “real-life” goal-directed behavior in both health and disease.
Collapse
|
30
|
Nyberg N, Duvelle É, Barry C, Spiers HJ. Spatial goal coding in the hippocampal formation. Neuron 2022; 110:394-422. [PMID: 35032426 DOI: 10.1016/j.neuron.2021.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
The mammalian hippocampal formation contains several distinct populations of neurons involved in representing self-position and orientation. These neurons, which include place, grid, head direction, and boundary-vector cells, are thought to collectively instantiate cognitive maps supporting flexible navigation. However, to flexibly navigate, it is necessary to also maintain internal representations of goal locations, such that goal-directed routes can be planned and executed. Although it has remained unclear how the mammalian brain represents goal locations, multiple neural candidates have recently been uncovered during different phases of navigation. For example, during planning, sequential activation of spatial cells may enable simulation of future routes toward the goal. During travel, modulation of spatial cells by the prospective route, or by distance and direction to the goal, may allow maintenance of route and goal-location information, supporting navigation on an ongoing basis. As the goal is approached, an increased activation of spatial cells may enable the goal location to become distinctly represented within cognitive maps, aiding goal localization. Lastly, after arrival at the goal, sequential activation of spatial cells may represent the just-taken route, enabling route learning and evaluation. Here, we review and synthesize these and other evidence for goal coding in mammalian brains, relate the experimental findings to predictions from computational models, and discuss outstanding questions and future challenges.
Collapse
Affiliation(s)
- Nils Nyberg
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
31
|
Freiberg B, Cerf M. Single neuron evidence of inattentional blindness in humans. Neuropsychologia 2021; 165:108111. [PMID: 34902428 DOI: 10.1016/j.neuropsychologia.2021.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
Recording directly from the brain of a patient undergoing neurosurgery with electrodes implanted deep in her skull, we identified neurons that change their properties when the patient became consciously aware of content. Specifically, we showed the patient an established clip of a gorilla passing through the screen, unnoticeable, in a classic inattentional blindness task, and identified a neuron in the right amygdala that fired only when the patient was aware of the gorilla. A different neuron coded the moment of insight, when the patient realized that she had missed the salient gorilla in previous trials. A third cluster of neurons fired when the patient was exposed to a post-clip question ("How many passes did you count?") and reflected on the content. Neurons in this cluster altered their response behavior between unaware and aware states. To investigate the interplay between the neurons' activity and characterize the potential cascade of information flow in the brain that leads to conscious awareness, we looked at the neurons' properties change, their activities' alignment and the correlation across the cells. Examining the coherence between the spiking activity of the responsive neurons and the field potentials in neighboring sites we identified an alignment in the alpha and theta bands. This spike-field coherence hints at an involvement of attention and memory circuits in the perceptual awareness of the stimulus. Taken together, our results suggest that conscious awareness of content emerges when there is alignment between individual neurons' activity and the local field potentials. Our work provides direct neural correlate for the psychological process by which one can look at things directly but fail to perceive them with the "mind's eye".
Collapse
Affiliation(s)
| | - Moran Cerf
- Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
32
|
Ter Wal M, Linde-Domingo J, Lifanov J, Roux F, Kolibius LD, Gollwitzer S, Lang J, Hamer H, Rollings D, Sawlani V, Chelvarajah R, Staresina B, Hanslmayr S, Wimber M. Theta rhythmicity governs human behavior and hippocampal signals during memory-dependent tasks. Nat Commun 2021; 12:7048. [PMID: 34857748 PMCID: PMC8639755 DOI: 10.1038/s41467-021-27323-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Memory formation and reinstatement are thought to lock to the hippocampal theta rhythm, predicting that encoding and retrieval processes appear rhythmic themselves. Here, we show that rhythmicity can be observed in behavioral responses from memory tasks, where participants indicate, using button presses, the timing of encoding and recall of cue-object associative memories. We find no evidence for rhythmicity in button presses for visual tasks using the same stimuli, or for questions about already retrieved objects. The oscillations for correctly remembered trials center in the slow theta frequency range (1-5 Hz). Using intracranial EEG recordings, we show that the memory task induces temporally extended phase consistency in hippocampal local field potentials at slow theta frequencies, but significantly more for remembered than forgotten trials, providing a potential mechanistic underpinning for the theta oscillations found in behavioral responses.
Collapse
Affiliation(s)
- Marije Ter Wal
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Juan Linde-Domingo
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Max Planck Institute for Human Development, 14195, Berlin, Germany
| | - Julia Lifanov
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Frédéric Roux
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Luca D Kolibius
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK
| | | | - Johannes Lang
- Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Hajo Hamer
- Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - David Rollings
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Vijay Sawlani
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Ramesh Chelvarajah
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Bernhard Staresina
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Department of Experimental Psychology, University of Oxford, OX2 6GG, Oxford, UK
| | - Simon Hanslmayr
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK
| | - Maria Wimber
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK.
| |
Collapse
|
33
|
Chen D, Kunz L, Lv P, Zhang H, Zhou W, Liang S, Axmacher N, Wang L. Theta oscillations coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex. SCIENCE ADVANCES 2021; 7:eabj0200. [PMID: 34705507 PMCID: PMC8550230 DOI: 10.1126/sciadv.abj0200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Grid cells and theta oscillations are fundamental constituents of the brain’s navigation system and have been described in the entorhinal cortex (EC). Recent fMRI studies reveal that the ventromedial prefrontal cortex (vmPFC) contains grid-like representations. However, the neural mechanisms underlying human vmPFC grid-like representations and their interactions with EC grid activity have remained unknown. We conducted intracranial electroencephalography (iEEG) recordings from epilepsy patients during a virtual spatial navigation task. Oscillatory theta power in the vmPFC exhibited a sixfold rotational symmetry that was coordinated with grid-like representations in the EC. We found that synchronous theta oscillations occurred between these regions that predicted navigational performance. Analysis of information transfer revealed a unidirectional signal from vmPFC to EC during memory retrieval. Together, this study provides insights into the previously unknown neural signature and functional role of grid-like representations outside the EC and their synchronization with the entorhinal grid during human spatial navigation.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lukas Kunz
- Epilepsy Center, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Pengcheng Lv
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Wenjing Zhou
- Department of Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author.
| |
Collapse
|
34
|
Michelmann S, Price AR, Aubrey B, Strauss CK, Doyle WK, Friedman D, Dugan PC, Devinsky O, Devore S, Flinker A, Hasson U, Norman KA. Moment-by-moment tracking of naturalistic learning and its underlying hippocampo-cortical interactions. Nat Commun 2021; 12:5394. [PMID: 34518520 PMCID: PMC8438040 DOI: 10.1038/s41467-021-25376-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Humans form lasting memories of stimuli that were only encountered once. This naturally occurs when listening to a story, however it remains unclear how and when memories are stored and retrieved during story-listening. Here, we first confirm in behavioral experiments that participants can learn about the structure of a story after a single exposure and are able to recall upcoming words when the story is presented again. We then track mnemonic information in high frequency activity (70–200 Hz) as patients undergoing electrocorticographic recordings listen twice to the same story. We demonstrate predictive recall of upcoming information through neural responses in auditory processing regions. This neural measure correlates with behavioral measures of event segmentation and learning. Event boundaries are linked to information flow from cortex to hippocampus. When listening for a second time, information flow from hippocampus to cortex precedes moments of predictive recall. These results provide insight on a fine-grained temporal scale into how episodic memory encoding and retrieval work under naturalistic conditions. When listening to a story, humans learn about its structure and content. Here the authors reveal the neural processes behind episodic memory and predictive recall at a fine temporal scale in this naturalistic setting
Collapse
Affiliation(s)
- Sebastian Michelmann
- Department of Psychology, Princeton University, Princeton, NJ, USA. .,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - Amy R Price
- Department of Psychology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Bobbi Aubrey
- Department of Psychology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Camilla K Strauss
- Department of Psychology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Werner K Doyle
- School of Medicine, New York University, New York, NY, USA
| | | | | | - Orrin Devinsky
- School of Medicine, New York University, New York, NY, USA
| | - Sasha Devore
- School of Medicine, New York University, New York, NY, USA
| | - Adeen Flinker
- School of Medicine, New York University, New York, NY, USA
| | - Uri Hasson
- Department of Psychology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kenneth A Norman
- Department of Psychology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
35
|
Abstract
While behavioral evidence shows that volitionally controlled learning benefits human memory, little is known about the neural mechanisms underlying this effect. Insights from spatial navigation research in rodents point to the relevance of hippocampal theta oscillations. However, the mechanisms through which theta might support the beneficial effects of active learning in humans are currently unknown. Here, we demonstrate hippocampal theta oscillations increase during volitional learning, promoting a segregation of task-relevant representational signals according to their semantic content. Our results constitute a direct link to the animal literature on hippocampal theta oscillations and its relation to volition and memory processes. Electrophysiological studies in rodents show that active navigation enhances hippocampal theta oscillations (4–12 Hz), providing a temporal framework for stimulus-related neural codes. Here we show that active learning promotes a similar phase coding regime in humans, although in a lower frequency range (3–8 Hz). We analyzed intracranial electroencephalography (iEEG) from epilepsy patients who studied images under either volitional or passive learning conditions. Active learning increased memory performance and hippocampal theta oscillations and promoted a more accurate reactivation of stimulus-specific information during memory retrieval. Representational signals were clustered to opposite phases of the theta cycle during encoding and retrieval. Critically, during active but not passive learning, the temporal structure of intracycle reactivations in theta reflected the semantic similarity of stimuli, segregating conceptually similar items into more distant theta phases. Taken together, these results demonstrate a multilayered mechanism by which active learning improves memory via a phylogenetically old phase coding scheme.
Collapse
|
36
|
A neural code for egocentric spatial maps in the human medial temporal lobe. Neuron 2021; 109:2781-2796.e10. [PMID: 34265253 DOI: 10.1016/j.neuron.2021.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/04/2021] [Accepted: 06/15/2021] [Indexed: 01/17/2023]
Abstract
Spatial navigation and memory rely on neural systems that encode places, distances, and directions in relation to the external world or relative to the navigating organism. Place, grid, and head-direction cells form key units of world-referenced, allocentric cognitive maps, but the neural basis of self-centered, egocentric representations remains poorly understood. Here, we used human single-neuron recordings during virtual spatial navigation tasks to identify neurons providing a neural code for egocentric spatial maps in the human brain. Consistent with previous observations in rodents, these neurons represented egocentric bearings toward reference points positioned throughout the environment. Egocentric bearing cells were abundant in the parahippocampal cortex and supported vectorial representations of egocentric space by also encoding distances toward reference points. Beyond navigation, the observed neurons showed activity increases during spatial and episodic memory recall, suggesting that egocentric bearing cells are not only relevant for navigation but also play a role in human memory.
Collapse
|
37
|
Safron A. The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. ENTROPY (BASEL, SWITZERLAND) 2021; 23:783. [PMID: 34202965 PMCID: PMC8234656 DOI: 10.3390/e23060783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both "Cartesian theaters" and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
38
|
Thornberry C, Cimadevilla JM, Commins S. Virtual Morris water maze: opportunities and challenges. Rev Neurosci 2021; 32:887-903. [PMID: 33838098 DOI: 10.1515/revneuro-2020-0149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/20/2021] [Indexed: 11/15/2022]
Abstract
The ability to accurately recall locations and navigate our environment relies on multiple cognitive mechanisms. The behavioural and neural correlates of spatial navigation have been repeatedly examined using different types of mazes and tasks with animals. Accurate performances of many of these tasks have proven to depend on specific circuits and brain structures and some have become the standard test of memory in many disease models. With the introduction of virtual reality (VR) to neuroscience research, VR tasks have become a popular method of examining human spatial memory and navigation. However, the types of VR tasks used to examine navigation across laboratories appears to greatly differ, from open arena mazes and virtual towns to driving simulators. Here, we examined over 200 VR navigation papers, and found that the most popular task used is the virtual analogue of the Morris water maze (VWM). Although we highlight the many advantages of using the VWM task, there are also some major difficulties related to the widespread use of this behavioural method. Despite the task's popularity, we demonstrate an inconsistency of use - particularly with respect to the environmental setup and procedures. Using different versions of the virtual water maze makes replication of findings and comparison of results across researchers very difficult. We suggest the need for protocol and design standardisation, alongside other difficulties that need to be addressed, if the virtual water maze is to become the 'gold standard' for human spatial research similar to its animal counterpart.
Collapse
Affiliation(s)
- Conor Thornberry
- Department of Psychology, Maynooth University, John Hume Building, North Campus, Maynooth, Co KildareW23 F2H6, Ireland
| | - Jose M Cimadevilla
- Department of Psychology and Health Research Center, University of Almeria, 04120La Cañada, Almería, Spain
| | - Sean Commins
- Department of Psychology, Maynooth University, John Hume Building, North Campus, Maynooth, Co KildareW23 F2H6, Ireland
| |
Collapse
|
39
|
Lachner-Piza D, Kunz L, Brandt A, Dümpelmann M, Thomschewski A, Schulze-Bonhage A. Effects of Spatial Memory Processing on Hippocampal Ripples. Front Neurol 2021; 12:620670. [PMID: 33746877 PMCID: PMC7973270 DOI: 10.3389/fneur.2021.620670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Human High-Frequency-Oscillations (HFO) in the ripple band are oscillatory brain activity in the frequency range between 80 and 250 Hz. HFOs may comprise different subgroups that either play a role in physiologic or pathologic brain functions. An exact differentiation between physiologic and pathologic HFOs would help elucidate their relevance for cognitive and epileptogenic brain mechanisms, but the criteria for differentiating between physiologic and pathologic HFOs remain controversial. In particular, the separation of pathologic HFOs from physiologic HFOs could improve the identification of epileptogenic brain regions during the pre-surgical evaluation of epilepsy patients. In this study, we performed intracranial electroencephalography recordings from the hippocampus of epilepsy patients before, during, and after the patients completed a spatial navigation task. We isolated hippocampal ripples from the recordings and categorized the ripples into the putative pathologic group iesRipples, when they coincided with interictal spikes, and the putative physiologic group isolRipples, when they did not coincide with interictal spikes. We found that the occurrence of isolRipples significantly decreased during the task as compared to periods before and after the task. The rate of iesRipples was not modulated by the task. In patients who completed the spatial navigation task on two consecutive days, we furthermore examined the occurrence of ripples in the intervening night. We found that the rate of ripples that coincided with sleep spindles and were therefore putatively physiologic correlated with the performance improvement on the spatial navigation task, whereas the rate of all ripples did not show this relationship. Together, our results suggest that the differentiation of HFOs into putative physiologic and pathologic subgroups may help identify their role for spatial memory and memory consolidation processes. Conversely, excluding putative physiologic HFOs from putative pathologic HFOs may improve the HFO-based identification of epileptogenic brain regions in future studies.
Collapse
Affiliation(s)
- Daniel Lachner-Piza
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lukas Kunz
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
40
|
Thomschewski A, Trinka E, Jacobs J. Temporo-Frontal Coherences and High-Frequency iEEG Responses during Spatial Navigation in Patients with Drug-Resistant Epilepsy. Brain Sci 2021; 11:brainsci11020162. [PMID: 33530531 PMCID: PMC7911024 DOI: 10.3390/brainsci11020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/16/2022] Open
Abstract
The prefrontal cortex and hippocampus function in tight coordination during multiple cognitive processes. During spatial navigation, prefrontal neurons are linked to hippocampal theta oscillations, presumably in order to enhance communication. Hippocampal ripples have been suggested to reflect spatial memory processes. Whether prefrontal-hippocampal-interaction also takes place within the ripple band is unknown. This intracranial EEG study aimed to investigate whether ripple band coherences can also be used to show this communication. Twelve patients with epilepsy and intracranial EEG evaluation completed a virtual spatial navigation task. We calculated ordinary coherence between prefrontal and temporal electrodes during retrieval, re-encoding, and pre-task rest. Coherences were compared between the conditions via permutation testing. Additionally, ripples events were automatically detected and changes in occurrence rates were investigated excluding ripples on epileptic spikes. Ripple-band coherences yielded no general effect of the task on coherences across all patients. Furthermore, we did not find significant effects of task conditions on ripple rates. Subsequent analyses pointed to rather short periods of synchrony as opposed to general task-related changes in ripple-band coherence. Specifically designed tasks and adopted measures might be necessary in order to map these interactions in future studies.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Affiliated Centre of the European Reference Network EpiCARE, Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Medical Centre, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020 Salzburg, Austria;
- Department of Psychology, Paris-Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Correspondence:
| | - Eugen Trinka
- Affiliated Centre of the European Reference Network EpiCARE, Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Medical Centre, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020 Salzburg, Austria;
| | - Julia Jacobs
- Member of the European Reference Network EpiCARE, Epilepsy Center, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany;
- Department of Neuropediatrics and Muscle Disorders, University Hospital Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
- Room 293, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
41
|
Stable maintenance of multiple representational formats in human visual short-term memory. Proc Natl Acad Sci U S A 2020; 117:32329-32339. [PMID: 33288707 DOI: 10.1073/pnas.2006752117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Visual short-term memory (VSTM) enables humans to form a stable and coherent representation of the external world. However, the nature and temporal dynamics of the neural representations in VSTM that support this stability are barely understood. Here we combined human intracranial electroencephalography (iEEG) recordings with analyses using deep neural networks and semantic models to probe the representational format and temporal dynamics of information in VSTM. We found clear evidence that VSTM maintenance occurred in two distinct representational formats which originated from different encoding periods. The first format derived from an early encoding period (250 to 770 ms) corresponded to higher-order visual representations. The second format originated from a late encoding period (1,000 to 1,980 ms) and contained abstract semantic representations. These representational formats were overall stable during maintenance, with no consistent transformation across time. Nevertheless, maintenance of both representational formats showed substantial arrhythmic fluctuations, i.e., waxing and waning in irregular intervals. The increases of the maintained representational formats were specific to the phases of hippocampal low-frequency activity. Our results demonstrate that human VSTM simultaneously maintains representations at different levels of processing, from higher-order visual information to abstract semantic representations, which are stably maintained via coupling to hippocampal low-frequency activity.
Collapse
|
42
|
Schreiner T, Staudigl T. Electrophysiological signatures of memory reactivation in humans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190293. [PMID: 32248789 PMCID: PMC7209925 DOI: 10.1098/rstb.2019.0293] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reactivation of neural activity that was present during the encoding of an event is assumed to be essential for human episodic memory retrieval and the consolidation of memories during sleep. Pioneering animal work has already established a crucial role of memory reactivation to prepare and guide behaviour. Research in humans is now delineating the neural processes involved in memory reactivation during both wakefulness and sleep as well as their functional significance. Focusing on the electrophysiological signatures of memory reactivation in humans during both memory retrieval and sleep-related consolidation, this review provides an overview of the state of the art in the field. We outline recent advances, methodological developments and open questions and specifically highlight commonalities and differences in the neuronal signatures of memory reactivation during the states of wakefulness and sleep. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Thomas Schreiner
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
43
|
Novitskaya Y, Dümpelmann M, Vlachos A, Reinacher PC, Schulze-Bonhage A. In vivo-assessment of the human temporal network: Evidence for asymmetrical effective connectivity. Neuroimage 2020; 214:116769. [PMID: 32217164 DOI: 10.1016/j.neuroimage.2020.116769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022] Open
Abstract
The human temporal lobe is a multimodal association area which plays a key role in various aspects of cognition, particularly in memory formation and spatial navigation. Functional and anatomical connectivity of temporal structures is thus a subject of intense research, yet by far underexplored in humans due to ethical and technical limitations. We assessed intratemporal cortico-cortical interactions in the living human brain by means of single pulse electrical stimulation, an invasive method allowing mapping effective intracortical connectivity with a high spatiotemporal resolution. Eighteen subjects with normal anterior-mesial temporal MR imaging undergoing intracranial presurgical epilepsy diagnostics with multiple depth electrodes were included. The investigated structures were temporal pole, hippocampus, amygdala and parahippocampal gyrus. Intratemporal cortical connectivity was assessed as a function of amplitude of the early component of the cortico-cortical evoked potentials (CCEP). While the analysis revealed robust interconnectivity between all explored structures, a clear asymmetry in bidirectional connectivity was detected for the hippocampal network and for the connections between the temporal pole and parahippocampal gyrus. The amygdala showed bidirectional asymmetry only to the hippocampus. The provided evidence of asymmetrically weighed intratemporal effective connectivity in humans in vivo is important for understanding of functional interactions within the temporal lobe since asymmetries in the brain connectivity define hierarchies in information processing. The findings are in exact accord with the anatomical tracing studies in non-human primates and open a translational route for interventions employing modulation of temporal lobe function.
Collapse
Affiliation(s)
- Yulia Novitskaya
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albert Strasse 17, 79104, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| |
Collapse
|
44
|
A Neural Chronometry of Memory Recall. Trends Cogn Sci 2019; 23:1071-1085. [DOI: 10.1016/j.tics.2019.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
|