1
|
Fernandez L, Yari F, Hesser G, Schöfberger W. From Meteorite to Life's Building Blocks: A possible Electrochemical Pathway to Amino Acids and Peptide Bonds. Chemistry 2024; 30:e202401856. [PMID: 39163007 DOI: 10.1002/chem.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
This study explores the electrochemical properties of the carbonaceous Allende CV3 meteorite, focusing on its potential as a Fe-based catalyst derived from Mackinawite iron sulfide for electrocatalytic reactions facilitating nitrogen (N2) fixation into ammonia. Through comprehensive analysis, we not only monitored the evolution of key compounds such as CN-, sulfur/H2S, H2 and carbonyl compounds, but also identified potential reagent carriers, indicating significant implications for the Strecker synthesis of amino acids in space environments. Initial examination revealed the presence of polypeptides, notably sequences including dimer Ala-α-HO-Gly, pentamer Gly3-Ala2, and hexamer Gly4-(HO-Gly)2. These discoveries greatly enhance our understanding of astrobiological chemistry, offering valuable insights into prebiotic processes and the potential presence of life-building blocks throughout the universe.
Collapse
Affiliation(s)
- Lucas Fernandez
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU) Linz, Altenberger Straße, Linz, 694040, Austria
| | - Farzaneh Yari
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU) Linz, Altenberger Straße, Linz, 694040, Austria
| | - Günter Hesser
- Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Linz, 4040, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU) Linz, Altenberger Straße, Linz, 694040, Austria
| |
Collapse
|
2
|
Schwartz J, Di ZW, Jiang Y, Manassa J, Pietryga J, Qian Y, Cho MG, Rowell JL, Zheng H, Robinson RD, Gu J, Kirilin A, Rozeveld S, Ercius P, Fessler JA, Xu T, Scott M, Hovden R. Imaging 3D chemistry at 1 nm resolution with fused multi-modal electron tomography. Nat Commun 2024; 15:3555. [PMID: 38670945 PMCID: PMC11053043 DOI: 10.1038/s41467-024-47558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Measuring the three-dimensional (3D) distribution of chemistry in nanoscale matter is a longstanding challenge for metrological science. The inelastic scattering events required for 3D chemical imaging are too rare, requiring high beam exposure that destroys the specimen before an experiment is completed. Even larger doses are required to achieve high resolution. Thus, chemical mapping in 3D has been unachievable except at lower resolution with the most radiation-hard materials. Here, high-resolution 3D chemical imaging is achieved near or below one-nanometer resolution in an Au-Fe3O4 metamaterial within an organic ligand matrix, Co3O4-Mn3O4 core-shell nanocrystals, and ZnS-Cu0.64S0.36 nanomaterial using fused multi-modal electron tomography. Multi-modal data fusion enables high-resolution chemical tomography often with 99% less dose by linking information encoded within both elastic (HAADF) and inelastic (EDX/EELS) signals. We thus demonstrate that sub-nanometer 3D resolution of chemistry is measurable for a broad class of geometrically and compositionally complex materials.
Collapse
Affiliation(s)
- Jonathan Schwartz
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zichao Wendy Di
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Yi Jiang
- Advanced Photon Source Facility, Argonne National Laboratory, Lemont, IL, USA
| | - Jason Manassa
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Pietryga
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Material Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yiwen Qian
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Min Gee Cho
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jonathan L Rowell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Huihuo Zheng
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL, USA
| | - Richard D Robinson
- Department of Material Science and Engineering, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Junsi Gu
- Dow Chemical Co., Collegeville, PA, USA
| | | | | | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeffrey A Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary Scott
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA.
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Singh M, Sharma D, Garg M, Kumar A, Baliyan A, Rani R, Kumar V. Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnol Adv 2022; 61:108052. [DOI: 10.1016/j.biotechadv.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
4
|
Ham D, Lee SY, Choi S, Oh HJ, Noh DY, Kang HC. Multimodal X-ray probe station at 9C beamline of Pohang Light Source-II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1114-1121. [PMID: 35787579 PMCID: PMC9255584 DOI: 10.1107/s1600577522006397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, the conceptual design and performance of a multimodal X-ray probe station recently installed at the 9C coherent X-ray scattering beamline of the Pohang Light Source-II are presented. The purpose of this apparatus is to measure coherent X-ray diffraction, X-ray fluorescence and electrical properties simultaneously. A miniature vacuum probe station equipped with a four-point probe was mounted on a six-axis motion hexapod. This can be used to study the structural and chemical evolution of thin films or nanostructures, as well as device performance including electronic transport properties. This probe station also provides the capability of varying sample environments such as gas atmosphere using a mass-flow-control system and sample temperatures up to 600°C using a pyrolytic boron nitride heater. The in situ annealing of ZnO thin films and the performance of ZnO nanostructure-based X-ray photodetectors are discussed. These results demonstrate that a multimodal X-ray probe station can be used for performing in situ and operando experiments to investigate structural phase transitions involving electrical resistivity switching.
Collapse
Affiliation(s)
- Daseul Ham
- Department of Material Science and Engineering, Chosun University, Gwangju 61452, Korea
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Su Yong Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sukjune Choi
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ho Jun Oh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hyon Chol Kang
- Department of Material Science and Engineering, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
5
|
Qian G, Wang J, Li H, Ma ZF, Pianetta P, Li L, Yu X, Liu Y. Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. Natl Sci Rev 2021; 9:nwab146. [PMID: 35145703 PMCID: PMC8824737 DOI: 10.1093/nsr/nwab146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/29/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022] Open
Abstract
Rechargeable battery technologies have revolutionized electronics, transportation and grid energy storage. Many materials are being researched for battery applications, with layered transition metal oxides (LTMO) the dominating cathode candidate with remarkable electrochemical performance. Yet, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density and enhanced safety. This is, in part, because of the intrinsic complexity of real-world batteries, featuring sophisticated interplay among microstructural, compositional and chemical heterogeneities, which has motivated tremendous research efforts using state-of-the-art analytical techniques. In this research field, synchrotron techniques have been identified as a suite of effective methods for advanced battery characterization in a non-destructive manner with sensitivities to the lattice, electronic and morphological structures. This article provides a holistic overview of cutting-edge developments in synchrotron-based research on LTMO battery cathode materials. We discuss the complexity and evolution of LTMO’s material properties upon battery operation and review recent synchrotron-based research works that address the frontier challenges and provide novel insights in this field. Finally, we formulate a perspective on future directions of synchrotron-based battery research, involving next-generation X-ray facilities and advanced computational developments.
Collapse
Affiliation(s)
- Guannan Qian
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyang Wang
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zi-Feng Ma
- Department of Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Piero Pianetta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Linsen Li
- Department of Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, China
| | - Xiqian Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
6
|
Wang W, Cai W. Dynamic observation and motion tracking of individual gold atoms with HAADF-STEM imaging. RSC Adv 2021; 11:11057-11061. [PMID: 35423611 PMCID: PMC8695860 DOI: 10.1039/d0ra09799c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
The tracked trajectories give direct visualization of individual atoms' movements, and the number of tracked atoms in each frame is quantified.
Collapse
Affiliation(s)
- Wei Wang
- School of Instrumentation and Optoelectronic Engineering
- Beihang University
- Beijing
- China
| | - Wei Cai
- Key Laboratory of Micro-nano Measurement-manipulation and Physics (Ministry of Education)
- School of Physics
- Beihang University
- Beijing
- China
| |
Collapse
|
7
|
Table-Top Water-Window Microscope Using a Capillary Discharge Plasma Source with Spatial Resolution 75 nm. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a design of a compact transmission water-window microscope based on the Z-pinching capillary discharge nitrogen plasma source. The microscope operates at wavelength of 2.88 nm (430 eV), and with its table-top dimensions provides an alternative to large-scale soft X-ray (SXR) microscope systems based on synchrotrons and free-electron lasers. The emitted soft X-ray radiation is filtered by a titanium foil and focused by an ellipsoidal condenser mirror into the sample plane. A Fresnel zone plate was used to create a transmission image of the sample onto a charge-coupled device (CCD) camera. To assess the resolution of the microscope, we imaged a standard sample-copper mesh. The spatial resolution of the microscope is 75 nm at half-pitch, calculated via a 10–90% intensity knife-edge test. The applicability of the microscope is demonstrated by the imaging of green algae-Desmodesmus communis. This paper describes the principle of capillary discharge source, design of the microscope, and experimental imaging results of Cu mesh and biological sample.
Collapse
|
8
|
Hill J, Campbell S, Carini G, Chen-Wiegart YCK, Chu Y, Fluerasu A, Fukuto M, Idir M, Jakoncic J, Jarrige I, Siddons P, Tanabe T, Yager KG. Future trends in synchrotron science at NSLS-II. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:374008. [PMID: 32568740 DOI: 10.1088/1361-648x/ab7b19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we summarize briefly some of the future trends in synchrotron science as seen at the National Synchrotron Light Source II, a new, low emittance source recently commissioned at Brookhaven National Laboratory. We touch upon imaging techniques, the study of dynamics, the increasing use of multimodal approaches, the vital importance of data science, and other enabling technologies. Each are presently undergoing a time of rapid change, driving the field of synchrotron science forward at an ever increasing pace. It is truly an exciting time and one in which Roger Cowley, to whom this journal issue is dedicated, would surely be both invigorated by, and at the heart of.
Collapse
Affiliation(s)
- John Hill
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Stuart Campbell
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Gabriella Carini
- Instrumentation Division (IO), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Yu-Chen Karen Chen-Wiegart
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
- Materials Science & Chemical Engineering, Stony Brook University, Stony Brook, NY, United States of America
| | - Yong Chu
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Andrei Fluerasu
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Masafumi Fukuto
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Mourad Idir
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Jean Jakoncic
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Ignace Jarrige
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Peter Siddons
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Toshi Tanabe
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Kevin G Yager
- Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory, Upton, NY, United States of America
| |
Collapse
|