1
|
Chen G, She P, Han J, Li J, Tian G, Sun Y, Gao Y, Yang G, Diao Z, Guan B, Yu J. Structurally Engineering Multi-Shell Hollow Zeolite Single Crystals via Defect-Directed Oriented-Kinetics Transformation and Their Heterostructures for Hydrodeoxygenation Reaction. Angew Chem Int Ed Engl 2025:e202424690. [PMID: 40226867 DOI: 10.1002/anie.202424690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Single-crystalline multi-shell hollow porous materials with high compartment capacity, large active surface area, and superior structural stability are expected to unlock tremendous potential across diverse critical applications. However, their synthetic methodology has not yet been well established. Here, we develop a defect-directed oriented-kinetics transformation approach to prepare multi-shell hollow aluminosilicate ZSM-5 zeolite (MFI) crystals with single-crystalline feature, hierarchical macro-/mesoporosity, controllable shell number, and high structural stability. The methodology lies in the creation of zeolite precursors consisting of multiple inhomogeneous layers with gradient-distributed defects along the [100] and [010] directions and irregularly discrete defects-rich regions along the [001] direction via continuous epitaxial growth. Subsequently, the locations with more defects could be preferentially etched to form voids or mesopores, meanwhile oriented recrystallization interconnects the nanoshells into a unified architecture along the [001] direction. Benefiting from the easily accessible bifunctional metal/acid sites and the capability for reactant accumulation, the resultant multi-shell hollow Ni-loaded zeolite catalysts show significantly enhanced catalytic activity in the hydrodeoxygenation of stearic acid into liquid fuels. The insight gained from this systematic study will facilitate the rational design and synthesis of diverse multi-shell hollow structured single-crystalline porous materials for a broad range of potential applications.
Collapse
Affiliation(s)
- Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Peihong She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Center for High-resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Ge Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yuanbo Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yanjing Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Guoju Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Zhenheng Diao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P.R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
2
|
Chen S, Wahiduzzaman M, Ji T, Liu Y, Li Y, Wang C, Sun Y, He G, Maurin G, Wang S, Liu Y. Oriented Titanium-MOF Membrane for Hydrogen Purification. Angew Chem Int Ed Engl 2025; 64:e202413701. [PMID: 39318227 DOI: 10.1002/anie.202413701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Precise hydrogen sorting from purge gas (H2/N2) and coke gas (H2/CH4), commonly carried out by cryogenic distillation, still suffers from low separation efficiency, high energy consumption, and considerable capital cost. Though still in its infancy, membrane technology offers a potential to achieve more efficient hydrogen purification. In this study, an optimum separation of hydrogen towards both methane and nitrogen via a kinetically-driven mechanism is realized through preferred orientation control of a MOF membrane. Relying on the 0.3 nm-sized window aligned vertical to the substrate, b-oriented Ti-MOF membrane exhibits ultra-high hydrogen selectivity, surpassing the upper bound limit of separating H2/N2 and H2/CH4 gas pairs attained so far by inorganic membranes. This spectacular selectivity is combined with a high H2 permeability owing to the synergistic effect of the 1 nm-sized MOF channel.
Collapse
Affiliation(s)
- Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Mohammad Wahiduzzaman
- Institute Charles Gerhardt Montpellier, Université Montpellier, Montpellier, 34293, France
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanwei Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guillaume Maurin
- Institute Charles Gerhardt Montpellier, Université Montpellier, Montpellier, 34293, France
| | - Sujing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Suzhou Institute for Advanced Research, and Hefei National Laboratory, CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Zhang K, Xu R, Wang R, Cai J, Lin X, Gan L, Wang Z, Peng Y. Atmospheric Pressure Alkaline Etching of MFI Zeolite Under Mild Temperature Toward Hollow Microstructure and Ultralow k Film. SMALL METHODS 2024; 8:e2400167. [PMID: 39727006 DOI: 10.1002/smtd.202400167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Indexed: 12/28/2024]
Abstract
Constructing a hollow structure inside zeolite is very helpful for improving its performance. Unlike the conventional alkaline etching technique usually operated at high temperature (typically 170 °C) and high pressure (autogenerated in autoclave), here, it is discovered that zeolite MFI nano-box can be achieved under mild etching conditions of atmospheric pressure and low temperature of 80 °C, making it very attractive for energy conservation and practical applications. A hollow-structure formation mechanism of protection-dissolution etching is demonstrated by characterizing MFI crystals obtained under different etching time, temperature, and etchant concentration. The utilization of template agent-free secondary growth leads to the successful fabrication of a continuous b-oriented hierarchical MFI zeolite film with desired microstructure of embedded cavities and opened pores. The advantage of the newly constructed film is highlighted by its ultralow k value accompanied with high mechanical strength.
Collapse
Affiliation(s)
- Kaipeng Zhang
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China
| | - Ruilan Xu
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China
| | - Rui Wang
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China
| | - Junhui Cai
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China
| | - Xintu Lin
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China
| | - Lu Gan
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China
| | - Zhengbao Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yong Peng
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China
| |
Collapse
|
4
|
Zhu X, Gao Y, Chen H, Jiang M, Wang X, Miao C, Shen Y, Ji Y, Qin Z, Wu Z, Song W, Xu C, Shen B. Constructing Hierarchical Zeolites with Highly Complete Framework via Controlled Desilication. Angew Chem Int Ed Engl 2024:e202411446. [PMID: 39175170 DOI: 10.1002/anie.202411446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Desilication in alkaline medium has been widely used in construction of hierarchical zeolites for industrially relevant catalytic processes. The built of hierarchy in zeolites, especially with low aluminum stability or high Si/Al ratio, often suffers from uncontrolled destruction of zeolitic framework, accompanied by a significant loss of microporous domains and intrinsic acidity after desilication. Here, we report a novel and simple methodology for preparation of hierarchical zeolites with highly complete framework and minimum sacrifice of microporosity and acidity. The pre-impregnated amines in zeolite micropores act as inner pore-directing agents (iPDAs), largely protecting the zeolitic framework and moderating the silicon extraction during the alkaline treatment. The resulting hierarchical zeolites exhibit high crystallinity, tunable hierarchy, stable framework, and well-preserved acidity, endowing them with significantly improved mass transport properties and enhanced activities in catalytic conversion of methanol or furfural.
Collapse
Affiliation(s)
- Xiaochun Zhu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Yu Gao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
- Laboratory of Inorganic Materials Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (the, Netherlands
| | - Haorong Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Mengwei Jiang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Xinyu Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Caixia Miao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Yanfeng Shen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yonggang Ji
- Daqing Chemical Research Center, Petrochemical Research Institute, CNPC, Daqing, 163714, P. R. China
| | - Zhengxing Qin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Baojian Shen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249 (P. R. China), State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| |
Collapse
|
5
|
Kim M, Choi W, Lee CH, Kim DW. 2D MOFs and Zeolites for Composite Membrane and Gas Separation Applications: A Brief Review. ACS MATERIALS AU 2024; 4:148-161. [PMID: 38496048 PMCID: PMC10941277 DOI: 10.1021/acsmaterialsau.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 03/19/2024]
Abstract
Commercial membranes have predominantly been fabricated from polymers due to their economic viability and processability. This choice offers significant advantages in energy efficiency, cost-effectiveness, and operational simplicity compared to conventional separation techniques like distillation. However, polymeric membranes inherently exhibit a trade-off between their permeability and selectivity, which is summarized in the Robeson upper bound. To potentially surpass these limitations, mixed-matrix membranes (MMMs) can be an alternative solution, which can be constructed by combining polymers with inorganic additives such as metal-organic frameworks (MOFs) and zeolites. Incorporating high-aspect-ratio fillers like MOF nanosheets and zeolite nanosheets is of significant importance. This incorporation not only enhances the efficiency of separation processes but also reinforces the mechanical robustness of the membranes. We outline synthesis techniques for producing two-dimensional (2D) crystals (including nanocrystals with high aspect ratio) and provide examples of their integration into membranes to customize separation performances. Moreover, we propose a potential trajectory for research in the area of high-aspect-ratio materials-based MMMs, supported by a mathematical-model-based performance prediction.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wooyoung Choi
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Choong Hoo Lee
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Scalable synthesis and modular properties of tubular silicalite-1 membranes for industrial butane isomer separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Liu Y, Chen S, Ji T, Yan J, Ding K, Meng S, Lu J, Liu Y. Room-Temperature Synthesis of Zeolite Membranes toward Optimized Microstructure and Enhanced Butane Isomer Separation Performance. J Am Chem Soc 2023; 145:7718-7723. [PMID: 36867559 DOI: 10.1021/jacs.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Room temperature (RT) synthesis of high-performance zeolite membranes, which is profound from techno-economic and eco-friendly perspectives, remains a grand challenge. In this work, we pioneered the RT preparation of well-intergrown pure-silica MFI zeolite (Si-MFI) membranes, which was realized through adopting highly reactive NH4F-mediated gel as nutrient during epitaxial growth. Benefiting from the introduction of fluoride anions as mineralizing agent as well as precisely tuned nucleation and growth kinetics at RT, both their grain boundary structure and thickness could be deliberately controlled, resulting in the formation of Si-MFI membranes showing unprecedented n-/i-butane separation factor (96.7) and n-butane permeance (5.16 × 10-7 mol m-2 s-1 Pa-1) in the case of a feed molar ratio of 10/90, which well transcended the state-of-the-art membranes reported in the literature. This RT synthetic protocol was also proven effective for preparing highly b-oriented Si-MFI film, thus showing great promise for the preparation of diverse zeolite membranes with optimized microstructure and superior performance.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Kaishi Ding
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Shengyan Meng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China.,Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, China
| |
Collapse
|
8
|
Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Saulat H, Song W, Yang J, Yan T, He G, Tsapatsis M. Fabrication of b-oriented MFI membranes from MFI nanosheet layers by ammonium sulfate modifier for the separation of butane isomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Ma Q, Fu T, Ren K, Li H, Jia L, Li Z. Controllable Orientation Growth of ZSM-5 for Methanol to Hydrocarbon Conversion: Cooperative Effects of Seed Induction and Medium pH Control. Inorg Chem 2022; 61:13802-13816. [PMID: 36001749 DOI: 10.1021/acs.inorgchem.2c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growth orientation of ZSM-5 zeolites strongly affects product selectivity in methanol conversion reaction. Here, we proposed a versatile synthetic strategy by introducing seeds and controlling medium pH to achieve controllable orientation growth of ZSM-5. The systematic analysis of the crystallization process indicated that the introduction of seeds ensured successful crystallization in a quasi-neutral solution and the dissolution rate of seeds and aluminosilicate determined the growth orientation of ZSM-5. In the quasi-neutral solution, the slow dissolution of seeds and aluminosilicate enhanced growth advantages along the c axis. The ratio between the length of the c axis and b axis (Lc/Lb) of the obtained ZSM-5 at pH of 7 could reach 8.1, much higher than 1.8 obtained at pH of 11. No obvious impact of seed added amount on growth orientation was found, while with increasing seed crystal size, the obtained ZSM-5 showed preferred growth along the c axis. The Lc/Lb of the sample adding seeds with a size of 355 nm reached 7.9, much higher than 2.1 of the sample adding seeds with a size of 70 nm. The obtained ZSM-5 with specific growth orientation exhibited potential shape selectivity in methanol to aromatics and olefin reaction. This work opens new possibilities to tailor the orientation growth of ZSM-5 based on the seed-induced strategy under mild conditions.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Tingjun Fu
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Kun Ren
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Han Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Lihan Jia
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Zhong Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| |
Collapse
|
11
|
Rong H, Zhang J, Guan Y, Gai D, Zou X. Interzeolite Conversion-Synthesized Sub-1 μm NaA Zeolite Membrane for C 2H 2/C 2H 4 Selective Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26171-26179. [PMID: 35605136 DOI: 10.1021/acsami.2c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zeolite membranes with reduced thickness and high continuity are of paramount importance for accelerating selective gas separation for resemblant molecules, and the synthesis of such membranes remains a grand challenge. Herein, we developed an interzeolite conversion synthesis approach to grow NaA zeolite membranes on NaX. The conversion of NaX into NaA proceeded via mild hydrothermal treatment of a dilute synthesis solution, preferentially forming a continuous polycrystalline NaA layer on the surface of NaX, which was precrystallized on a porous alumina support. The thickness of the NaA zeolite membrane was successfully controlled to the submicron scale (500 nm). The synthesized NaA membrane functioned as a selective separator for C2H2 and C2H4 gases. Taking the traditionally in situ grown membrane as a reference, the interzeolite-derived membrane exhibited a 3.5-fold separation factor and ∼4.0 times C2H2 permeance. This approach provides an alternative synthesis option for zeolite membranes with advanced properties, and high efficiency in terms of superior gas selectivity and permeability is promising in precise gas separation.
Collapse
Affiliation(s)
- Huazhen Rong
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingjing Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yixing Guan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Dongxu Gai
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
12
|
Wu J, Wu H, Wang B, Zhou R, Xing W. One-Step Scalable Fabrication of Highly Selective Monolithic Zeolite MFI Membranes for Efficient Butane Isomer Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21198-21206. [PMID: 35475613 DOI: 10.1021/acsami.2c02456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reproducible fabrication of large-area zeolite membranes for gas separation is still a great challenge. We report the scalable fabrication of high-performance zeolite MFI membranes by single-step secondary growth on the 19-channel alumina monoliths for the first time. The packing density and mechanical strength of the monolithic membranes are much higher for these than for tubular ones. Separation performance of the monolithic membranes toward the butane isomer mixture was comparably evaluated using the vacuum and Wicke-Kallenbach modes. The n-butane permeances and n-butane/i-butane separation factors for the three membranes with an effective area of ∼84 cm2 were >1.0 × 10-7 mol (m2 s Pa)-1 and >50 at 343 K for an equimolar n-butane/i-butane mixture, respectively. We succeeded in scaling up the membrane synthesis with the largest area of 270 cm2 to date which has 1.3 times the area of an industrial 1 m long tubular membrane. Monolith supported zeolite MFI membranes show great potential for industrial n-butane/i-butane separation.
Collapse
Affiliation(s)
- Jiyang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Haolin Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Bin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Rongfei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
13
|
Hou X, Huang K, Xia Y, Mu F, Cao H, Xia Y, Wu Y, Lu Y, Wang Y, Xu F, Yu Y, Xing W, Xu Z. Fish‐scale‐like nano‐porous membrane based on zeolite nanosheets for long stable zinc‐based flow battery. AIChE J 2022. [DOI: 10.1002/aic.17738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoxuan Hou
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Kang Huang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yongsheng Xia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Feiyan Mu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Hongyan Cao
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yu Xia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yuqin Lu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Fang Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ying Yu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
14
|
Chen G, Li J, Wang S, Han J, Wang X, She P, Fan W, Guan B, Tian P, Yu J. Construction of Single-Crystalline Hierarchical ZSM-5 with Open Nanoarchitectures via Anisotropic-Kinetics Transformation for the Methanol-to-Hydrocarbons Reaction. Angew Chem Int Ed Engl 2022; 61:e202200677. [PMID: 35199436 DOI: 10.1002/anie.202200677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/25/2022]
Abstract
We report an anisotropic-kinetics transformation strategy to prepare single-crystalline aluminosilicate MFI zeolites (ZSM-5) with highly open nanoarchitectures and hierarchical porosities. The methodology relies on the cooperative effect of in situ etching and recrystallization on the evolution of pure-silica MFI zeolite (silicalite-1) nanotemplates under hydrothermal conditions. The strategy enables a controllable preparation of ZSM-5 nanostructures with diverse open geometries by tuning the relative rate difference between etching and recrystallization processes. Meanwhile, it can also be extended to synthesize other heteroatom-substituted MFI zeolite nanocages. Compared with conventional ZSM-5 microcrystals, nanocrystals, and nanoboxes, the ZSM-5 nanocages with single-crystalline nature, highly open nanoarchitectures, and hierarchical porosities exhibit remarkably enhanced catalytic lifetime and low coking rate in the methanol-to-hydrocarbons (MTH) reaction.
Collapse
Affiliation(s)
- Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, P.R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P.R. China
| | - Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Peihong She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, P.R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Peng Tian
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
15
|
Kim D, Ghosh S, Akter N, Kraetz A, Duan X, Gwak G, Rangnekar N, Johnson JR, Narasimharao K, Malik MA, Al-Thabaiti S, McCool B, Boscoboinik JA, Mkhoyan KA, Tsapatsis M. Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication. SCIENCE ADVANCES 2022; 8:eabm8162. [PMID: 35385314 PMCID: PMC8986103 DOI: 10.1126/sciadv.abm8162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Zeolite nanosheets can be used for the fabrication of low-defect-density, thin, and oriented zeolite separation membranes. However, methods for manipulating their morphology are limited, hindering progress toward improved performance. We report the direct synthesis (i.e., without using exfoliation, etching, or other top-down processing) of thin, flat MFI nanosheets and demonstrate their use as high-performance membranes for xylene isomer separations. Our MFI nanosheets were synthesized using nanosheet fragments as seeds instead of the previously used MFI nanoparticles. The obtained MFI nanosheets exhibit improved thickness uniformity and are free of rotational and MEL intergrowths as shown by transmission electron microscopy (TEM) imaging. The nanosheets can form well-packed nanosheet coatings. Upon gel-free secondary growth, the obtained zeolite MFI membranes show high separation performance for xylene isomers at elevated temperature (e.g., p-xylene flux up to 1.5 × 10-3 mol m-2 s-1 and p-/o-xylene separation factor of ~600 at 250°C).
Collapse
Affiliation(s)
- Donghun Kim
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Supriya Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nusnin Akter
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrea Kraetz
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xuekui Duan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeongseok Gwak
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Neel Rangnekar
- Separations and Process Chemistry, Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - J. R. Johnson
- Separations and Process Chemistry, Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - Katabathini Narasimharao
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaeel Al-Thabaiti
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Benjamin McCool
- Separations and Process Chemistry, Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - J. Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - K. Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA
| |
Collapse
|
16
|
Facile Synthesis of Nanosheet-Stacked Hierarchical ZSM-5 Zeolite for Efficient Catalytic Cracking of n-Octane to Produce Light Olefins. Catalysts 2022. [DOI: 10.3390/catal12030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of an effective strategy for synthesizing two-dimensional MFI zeolites has attracted more and more attention. Herein, nanosheet-stacked hierarchical ZSM-5 zeolite was obtained by a seed-assisted hydrothermal synthesis route using a small amount of [C18H37-N+(CH3)2-C6H12-N+(CH3)2-C6H12]Br2 (C18-6-6Br2) as a zeolite structure-directing agent and triethylamine (TEA) as a zeolite growth modifier. By varying the molar ratio of C18-6-6Br2/TEA from 2.5/0 to 2.5/40, the morphologies and textural properties of the resultant HZ5-2.5/x catalysts were finely modulated. By increasing x from 5 to 40, the morphology of the HZ5-2.5/x changed from unilamellar assembly with narrow a–c plane to intertwined nanosheets with wide a–c plane and multilamellar nanosheets with house-of-cards morphology. The thickness of these nanosheets was almost 8–10 nm. In addition, selectivity to light olefins reached 70.7% for the HZ5-2.5/10 catalyst, which was 6.6% higher than that for CZSM-5 (64.1%). Furthermore, the MFI zeolite nanosheets exhibited better anticoking stability within the 60 h reaction time compared to conventional ZSM-5 zeolite, which could be attributed to the short diffusion path and hierarchical porosity. This work will provide valuable insights into the rational design of novel zeolite catalysts for the efficient cracking of hydrocarbons.
Collapse
|
17
|
Chen G, Li J, Wang S, Han J, Wang X, She P, Fan W, Guan B, Tian P, Yu J. Construction of Single‐Crystalline Hierarchical ZSM‐5 with Open Nanoarchitectures via Anisotropic‐Kinetics Transformation for the Methanol‐to‐Hydrocarbons Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- Center for High-resolution Electron Microscopy (CħEM) School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 P.R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences 27 South Taoyuan Road Taiyuan 030001 P.R. China
| | - Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Peihong She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences 27 South Taoyuan Road Taiyuan 030001 P.R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Peng Tian
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| |
Collapse
|
18
|
Li S, Yang H, Wang S, Wang J, Fan W, Dong M. Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology. Chem Commun (Camb) 2022; 58:2041-2054. [PMID: 35060979 DOI: 10.1039/d1cc05537b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An aluminosilicate zeolite has a porous structure with openings comparable to the molecular size, which endows it with unique adsorptive and catalytic properties that are highly dependent on its chemical composition and crystal morphology. Thus, the precise control or rational design of zeolite's particle morphology has attracted much attention as it can greatly improve the adsorptive separation and catalytic properties by effectively adjusting the diffusion path of adsorbates, reactants and products. This paper reviews the recent progress made in the synthesis and application of zeolites with a specific crystal/particle morphology with emphasis on the control of the crystal size and facet exposure degree, oriented assembly of crystals, creation of hierarchical porous structures and synthesis of core-shell structures. It is shown that an appropriate decrease of the crystal size and/or an increase of the exposure degree of certain facets by adding seeds and optimizing the synthesis conditions enhances the catalytic stability and product selectivity in some reactions. This can also be achieved by introducing plenty of mesopores and/or macropores in zeolites as a result of significant alleviation of diffusion limitation. Assembly of zeolite crystals into membranes on porous substrates improves the adsorptive separation performance of zeolites, for e.g. alcohol/water mixture and xylene and butane isomers. Core-shell-structured composites with metal nanoparticles or subnanoparticles as the core and the zeolite, including its modified counterpart, as the shell show excellent catalytic performance in some hydrogenation, dehydrogenation and oxidation reactions. In addition, attempts to illustrate the relationship between zeolite's particle morphology and its catalytic performance are discussed and strategies for the rational design of zeolite's particle size and behavior are envisioned.
Collapse
Affiliation(s)
- Shiying Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| |
Collapse
|
19
|
Zhao Z, Shen X, Li H, Liu K, Wu H, Li X, Gao X. Watching Microwave‐Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixed‐Metal Organic Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Xi Shen
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Hong Li
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Kai Liu
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Haoyu Wu
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Xingang Li
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| | - Xin Gao
- School of Chemical Engineering and Technology in Tianjin University National Engineering Research Center of Distillation Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China
| |
Collapse
|
20
|
Rodaum C, Thivasasith A, Iadrat P, Kidkhunthod P, Pengpanich S, Wattanakit C. Ge‐Substituted Hierarchical Ferrierite for
n
‐Pentane Cracking to Light Olefins: Mechanistic Investigations via
In‐situ
DRIFTS Studies and DFT Calculations. ChemCatChem 2021. [DOI: 10.1002/cctc.202101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chadatip Rodaum
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Anawat Thivasasith
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Ploychanok Iadrat
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | | | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
21
|
Zhao Z, Shen X, Li H, Liu K, Wu H, Li X, Gao X. Watching Microwave-Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixed-Metal Organic Complexes. Angew Chem Int Ed Engl 2021; 61:e202114340. [PMID: 34866299 DOI: 10.1002/anie.202114340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The hypothesis of microscopic hot spots is widely used to explain the unique microwave (MW) effect in materials science and chemical engineering, but it has not yet been directly measured. Herein we use Eu/Tb mixed-metal organic complexes as nano thermometers to probe the intrinsic temperature of MW-absorbing particles in MW fields based on the thermosensitive fluorescent spectra. According to the measurements of the temperature gradient at the solid/liquid interphase, we derive an MW-irradiated energy transfer model to predict the extent of microscopic hot spots. The fluorescence results agree with the model predictions that the MW-induced temperature gradient can be enlarged by increasing MW intensity, as well as the dielectric loss and size of particles. Conversely, the increase in the thermal conductivity and the dielectric loss of the liquid lowers the temperature gradient. This study enables control of MW-assisted synthesis and MW-responsive techniques.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xi Shen
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Hong Li
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Kai Liu
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Haoyu Wu
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xingang Li
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xin Gao
- School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
22
|
Liu Y, Ji T, Zhou T, Lu J, Li H, Liu Y. Preparation of MFI Nanosheets with Distinctive Microstructures via Facile Alkaline Etching. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Ganjingzi District, Dalian 116024, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Ganjingzi District, Dalian 116024, China
| | - Tianli Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Ganjingzi District, Dalian 116024, China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Ganjingzi District, Dalian 116024, China
| | - Hong Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Ganjingzi District, Dalian 116024, China
| |
Collapse
|
23
|
Shao X, Zhang Y, Li J, Wang Z, Zhang X, Wang L, Yuan W, Wang H. Seed-sol-assisted construction of a coffin-shaped multilamellar ZSM-5 single crystal using CTAB. Chem Commun (Camb) 2021; 57:10624-10627. [PMID: 34570132 DOI: 10.1039/d1cc04620a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A coffin-shaped multilamellar ZSM-5 single crystal (CMZS) composed of orderly stacked 2D nanosheets (70-100 nm) was synthesized via the use of cetyltrimethylammonium bromide (CTAB) in the presence of silicalite-1 seed sol. This crystallization strategy opens a facile approach for industrial applications using CMZS in the catalytic conversion of bulky molecules.
Collapse
Affiliation(s)
- Xiuli Shao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China.
| | - Yu Zhang
- National Energy Group Ningxia Coal Industry Co., Ltd. coal chemical industry technology research institute, Yinchuan, 750411, People's Republic of China
| | - Jun Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China.
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China.
| | - Xuan Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China.
| | - Lin Wang
- National Energy Group Ningxia Coal Industry Co., Ltd. coal chemical industry technology research institute, Yinchuan, 750411, People's Republic of China
| | - Wei Yuan
- National Energy Group Ningxia Coal Industry Co., Ltd. coal chemical industry technology research institute, Yinchuan, 750411, People's Republic of China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Two-Dimensional MFI Zeolite Nanosheets Exfoliated by Surfactant Assisted Solution Process. NANOMATERIALS 2021; 11:nano11092327. [PMID: 34578643 PMCID: PMC8472291 DOI: 10.3390/nano11092327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Two-dimensional (2D) zeolite nanosheets are important for the synthesis of high flux zeolite membranes due to their lateral size in a preferred orientation. A way to obtain 2D zeolite nanosheets is to exfoliate interlocked structures generated during the hydrothermal synthesis. The mechanical and polymer assisted exfoliation process leads to mechanical damage in nanosheets and short lateral size. In the present study, polyvinylpyrrolidone (PVP) was introduced as an exfoliation agent and dispersant, so that multilamellar interlocked silicalite-1 zeolite nanosheets successfully exfoliated into a large lateral size (individual nanosheets 500~1200 nm). The good exfoliation behavior was due to the strong penetration of PVP into multilamellar nanosheets. Sonication assisted by mild milling helps PVP molecules to penetrate through the lamellar structure, contributing to the expansion of the distance between adjacent layers and thus decreasing the interactions between each layer. In addition, the stability of exfoliated nanosheets was evaluated with a series of organic solvents. The exfoliated nanosheets were well dispersed in n-butanol and stable for 30 days. Therefore, the PVP-assisted solution-based exfoliation process provides high aspect ratio MFI zeolite nanosheets in organic solvents for a long period.
Collapse
|
25
|
He QP, Zou Y, Wang PF, Dou XM. MFI-Type Zeolite Membranes for Pervaporation Separation of Dichlorobenzene Isomers. ACS OMEGA 2021; 6:8456-8462. [PMID: 33817506 PMCID: PMC8015106 DOI: 10.1021/acsomega.1c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
MFI-type zeolitic membranes were prepared on the porous α-A2O3 support to investigate the separation properties of dichlorobenzene isomers. The pervaporation tests were performed with unary and binary isomer mixtures at 333 K. The results indicate that the silicalite membranes, irrespective of being synthesized by the templated or template-free method, are permeable for all dichlorobenzene isomers. The pervaporation fluxes of the pure dichlorobenzene isomers decrease in the order p-DCB > o-DCB > m-DCB. For the binary pervaporation system, the dichlorobenzene fluxes are all less than those with a single component due to the binary interactions between DCB isomers and between the DCB isomer and the zeolite membrane. Comparatively, the template-free MFI-type zeolite exhibits higher selectivity for dichlorobenzene isomers due to less inter-crystalline gaps. The separation factors for p-/o-DCB and p-/m-DCB can reach 16.7 and 22.0, respectively.
Collapse
Affiliation(s)
- Qiu-Ping He
- Institute
of Photonics & Bio-medicine, School
of Science, East China University of Science and Technology, Shanghai 200062, China
- Shanghai
Lvqiang New Materials Comapny Ltd, Shanghai 200062, China
| | - Yun Zou
- Shanghai
Lvqiang New Materials Comapny Ltd, Shanghai 200062, China
| | - Peng-Fei Wang
- Shanghai
Lvqiang New Materials Comapny Ltd, Shanghai 200062, China
- State
Key Laboratory of Polyolefin Catalytic Technology and High Performance
Material, Shanghai Research Institute of
Chemical Industry Company Ltd, Shanghai 200062, China
| | - Xiao-ming Dou
- Institute
of Photonics & Bio-medicine, School
of Science, East China University of Science and Technology, Shanghai 200062, China
| |
Collapse
|
26
|
Liu Y, Li M, Chen Z, Cui Y, Lu J, Liu Y. Hierarchy Control of MFI Zeolite Membrane towards Superior Butane Isomer Separation Performance. Angew Chem Int Ed Engl 2021; 60:7659-7663. [PMID: 33411389 DOI: 10.1002/anie.202017087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/08/2022]
Abstract
Microstructural optimization (such as thickness and preferred orientation) is a major concern for performance enhancement of zeolite membranes. In this study, we demonstrated that the introduction of hierarchy easily enabled concurrent thickness reduction and orientation control of zeolite membranes. Specifically, hierarchical MFI zeolite membranes comprising higher degree of (h0h) preferentially oriented ultrathin (ca. 390 nm) selective top layers and porous intermediate layers on porous α-Al2 O3 substrates were fabricated. The use of hollow-structured MFI nanoseeds and the employment of single-mode microwave heating during membrane processing were found indispensable for the preparation of MFI zeolite membranes with superior butane isomer separation performance, thereby surpassing the current n-/i-butane selectivity versus n-butane permeance trade-off limits of MFI zeolite membranes prepared via solution-based synthetic protocols.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road NO. 457, Shahekou District, Dalian, 116023, China
| | - Zhigang Chen
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 385 Ruoshui Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 385 Ruoshui Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| |
Collapse
|
27
|
Liu Y, Li M, Chen Z, Cui Y, Lu J, Liu Y. Hierarchy Control of MFI Zeolite Membrane towards Superior Butane Isomer Separation Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Linggong Road NO. 2, Ganjingzi District Dalian 116024 China
| | - Mingrun Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road NO. 457, Shahekou District Dalian 116023 China
| | - Zhigang Chen
- Vacuum Interconnected Nanotech Workstation Suzhou Institute of NanoTech and NanoBionics Chinese Academy of Sciences 385 Ruoshui Road, Suzhou Industrial Park Suzhou 215123 China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation Suzhou Institute of NanoTech and NanoBionics Chinese Academy of Sciences 385 Ruoshui Road, Suzhou Industrial Park Suzhou 215123 China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Linggong Road NO. 2, Ganjingzi District Dalian 116024 China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Linggong Road NO. 2, Ganjingzi District Dalian 116024 China
| |
Collapse
|
28
|
Dai W, Kouvatas C, Tai W, Wu G, Guan N, Li L, Valtchev V. Platelike MFI Crystals with Controlled Crystal Faces Aspect Ratio. J Am Chem Soc 2021; 143:1993-2004. [PMID: 33464884 DOI: 10.1021/jacs.0c11784] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Zeolite crystals offering a short diffusion pathway through the pore network are highly desired for a number of catalytic and molecule separation applications. Herein, we develop a simple synthetic strategy toward reducing the thickness along the b-axis of MFI-type crystals, thus providing a short diffusion path along the straight channel. Our approach combines preliminary aging and a fluoride-assisted low-temperature crystallization. The synthesized MFI crystals are in the micrometer-size range along the a- and c-axis, while the thickness along the b-axis is a few tens of nanometers. The synthesis parameters controlling the formation of platelike zeolite are studied, and the factors controlling the zeolite growth are identified. The synthesis strategy works equally well with all-silica MFI (silicalite-1) and its Al- and Ga-containing derivatives. The catalytic activity of platelike ZSM-5 in the methanol-to-hydrocarbons (MTH) reaction is compared with a commercial nanosized ZSM-5 sample, as the platelike ZSM-5 exhibits a substantially extended lifetime. The synthesis of platelike MFI crystals is successfully scaled up to a kilogram scale.
Collapse
Affiliation(s)
- Weijiong Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Boulevard Maréchal Juin, 14050 Caen, France
| | - Cassandre Kouvatas
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Boulevard Maréchal Juin, 14050 Caen, France
| | - Wenshu Tai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Guangjun Wu
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Naijia Guan
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, P. R. China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Boulevard Maréchal Juin, 14050 Caen, France
| |
Collapse
|
29
|
Lan J, Li L, Song W, Saulat H, Wu H, Yang J, Yang C, Li Y, Lu J, Zhang Y. Pure‐silica
MFI zeolite
membrane by cooperative templating approach for ethanol‐water separation. AIChE J 2021. [DOI: 10.1002/aic.17184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiancheng Lan
- State Key Laboratory of Fine Chemicals Institute of Adsorption and Inorganic Membrane, Dalian University of Technology Dalian Liaoning China
- Research Office XIV Sinopec Dalian Research Institute of Petroleum and Petrochemicals Dalian Liaoning China
| | - Linzhe Li
- State Key Laboratory of Fine Chemicals Institute of Adsorption and Inorganic Membrane, Dalian University of Technology Dalian Liaoning China
| | - Wensen Song
- State Key Laboratory of Fine Chemicals Institute of Adsorption and Inorganic Membrane, Dalian University of Technology Dalian Liaoning China
| | - Hammad Saulat
- State Key Laboratory of Fine Chemicals Institute of Adsorption and Inorganic Membrane, Dalian University of Technology Dalian Liaoning China
| | - Haowen Wu
- School of Chemical Engineering Tianjin University Tianjin China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals Institute of Adsorption and Inorganic Membrane, Dalian University of Technology Dalian Liaoning China
- Panjin Institute of Industrial Technology Dalian University of Technology Panjin China
| | - Chengmin Yang
- Research Office XIV Sinopec Dalian Research Institute of Petroleum and Petrochemicals Dalian Liaoning China
| | - Yang Li
- Research Office XIV Sinopec Dalian Research Institute of Petroleum and Petrochemicals Dalian Liaoning China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals Institute of Adsorption and Inorganic Membrane, Dalian University of Technology Dalian Liaoning China
| | - Yan Zhang
- State Key Laboratory of Fine Chemicals Institute of Adsorption and Inorganic Membrane, Dalian University of Technology Dalian Liaoning China
| |
Collapse
|
30
|
Pan WY, Peng LL, Wang WJ, Li YY, Wei XL. In situ constructed zeolite membranes on rough supports with the assistance of reticulated hydrotalcite interlayer. RSC Adv 2021; 11:37131-37137. [PMID: 35496391 PMCID: PMC9043786 DOI: 10.1039/d1ra05132f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
Zeolite membranes with unique physical and chemical properties are emerging as attractive candidates for membrane separation. However, defects in the zeolite layer seriously affect their molecular sieving performance. In this study, a novel strategy for preparing compact zeolite membranes on rough supports with the assistance of a reticulated hydrotalcite layer was developed. The reticulated hydrotalcite layer was grown on the inner surface of a 170 mm length ceramic tube by an in situ hydrothermal method, and a NaA zeolite membrane was prepared on this reticulated layer by the microwave-heating method. The hydrotalcite interlayer could not only improve the smoothness and regularity of the surface of the support but also fix the Si/Al active ingredients using its reticulate structure, finally effectively improving the quality and stability of the zeolite layer. The optimal molar ratio of the synthesis solution for the synthesis of the zeolite membrane was 3Na2O : 2SiO2 : Al2O3 : 200H2O. The permeance flux of H2 through the zeolite membrane synthesized under the optimal conditions was high as 0.47 × 10−6 mol m−2 s−1 Pa−1, and its permselectivity for H2 over N2 was 4.7, which was higher than the corresponding Knudsen diffusion coefficient. This study provides a new idea for the preparation of defect-free membranes on rough supports. Reticulated hydrotalcite interlayer controls infiltration of active ingredients into the support, improving the quality and stability of the zeolite membrane.![]()
Collapse
Affiliation(s)
- Wen-Yan Pan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Liang-Liang Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Wen-Jing Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yuan-Yuan Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xue-Ling Wei
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|