1
|
Zhou H, Liu R, Xu Y, Fan J, Liu X, Chen L, Wei Q. Viscoelastic mechanics of living cells. Phys Life Rev 2025; 53:91-116. [PMID: 40043484 DOI: 10.1016/j.plrev.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 05/18/2025]
Abstract
In cell mechanotransduction, cells respond to external forces or to perceive mechanical properties of their supporting substrates by remodeling themselves. This ability is endowed by modulating cells' viscoelastic properties, which dominates over various complex cellular processes. The viscoelasticity of living cells, a concept adapted from rheology, exhibits substantially spatial and temporal variability. This review aims not only to discuss the rheological properties of cells but also to clarify the complexity of cellular rheology, emphasizing its dependence on both the size scales and time scales of the measurements. Like typical viscoelastic materials, the storage and loss moduli of cells often exhibit robust power-law rheological characteristics with respect to loading frequency. This intrinsic feature is consistent across cell types and is attributed to internal structures, such as cytoskeleton, cortex, cytoplasm and nucleus, all of which contribute to the complexity of cellular rheology. Moreover, the rheological properties of cells are dynamic and play a crucial role in various cellular and tissue functions. In this review, we focus on elucidating time- and size-dependent aspects of cell rheology, the origins of intrinsic rheological properties and how these properties adapt to cellular functions, with the goal of interpretation of rheology into the language of cell biology.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruye Liu
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yizhou Xu
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jierui Fan
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyue Liu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Qiang Wei
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Rashid F, Njoki E, Kabbo SA, Wang N. Mechanomemory after short episodes of intermittent stresses induces YAP translocation via increasing F-actin. APL Bioeng 2025; 9:026107. [PMID: 40256417 PMCID: PMC12009147 DOI: 10.1063/5.0253046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
How forces and mechanics influence and regulate living cells remains elusive. Mechanomemory, the response to a mechanical perturbation that persists after the perturbation is removed, is believed to be a key to understanding the impact of forces and mechanics on cell functions. Recently, our lab has demonstrated the presence of mechanomemory that lasts for ∼30 min after applying external stress via integrins. Herein, we test the hypothesis that applications of short intermittent episodes of stress exert long-term effects on mechanomemory via the process of mechanotransduction. An Arginine-Glycine-Aspartic acid (RGD)-peptides-coated 4-μm magnetic bead was bound to the integrin receptors to apply stresses to the surface of a Chinese Hamster Ovary cell. At the same stress magnitude and frequency (15 Pa at 0.3 Hz), multiple cycles of externally applied intermittent 2 or 10 min stresses with 15 min intervals, 10 min stresses with 10 min intervals, or a 30 min stress plus a 30 min load-free interval increased nuclear translocation of YAP (Yes-Associated Protein) and Ctgf gene expression, like that by a 60 min continuous stress, but a 30 min continuous stress did not. Short durations of intermittent stresses increased F-actin in the cytoplasm, which coincided with the elevated YAP translocation. Inhibiting F-actin or actomyosin but not microtubules blocked stress-induced YAP translocation to the nucleus. Cells on soft substrates translocate more YAP than on stiff substrates after external load release. These results highlight the impact of multiple intermittent stresses-induced cytoplasmic mechanomemory on cell biological functions via YAP translocation.
Collapse
Affiliation(s)
| | | | | | - Ning Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Chen LJ, Li JYS, Nguyen P, Norwich G, Wang Y, Teng D, Shiu YT, Shyy JYJ, Chien S. Pulsatile flow induces chromatin interaction with lamin-associated proteins to enrich H3K9 methylation in endothelial cells. Proc Natl Acad Sci U S A 2025; 122:e2424566122. [PMID: 40117319 PMCID: PMC11962468 DOI: 10.1073/pnas.2424566122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Endothelial cells (ECs) are constantly exposed to hemodynamic forces, which play a crucial role in regulating EC functions. Pulsatile laminar shear stress (PS), representing atheroprotective flow, maintains the anti-inflammation and homeostatic phenotype of ECs, but the comprehensive mechanism underlying the PS-repression of inflammatory genes remains to be determined. In this study, we investigated the role of chromatin organization in mediating the effects of PS on inflammatory gene expression in ECs. We demonstrated that PS induced the expression of histone methyltransferase SUV39H1 to promote heterochromatin formation via H3K9 trimethylation (H3K9me3) enrichment, a hallmark gene repression mechanism. SUV39H1 interacts with lamin-associated proteins and facilitates the perinuclear localization of the H3K9me3-enrichment. Silencing the lamin-associated protein emerin (EMD) not only led to the reductions of cytoskeletal F-actin formation and perinuclear H3K9me3 enrichment; but also the impairment of PS-induced SUV39H1 expression, H3K9me3 enrichment at E-selectin and vascular cell adhesion molecule 1 loci to revert their PS-repressed expression. Hence, EMD acts as a hub to transmit mechanical cues from the cytoskeleton to the nucleus and recruits SUV39H1, which regulate nuclear organization, chromatin state, and gene expression. These results accentuate the critical role of nuclear architecture in mechanotransduction and EC responses to mechanical stimuli.
Collapse
Affiliation(s)
- Li-Jing Chen
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Julie Yi-Shuan Li
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Phu Nguyen
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Gerard Norwich
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Yingxiao Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| | - Dayu Teng
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT84112
- Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT84112
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT84112
| | - John Y. J. Shyy
- Department of Medicine, University of California at San Diego, La Jolla, CA92093
| | - Shu Chien
- Department of Bioengineering, University of California at San Diego, La Jolla, CA92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA92093
- Department of Medicine, University of California at San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Guo Y, Zhang J, Gong L, Liu N, Liu Q, Liu Z, Guo B, Yang J. Mechanical Loading Induces NRF2 Nuclear Translocation to Epigenetically Remodel Oxidative Stress Defense in Osteocytes. Antioxidants (Basel) 2025; 14:346. [PMID: 40227420 PMCID: PMC11939503 DOI: 10.3390/antiox14030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
The mechano-responsiveness of osteocytes is critical for maintaining bone health and associated with a reduced oxidative stress defense, yet the precise molecular mechanisms remain incompletely understood. Here, we address the gap by investigating the epigenetic reprogramming that drives osteocyte responses to mechanical loading. We found overall remodeling of antioxidant response under mechanical loading and identified NRF2, a key transcription factor in oxidative stress response, which plays a vital role in the epigenetic remodeling of osteocytes. The results showed that mechanical loading enhanced NRF2 protein stability, promoted its nuclear translocation, and activated osteocyte-specific transcriptional programs. In contrast, pharmacological stabilization of NRF2 failed to fully replicate these effects, underscoring the unique role of mechanical stimuli in modulating NRF2 activity and antioxidant function. Our findings highlight the potential therapeutic limitations of NRF2-stabilizing drugs and suggest that combining pharmacological approaches with mechanical interventions could offer more effective treatments to maintain oxidative homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| | - Jingping Yang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| |
Collapse
|
5
|
Tang P, Wei F, Qiao W, Chen X, Ji C, Yang W, Zhang X, Chen S, Wu Y, Jiang M, Ma C, Shen W, Dong Q, Cao H, Xie M, Cai Z, Xu L, Shi J, Dong N, Chen J, Wang N. Engineering aortic valves via transdifferentiating fibroblasts into valvular endothelial cells without using viruses or iPS cells. Bioact Mater 2025; 45:181-200. [PMID: 39651397 PMCID: PMC11625219 DOI: 10.1016/j.bioactmat.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and in vivo application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge. Utilizing a combinatorial strategy of selective soluble chemicals, cytokines and substrate stiffness modulation, mouse embryonic fibroblasts are directly and efficiently transdifferentiated into induced aortic endothelial cell-like cells (iAECs), or human primary adult fibroblasts are transdifferentiated into induced valvular endothelial cell-like cells (hiVECs), without expressing pluripotency stem cell markers. These iAECs and hiVECs express VEC-associated genes and proteins and VEC-specific marker NFATC1 and are functional in culture and on decellularized porcine aortic valves, like mouse aortic endothelial cells or human primary aortic valvular endothelial cells. The iAECs and hiVECs seeded on decellularized porcine aortic valves stay intact and express VEC-associated proteins for 60 days after grafting into abdominal aorta of immune-compromised rats. In contrast, induced pluripotent stem cells (iPSCs) are less efficient in differentiating into VEC-like cells and pluripotency marker Nanog is expressed in a small subpopulation of iPSC-derived VEC-like cells that generate teratomas in SCID mice whereas hiVECs derived from transdifferentiation do not generate teratomas in vivo. Our findings highlight an approach to efficiently convert fibroblasts into iAECs and hiVECs and seed them onto decellularized aortic valves for safely generating autologous tissue-engineered aortic valves without using viruses or first reprogramming the cells into pluripotent stem cells.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyang Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wanzhi Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chenyu Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weiqiang Shen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ning Wang
- Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
7
|
Attar AG, Paturej J, Sariyer OS, Banigan EJ, Erbas A. Peripheral heterochromatin tethering is required for chromatin-based nuclear mechanical response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637704. [PMID: 39990304 PMCID: PMC11844546 DOI: 10.1101/2025.02.12.637704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The cell nucleus is a mechanically responsive structure that governs how external forces affect chromosomes. Chromatin, particularly transcriptionally inactive heterochromatin, resists nuclear deformations through its mechanical response. However, chromatin also exhibits liquid-like properties, casting ambiguity on the physical mechanisms of chromatin-based nuclear elasticity. To determine how heterochromatin strengthens nuclear mechanical response, we performed polymer physics simulations of a nucleus model validated by micromechanical measurements and chromosome conformation capture data. The attachment of peripheral heterochromatin to the lamina is required to transmit forces directly to the chromatin and elicit its elastic response. Thus, increases in heterochromatin levels increase nuclear rigidity by increasing the linkages between chromatin and the lamina. Crosslinks within heterochromatin, such as HP1 α proteins, can also stiffen nuclei, but only if chromatin is peripherally tethered. In contrast, heterochromatin affinity interactions that may drive liquid-liquid phase separation do not contribute to nuclear rigidity. When the nucleus is stretched, gel-like peripheral heterochromatin can bear stresses and deform, while the more fluid-like interior euchromatin is less perturbed. Thus, heterochromatin's internal structure and stiffness may regulate nuclear mechanics via peripheral attachment to the lamina, while also enabling nuclear mechanosensing of external forces and external measurement of the nucleus' internal architecture.
Collapse
|
8
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
9
|
Kai F, Leidal AM, Weaver VM. Tension-induced organelle stress: an emerging target in fibrosis. Trends Pharmacol Sci 2025; 46:117-131. [PMID: 39818520 PMCID: PMC11805623 DOI: 10.1016/j.tips.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma. This stiffening appropriates actomyosin-mediated mechanical tension within cells to ultimately affect cell fate decisions and function. Recent studies demonstrate that subcellular organelles are physically connected to the actin cytoskeleton and sensitive to mechanoperturbations. These insights highlight mechanisms that may contribute to the chronic organelle stress in many fibrotic diseases, including those of the lung and liver. In this review, we discuss the hypothesis that a stiffened fibrotic ECM corrupts intracellular mechanical tension to compromise organelle homeostasis. We summarize potential therapeutics that could intervene in this mechanical dialog and that may have clinical benefit for resolving pathological organelle stress in fibrosis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Andrew M Leidal
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Zhou W, Lin J, Wang Q, Wang X, Yao X, Yan Y, Sun W, Zhu Q, Zhang X, Wang X, Ji B, Ouyang H. Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate. Cell Rep 2025; 44:115106. [PMID: 39723890 DOI: 10.1016/j.celrep.2024.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear. Here, we demonstrate that microtopography influences nuclear tension in mesenchymal stem cells (MSCs), shaping chromatin accessibility and determining lineage commitment. On aligned substrates, MSCs exhibit high cytoskeletal tension along the fiber direction, creating anisotropic nuclear stress that opens chromatin sites for neurogenic, myogenic, and tenogenic genes via transcription factors like Nuclear receptor TLX (TLX). In contrast, random substrates induce isotropic nuclear stress, promoting chromatin accessibility for osteogenic and chondrogenic genes through Runt-related transcription factors (RUNX). Our findings reveal that aligned and random microtopographies direct site-specific chromatin stretch and lineage-specific gene expression, priming MSCs for distinct lineages. This study introduces a novel framework for understanding how topographic cues govern cell fate in tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenyan Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Junxin Lin
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Qianchun Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Xianliu Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 200051, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province 322000, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Qiuwen Zhu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaoan Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang Province 310027, China; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
11
|
Na J, Tai C, Wang Z, Yang Z, Chen X, Zhang J, Zheng L, Fan Y. Stiff extracellular matrix drives the differentiation of mesenchymal stem cells toward osteogenesis by the multiscale 3D genome reorganization. Biomaterials 2025; 312:122715. [PMID: 39094522 DOI: 10.1016/j.biomaterials.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chengzheng Tai
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ziyi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyuan Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
12
|
Bae SY, Ling HH, Chen Y, Chen H, Kumar D, Zhang J, Viny AD, DePinho RA, Giancotti FG. Mediator Subunit Med4 Enforces Metastatic Dormancy in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.18.566087. [PMID: 38014033 PMCID: PMC10680920 DOI: 10.1101/2023.11.18.566087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Long term survival of breast cancer patients is limited due to recurrence from metastatic dormant cancer cells. However, the mechanisms by which these dormant breast cancer cells survive and awaken remain poorly understood. Our unbiased genome-scale genetic screen in mice identified Med4 as a novel cancer-cell intrinsic gatekeeper in metastatic reactivation. MED4 haploinsufficiency is prevalent in metastatic breast cancer patients and correlates with poorer prognosis. Syngeneic xenograft models revealed that Med4 enforces breast cancer dormancy. Contrary to the canonical function of the Mediator complex in activating gene expression, Med4 maintains 3D chromatin compaction and enhancer landscape, by preventing enhancer priming or activation through the suppression of H3K4me1 deposition. Med4 haploinsufficiency disrupts enhancer poise and reprograms the enhancer dynamics to facilitate extracellular matrix (ECM) gene expression and integrin-mediated mechano-transduction, driving metastatic growth. Our findings establish Med4 as a key regulator of cellular dormancy and a potential biomarker for high-risk metastatic relapse.
Collapse
Affiliation(s)
- Seong-Yeon Bae
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hsiang-Hsi Ling
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Yi Chen
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hong Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Dhiraj Kumar
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jiankang Zhang
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Aaron D. Viny
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Filippo G. Giancotti
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
13
|
De Corato M, Gomez-Benito MJ. Interplay of chromatin organization and mechanics of the cell nucleus. Biophys J 2024; 123:3386-3396. [PMID: 39126157 PMCID: PMC11480768 DOI: 10.1016/j.bpj.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The nucleus of eukaryotic cells is constantly subjected to different kinds of mechanical stimuli, which can impact the organization of chromatin and, subsequently, the expression of genetic information. Experiments from different groups showed that nuclear deformation can lead to transient or permanent condensation or decondensation of chromatin and the mechanical activation of genes, thus altering the transcription of proteins. Changes in chromatin organization, in turn, change the mechanical properties of the nucleus, possibly leading to an auxetic behavior. Here, we model the mechanics of the nucleus as a chemically active polymer gel in which the chromatin can exist in two states: a self-attractive state representing the heterochromatin and a repulsive state representing euchromatin. The model predicts reversible or irreversible changes in chromatin condensation levels upon external deformations of the nucleus. We find an auxetic response for a broad range of parameters under small and large deformations. These results agree with experimental observations and highlight the key role of chromatin organization in the mechanical response of the nucleus.
Collapse
Affiliation(s)
- Marco De Corato
- Department of Science and Technology of Materials and Fluids, Fluid Dynamics Technology Group (TFD), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
14
|
Rashid F, Kabbo SA, Wang N. Mechanomemory of nucleoplasm and RNA polymerase II after chromatin stretching by a microinjected magnetic nanoparticle force. Cell Rep 2024; 43:114462. [PMID: 39002538 PMCID: PMC11289711 DOI: 10.1016/j.celrep.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024] Open
Abstract
Increasing evidence suggests that the mechanics of chromatin and nucleoplasm regulate gene transcription and nuclear function. However, how the chromatin and nucleoplasm sense and respond to forces remains elusive. Here, we employed a strategy of applying forces directly to the chromatin of a cell via a microinjected 200-nm anti-H2B-antibody-coated ferromagnetic nanoparticle (FMNP) and an anti-immunoglobulin G (IgG)-antibody-coated or an uncoated FMNP. The chromatin behaved as a viscoelastic gel-like structure and the nucleoplasm was a softer viscoelastic structure at loading frequencies of 0.1-5 Hz. Protein diffusivity of the chromatin, nucleoplasm, and RNA polymerase II (RNA Pol II) and RNA Pol II activity were upregulated in a chromatin-stretching-dependent manner and stayed upregulated for tens of minutes after force cessation. Chromatin stiffness increased, but the mechanomemory duration of chromatin diffusivity decreased, with substrate stiffness. These findings may provide a mechanomemory mechanism of transcription upregulation and have implications on cell and nuclear functions.
Collapse
Affiliation(s)
- Fazlur Rashid
- The Institute for Mechanobiology, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115, USA; Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sadia Amin Kabbo
- The Institute for Mechanobiology, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ning Wang
- The Institute for Mechanobiology, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Baek J, Kumar S, Schaffer DV. Dynamic light-responsive RhoA activity regulates mechanosensitive stem cell fate decision in 3D matrices. BIOMATERIALS ADVANCES 2024; 160:213836. [PMID: 38599042 DOI: 10.1016/j.bioadv.2024.213836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
The behavior of stem cells is regulated by mechanical cues in their niche that continuously vary due to extracellular matrix (ECM) remodeling, pulsated mechanical stress exerted by blood flow, and/or cell migration. However, it is still unclear how dynamics of mechanical cues influence stem cell lineage commitment, especially in a 3D microenvironment where mechanosensing differs from that in a 2D microenvironment. In the present study, we investigated how temporally varying mechanical signaling regulates expression of the early growth response 1 gene (Egr1), which we recently discovered to be a 3D matrix-specific mediator of mechanosensitive neural stem cell (NSC) lineage commitment. Specifically, we temporally controlled the activity of Ras homolog family member A (RhoA), which is known to have a central role in mechanotransduction, using our previously developed Arabidopsis thaliana cryptochrome-2-based optoactivation system. Interestingly, pulsed RhoA activation induced Egr1 upregulation in stiff 3D gels only, whereas static light stimulation induced an increase in Egr1 expression across a wide range of 3D gel stiffnesses. Actin assembly inhibition limited Egr1 upregulation upon RhoA activation, implying that RhoA signaling requires an actin-involved process to upregulate Egr1. Consistently, static-light RhoA activation rather than pulsed-light activation restricted neurogenesis in soft gels. Our findings indicate that the dynamics of RhoA activation influence Egr1-mediated stem cell fate within 3D matrices in a matrix stiffness-dependent manner.
Collapse
Affiliation(s)
- Jieung Baek
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Cosgrove BD, Bounds LR, Taylor CK, Su AL, Rizzo AJ, Barrera A, Crawford GE, Hoffman BD, Gersbach CA. Mechanosensitive genomic enhancers potentiate the cellular response to matrix stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574997. [PMID: 38260455 PMCID: PMC10802421 DOI: 10.1101/2024.01.10.574997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epigenetic control of cellular transcription and phenotype is influenced by changes in the cellular microenvironment, yet how mechanical cues from these microenvironments precisely influence epigenetic state to regulate transcription remains largely unmapped. Here, we combine genome-wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA-seq CRISPR screening to identify a new class of genomic enhancers that responds to the mechanical microenvironment. These 'mechanoenhancers' could be active on either soft or stiff extracellular matrix contexts, and regulated transcription to influence critical cell functions including apoptosis, mechanotransduction, proliferation, and migration. Epigenetic editing of mechanoenhancers on rigid materials tuned gene expression to levels observed on softer materials, thereby reprogramming the cellular response to the mechanical microenvironment. These editing approaches may enable the precise alteration of mechanically-driven disease states.
Collapse
Affiliation(s)
- Brian D. Cosgrove
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Lexi R. Bounds
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Carson Key Taylor
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Alan L. Su
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Anthony J. Rizzo
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC 27708, USA
| | - Gregory E. Crawford
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Pediatrics, Duke University Medical Center; Durham, NC 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Department of Cell Biology, Duke University; Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Cell Biology, Duke University; Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center; Durham, NC 27708, USA
| |
Collapse
|
17
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Shivashankar GV. Mechanical forces and the 3D genome. Curr Opin Struct Biol 2023; 83:102728. [PMID: 37948897 DOI: 10.1016/j.sbi.2023.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Traditionally, the field of genomics has been studied from a biochemical perspective. Besides chemical influences, cells are subject to a variety of mechanical signals from their surrounding tissue microenvironment. These mechanical signals can not only cause changes to a cell's physical structure but can also lead to alterations in their genomes and gene expression programs. Understanding the mechanical control of genome organization and expression may provide a new perspective on gene regulation.
Collapse
|
19
|
严 然, 陈 祥, 张 译, 王 梦, 李 顺, 刘 贻. [Advances in cell nuclear mechanobiology and its regulation mechanisms]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:617-624. [PMID: 37666750 PMCID: PMC10477395 DOI: 10.7507/1001-5515.202304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Indexed: 09/06/2023]
Abstract
As an important intracellular genetic and regulatory center, the nucleus is not only a terminal effector of intracellular biochemical signals, but also has a significant impact on cell function and phenotype through direct or indirect regulation of nuclear mechanistic cues after the cell senses and responds to mechanical stimuli. The nucleus relies on chromatin-nuclear membrane-cytoskeleton infrastructure to couple signal transduction, and responds to these mechanical stimuli in the intracellular and extracellular physical microenvironments. Changes in the morphological structure of the nucleus are the most intuitive manifestation of this mechanical response cascades and are the basis for the direct response of the nucleus to mechanical stimuli. Based on such relationships of the nucleus with cell behavior and phenotype, abnormal nuclear morphological changes are widely used in clinical practice as disease diagnostic tools. This review article highlights the latest advances in how nuclear morphology responds and adapts to mechanical stimuli. Additionally, this article will shed light on the factors that mechanically regulate nuclear morphology as well as the tumor physio-pathological processes involved in nuclear morphology and the underlying mechanobiological mechanisms. It provides new insights into the mechanisms that nuclear mechanics regulates disease development and its use as a potential target for diagnosis and treatment.
Collapse
Affiliation(s)
- 然 严
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - 祥燕 陈
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 译兮 张
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 梦 王
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 顺 李
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 贻尧 刘
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| |
Collapse
|
20
|
Oses C, De Rossi MC, Bruno L, Verneri P, Diaz MC, Benítez B, Guberman A, Levi V. From the membrane to the nucleus: mechanical signals and transcription regulation. Biophys Rev 2023; 15:671-683. [PMID: 37681098 PMCID: PMC10480138 DOI: 10.1007/s12551-023-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mechanical forces drive and modulate a wide variety of processes in eukaryotic cells including those occurring in the nucleus. Relevantly, forces are fundamental during development since they guide lineage specifications of embryonic stem cells. A sophisticated macromolecular machinery transduces mechanical stimuli received at the cell surface into a biochemical output; a key component in this mechanical communication is the cytoskeleton, a complex network of biofilaments in constant remodeling that links the cell membrane to the nuclear envelope. Recent evidence highlights that forces transmitted through the cytoskeleton directly affect the organization of chromatin and the accessibility of transcription-related molecules to their targets in the DNA. Consequently, mechanical forces can directly modulate transcription and change gene expression programs. Here, we will revise the biophysical toolbox involved in the mechanical communication with the cell nucleus and discuss how mechanical forces impact on the organization of this organelle and more specifically, on transcription. We will also discuss how live-cell fluorescence imaging is producing exquisite information to understand the mechanical response of cells and to quantify the landscape of interactions of transcription factors with chromatin in embryonic stem cells. These studies are building new biophysical insights that could be fundamental to achieve the goal of manipulating forces to guide cell differentiation in culture systems.
Collapse
Affiliation(s)
- Camila Oses
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Luciana Bruno
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - María Candelaria Diaz
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Belén Benítez
- Instituto de Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Departamento de Fisiología, Universidad de Buenos Aires, Biología Molecular Y Celular, C1428EGA Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
21
|
Sun J, Chen J, Amar K, Wu Y, Jiang M, Wang N. LAP2β transmits force to upregulate genes via chromatin domain stretching but not compression. Acta Biomater 2023; 163:326-338. [PMID: 34700042 PMCID: PMC9033892 DOI: 10.1016/j.actbio.2021.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
There is increasing evidence that force impacts almost every aspect of cells and tissues in physiology and disease including gene regulation. However, the molecular pathway of force transmission from the nuclear lamina to the chromatin remain largely elusive. Here we employ two different approaches of a local stress on cell apical surface via an RGD (Arg-Gly-Asp)-coated magnetic bead and whole cell deformation at cell basal surface via uniaxial or biaxial deformation of a fibronectin-coated flexible polydimethylsiloxane substrate. We find that nuclear protein LAP2β mediates force transmission from the nuclear lamina to the chromatin. Knocking down LAP2β increases spontaneous movements of the chromatin by reducing tethering of the chromatin and substantially inhibits the magnetic bead-stress or the substrate-deformation induced chromatin domain stretching and the ensuing dihydrofolate reductase (DHFR) gene upregulation. Analysis of DHFR gene-containing chromatin domain alignments along or perpendicular to the direction of the stretching/compressing reveals that the chromatin domain must be stretched and not compressed in order for the gene to be rapidly upregulated. Together these results suggest that external-load induced rapid transcription upregulation originates from chromatin domain stretching but not compressing and depends on the molecular force transmission pathway of LAP2β. STATEMENT OF SIGNIFICANCE: How force regulates gene expression has been elusive. Here we show that the orientation of the chromatin domain relative to the stress direction is crucial in determining if the chromatin domain will be stretched or compressed in response to a cell surface loading. We also show that nuclear protein Lap2b is a critical molecule that mediates force transmission from the nuclear laminar to the chromatin to regulate gene transcription. This study reveals the molecular force transmission pathway for force-induced gene regulation.
Collapse
Affiliation(s)
- Jian Sun
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Kshitij Amar
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
| |
Collapse
|
22
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
23
|
Chen Y, Xu R, Zhou S, Zhao C, Hu Z, Hua Y, Xiong Y, Liu X, Lü J, Sun Y, Li C, Gao S, Zhang Y. Mechanical strain treatment improves nuclear transfer reprogramming efficiency by enhancing chromatin accessibility. Stem Cell Reports 2023; 18:807-816. [PMID: 36963387 PMCID: PMC10147550 DOI: 10.1016/j.stemcr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/26/2023] Open
Abstract
Cellular mechanical properties are considered to be important factors affecting cell fate transitions, but the links between cellular mechanical properties and transition efficiency and chromatin structure remain elusive. Here, we predicted that mechanical strain treatment could induce signatures of cellular dedifferentiation and transdifferentiation, and we validated this prediction by showing that mechanical strain-treated mouse cumulus cells (CCs) exhibit significantly improved somatic cell nuclear transfer (SCNT) reprogramming efficiency. We found that the chromatin accessibility of CCs was globally increased by mechanical strain treatment and that this increase was partially mediated by the induction of the YAP-TEAD interaction. Moreover, using mechanical strain-treated CCs could prevent transcriptional dysregulation in SCNT embryos. Taken together, our study results demonstrated that modulating cell mechanical properties to regulate epigenetic status is a promising approach to facilitate cell fate transition.
Collapse
Affiliation(s)
- Yujie Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruimin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuang Zhou
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Chengchen Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ziyue Hu
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yuwei Hua
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Xiong
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junhong Lü
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.
| | - Chong Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
24
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
25
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
26
|
Zhang Y, Dong Q, An Q, Zhang C, Mohagheghian E, Niu B, Qi F, Wei F, Chen S, Chen X, Wang A, Cao X, Wang N, Chen J. Synthetic Retinoid Kills Drug-Resistant Cancer Stem Cells via Inducing RARγ-Translocation-Mediated Tension Reduction and Chromatin Decondensation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203173. [PMID: 36031407 PMCID: PMC9631059 DOI: 10.1002/advs.202203173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/16/2022] [Indexed: 05/11/2023]
Abstract
A recently developed synthetic retinoid abrogates proliferation and induces apoptosis of drug-resistant malignant-cancer-stem-cell-like cells. However, the underlying mechanisms of how the synthetic retinoid induces cancer-stem-cell-like cell tumor-repopulating cell (TRC) apoptosis are elusive. Here, it is shown that although the retinoid and conventional anticancer drugs cisplatin, all-trans retinoic acid, and tazarotene all inhibit cytoskeletal tension and decondense chromatin prior to inducing TRC apoptosis, half-maximal inhibitory concentration of the retinoid is 20-fold lower than those anticancer drugs. The synthetic retinoid induces retinoic acid receptor gamma (RARγ) translocation from the nucleus to the cytoplasm, leading to reduced RARγ binding to Cdc42 promoter and Cdc42 downregulation, which decreases filamentous-actin (F-actin) and inhibits cytoskeletal tension. Elevating F-actin or upregulating histone 3 lysine 9 trimethylation decreases retinoid-induced DNA damage and apoptosis of TRCs. The combinatorial treatment with a chromatin decondensation molecule and the retinoid inhibits tumor metastasis in mice more effectively than the synthetic retinoid alone. These findings suggest a strategy of lowering cell tension and decondensing chromatin to enhance DNA damage to abrogate metastasis of cancer-stem-cell-like cells with high efficacy.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Quanlin An
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Chumei Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Erfan Mohagheghian
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Bing Niu
- School of Life SciencesShanghai University99 Shangda RoadShanghai200444China
| | - Feng Qi
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xinman Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Anqi Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xin Cao
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Ning Wang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| |
Collapse
|
27
|
Song Y, Soto J, Chen B, Hoffman T, Zhao W, Zhu N, Peng Q, Liu L, Ly C, Wong PK, Wang Y, Rowat AC, Kurdistani SK, Li S. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. NATURE MATERIALS 2022; 21:1191-1199. [PMID: 35927431 PMCID: PMC9529815 DOI: 10.1038/s41563-022-01312-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Cell reprogramming has wide applications in tissue regeneration, disease modelling and personalized medicine. In addition to biochemical cues, mechanical forces also contribute to the modulation of the epigenetic state and a variety of cell functions through distinct mechanisms that are not fully understood. Here we show that millisecond deformation of the cell nucleus caused by confinement into microfluidic channels results in wrinkling and transient disassembly of the nuclear lamina, local detachment of lamina-associated domains in chromatin and a decrease of histone methylation (histone H3 lysine 9 trimethylation) and DNA methylation. These global changes in chromatin at the early stage of cell reprogramming boost the conversion of fibroblasts into neurons and can be partially reproduced by inhibition of histone H3 lysine 9 and DNA methylation. This mechanopriming approach also triggers macrophage reprogramming into neurons and fibroblast conversion into induced pluripotent stem cells, being thus a promising mechanically based epigenetic state modulation method for cell engineering.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Weikang Zhao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Qin Peng
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Longwei Liu
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Chau Ly
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
29
|
Magnetomechanical Stress-Induced Colon Cancer Cell Growth Inhibition. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of magnetomechanical stress in cells using internalized magnetic nanoparticles (MNPs) actuated by low-frequency magnetic fields has been attracting considerable interest in the field of cancer research. Recent developments prove that magnetomechanical stress can inhibit cancer cells’ growth. However, the MNPs’ type and the magnetic field’s characteristics are crucial parameters. Their variability allows multiple combinations, which induce specific biological effects. We previously reported the antiproliferative effects induced in HT29 colon cancer cells by static-magnetic-field (200 mT)-actuated spherical MNPs (100 nm). Herein, we show that similar growth inhibitory effects are induced in other colon cancer cell lines. The effect of magnetomechanical stress was also examined in the growth rate of tumor spheroids. Moreover, we examined the biological mechanisms involved in the observed cell growth inhibition. Under the experimental conditions employed, no cell death was detected by PI (propidium iodide) staining analysis. Flow cytometry and Western blotting revealed that G2/M cell cycle arrest might mediate the antiproliferative effects. Furthermore, MNPs were found to locate in the lysosomes, and a decreased number of lysosomes was detected in cells that had undergone magnetomechanical stress, implying that the mechanical activation of the internalized MNPs could induce lysosome membrane disruption. Of note, the lysosomal acidic conditions were proven to affect the MNPs’ magnetic properties, evidenced by vibrating sample magnetometry (VSM) analysis. Further research on the combination of the described magnetomechanical stress with lysosome-targeting chemotherapeutic drugs could lay the groundwork for the development of novel anticancer combination treatment schemes.
Collapse
|
30
|
Liu W, Padhi A, Zhang X, Narendran J, Anastasio MA, Nain AS, Irudayaraj J. Dynamic Heterochromatin States in Anisotropic Nuclei of Cells on Aligned Nanofibers. ACS NANO 2022; 16:10754-10767. [PMID: 35803582 PMCID: PMC9332347 DOI: 10.1021/acsnano.2c02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cancer cell nucleus deforms as it invades the interstitial spaces in tissues and the tumor microenvironment. While alteration of the chromatin structure in a deformed nucleus is expected and documented, the chromatin structure in the nuclei of cells on aligned matrices has not been elucidated. In this work we elucidate the spatiotemporal organization of heterochromatin in the elongated nuclei of cells on aligned nanofibers with stimulated emission depletion nanoscopy and fluorescence correlation spectroscopy. We show that the anisotropy of nuclei is sufficient to drive H3K9me3-heterochromatin alterations, with enhanced H3K9me3 nanocluster compaction and aggregation states that otherwise are indistinguishable from diffraction-limited microscopy. We interrogated the higher-order heterochromatin structures within major chromatin compartments in anisotropic nuclei and discovered a wider spatial dispersion of nanodomain clusters in the nucleoplasm and condensed larger nanoclusters near the periphery and pericentromeric heterochromatin. Upon examining the spatiotemporal dynamics of heterochromatin in anisotropic nuclei, we observed reduced mobility of the constitutive heterochromatin mark H3K9me3 and the associated heterochromatin protein 1 (HP1α) at the nucleoplasm and periphery regions, correlating with increased viscosity and changes in gene expression. Since heterochromatin remodeling is crucial to genome integrity, our results reveal an unconventional H3K9me3 heterochromatin distribution, providing cues to an altered chromatin state due to perturbations of the nuclei in aligned fiber configurations.
Collapse
Affiliation(s)
- Wenjie Liu
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Abinash Padhi
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaohui Zhang
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Jairaj Narendran
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Mark A. Anastasio
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Amrinder S. Nain
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
32
|
Chowdhury F, Huang B, Wang N. Forces in stem cells and cancer stem cells. Cells Dev 2022; 170:203776. [DOI: 10.1016/j.cdev.2022.203776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/26/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
33
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
34
|
Early Growth Response 1 Strengthens Pol-III-Directed Transcription and Transformed Cell Proliferation by Controlling PTEN/AKT Signalling Activity. Int J Mol Sci 2022; 23:ijms23094930. [PMID: 35563324 PMCID: PMC9105817 DOI: 10.3390/ijms23094930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
RNA polymerase III (Pol III) products play essential roles in ribosome assembly, protein synthesis, and cell survival. Deregulation of Pol-III-directed transcription is closely associated with tumorigenesis. However, the regulatory pathways or factors controlling Pol-III-directed transcription remain to be investigated. In this study, we identified a novel role of EGR1 in Pol-III-directed transcription. We found that Filamin A (FLNA) silencing stimulated EGR1 expression at both RNA and protein levels. EGR1 expression positively correlated with Pol III product levels and cell proliferation activity. Mechanistically, EGR1 downregulation dampened the occupancies of Pol III transcription machinery factors at the loci of Pol III target genes. Alteration of EGR1 expression did not affect the expression of p53, c-MYC, and Pol III general transcription factors. Instead, EGR1 activated RhoA expression and inhibited PTEN expression in several transformed cell lines. We found that PTEN silencing, rather than RhoA overexpression, could reverse the inhibition of Pol-III-dependent transcription and cell proliferation caused by EGR1 downregulation. EGR1 could positively regulate AKT phosphorylation levels and is required for the inhibition of Pol-III-directed transcription mediated by FLNA. The findings from this study indicate that EGR1 can promote Pol-III-directed transcription and cell proliferation by controlling the PTEN/AKT signalling pathway.
Collapse
|
35
|
Baek J, Lopez PA, Lee S, Kim TS, Kumar S, Schaffer DV. Egr1 is a 3D matrix-specific mediator of mechanosensitive stem cell lineage commitment. SCIENCE ADVANCES 2022; 8:eabm4646. [PMID: 35427160 PMCID: PMC9012469 DOI: 10.1126/sciadv.abm4646] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/28/2022] [Indexed: 05/31/2023]
Abstract
While extracellular matrix (ECM) mechanics strongly regulate stem cell commitment, the field's mechanistic understanding of this phenomenon largely derives from simplified two-dimensional (2D) culture substrates. Here, we found a 3D matrix-specific mechanoresponsive mechanism for neural stem cell (NSC) differentiation. NSC lineage commitment in 3D is maximally stiffness sensitive in the range of 0.1 to 1.2 kPa, a narrower and more brain-mimetic range than we had previously identified in 2D (0.75 to 75 kPa). Transcriptomics revealed stiffness-dependent up-regulation of early growth response 1 (Egr1) in 3D but not in 2D. Egr1 knockdown enhanced neurogenesis in stiff ECMs by driving β-catenin nuclear localization and activity in 3D, but not in 2D. Mechanical modeling and experimental studies under osmotic pressure indicate that stiff 3D ECMs are likely to stimulate Egr1 via increases in confining stress during cell volumetric growth. To our knowledge, Egr1 represents the first 3D-specific stem cell mechanoregulatory factor.
Collapse
Affiliation(s)
- Jieung Baek
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Paola A. Lopez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - Sangmin Lee
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Echarri A. A Multisensory Network Drives Nuclear Mechanoadaptation. Biomolecules 2022; 12:biom12030404. [PMID: 35327596 PMCID: PMC8945967 DOI: 10.3390/biom12030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cells have adapted to mechanical forces early in evolution and have developed multiple mechanisms ensuring sensing of, and adaptation to, the diversity of forces operating outside and within organisms. The nucleus must necessarily adapt to all types of mechanical signals, as its functions are essential for virtually all cell processes, many of which are tuned by mechanical cues. To sense forces, the nucleus is physically connected with the cytoskeleton, which senses and transmits forces generated outside and inside the cell. The nuclear LINC complex bridges the cytoskeleton and the nuclear lamina to transmit mechanical information up to the chromatin. This system creates a force-sensing macromolecular complex that, however, is not sufficient to regulate all nuclear mechanoadaptation processes. Within the nucleus, additional mechanosensitive structures, including the nuclear envelope and the nuclear pore complex, function to regulate nuclear mechanoadaptation. Similarly, extra nuclear mechanosensitive systems based on plasma membrane dynamics, mechanotransduce information to the nucleus. Thus, the nucleus has the intrinsic structural components needed to receive and interpret mechanical inputs, but also rely on extra nuclear mechano-sensors that activate nuclear regulators in response to force. Thus, a network of mechanosensitive cell structures ensures that the nucleus has a tunable response to mechanical cues.
Collapse
Affiliation(s)
- Asier Echarri
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Mechanoadaptation and Caveolae Biology Laboratory, Areas of Cell & Developmental Biology, Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
37
|
Liu L, Liu X, Liu M, Jihu Y, Xie D, Yan H. Mechanical signals induces reprogramming of mature adipocytes through the YAP/TAZ-binding motif. Exp Cell Res 2022; 415:113109. [DOI: 10.1016/j.yexcr.2022.113109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022]
|
38
|
Abstract
Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
39
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
40
|
Amar K, Wei F, Chen J, Wang N. Effects of forces on chromatin. APL Bioeng 2021; 5:041503. [PMID: 34661040 PMCID: PMC8516479 DOI: 10.1063/5.0065302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Chromatin is a unique structure of DNA and histone proteins in the cell nucleus and the site of dynamic regulation of gene expression. Soluble factors are known to affect the chromatin structure and function via activating or inhibiting specific transcription factors. Forces on chromatin come from exogenous stresses on the cell surface and/or endogenous stresses, which are regulated by substrate mechanics, geometry, and topology. Forces on chromatin involve direct (via adhesion molecules, cytoskeleton, and the linker of nucleoskeleton and cytoskeleton complexes) and indirect (via diffusion and/or translocation processes) signaling pathways to modulate levels of chromatin folding and deformation to regulate transcription, which is controlled by histone modifications and depends on magnitude, direction, rate/frequency, duration, and modes of stresses. The rapid force transmission pathway activates multiple genes simultaneously, and the force may act like a "supertranscription factor." The indirect mechanotransduction pathways and the rapid force transmission pathway together exert sustained impacts on the chromatin, the nucleus, and cell functions.
Collapse
Affiliation(s)
- Kshitij Amar
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
41
|
Lityagina O, Dobreva G. The LINC Between Mechanical Forces and Chromatin. Front Physiol 2021; 12:710809. [PMID: 34408666 PMCID: PMC8365421 DOI: 10.3389/fphys.2021.710809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The heart continually senses and responds to mechanical stimuli that balance cardiac structure and activity. Tensile forces, compressive forces, and shear stress are sensed by the different cardiac cell types and converted into signals instructing proper heart morphogenesis, postnatal growth, and function. Defects in mechanotransduction, the ability of cells to convert mechanical stimuli into biochemical signals, are implicated in cardiovascular disease development and progression. In this review, we summarize the current knowledge on how mechanical forces are transduced to chromatin through the tensed actomyosin cytoskeleton, the linker of nucleoskeleton and cytoskeleton (LINC) complex and the nuclear lamina. We also discuss the functional significance of the LINC complex in cardiovascular disease.
Collapse
Affiliation(s)
- Olga Lityagina
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
42
|
van Ingen MJA, Kirby TJ. LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 2021; 9:690577. [PMID: 34368139 PMCID: PMC8335485 DOI: 10.3389/fcell.2021.690577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle demonstrates a high degree of adaptability in response to changes in mechanical input. The phenotypic transformation in response to mechanical cues includes changes in muscle mass and force generating capabilities, yet the molecular pathways that govern skeletal muscle adaptation are still incompletely understood. While there is strong evidence that mechanotransduction pathways that stimulate protein synthesis play a key role in regulation of muscle mass, there are likely additional mechano-sensitive mechanisms important for controlling functional muscle adaptation. There is emerging evidence that the cell nucleus can directly respond to mechanical signals (i.e., nuclear mechanotransduction), providing a potential additional level of cellular regulation for controlling skeletal muscle mass. The importance of nuclear mechanotransduction in cellular function is evident by the various genetic diseases that arise from mutations in proteins crucial to the transmission of force between the cytoskeleton and the nucleus. Intriguingly, these diseases preferentially affect cardiac and skeletal muscle, suggesting that nuclear mechanotransduction is critically important for striated muscle homeostasis. Here we discuss our current understanding for how the nucleus acts as a mechanosensor, describe the main cytoskeletal and nuclear proteins involved in the process, and propose how similar mechanoresponsive mechanisms could occur in the unique cellular environment of a myofiber. In addition, we examine how nuclear mechanotransduction fits into our current framework for how mechanical stimuli regulates skeletal muscle mass.
Collapse
Affiliation(s)
- Maria J A van Ingen
- Biomolecular Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
43
|
Li Y, Tang W, Guo M. The Cell as Matter: Connecting Molecular Biology to Cellular Functions. MATTER 2021; 4:1863-1891. [PMID: 35495565 PMCID: PMC9053450 DOI: 10.1016/j.matt.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viewing cell as matter to understand the intracellular biomolecular processes and multicellular tissue behavior represents an emerging research area at the interface of physics and biology. Cellular material displays various physical and mechanical properties, which can strongly affect both intracellular and multicellular biological events. This review provides a summary of how cells, as matter, connect molecular biology to cellular and multicellular scale functions. As an impact in molecular biology, we review recent progresses in utilizing cellular material properties to direct cell fate decisions in the communities of immune cells, neurons, stem cells, and cancer cells. Finally, we provide an outlook on how to integrate cellular material properties in developing biophysical methods for engineered living systems, regenerative medicine, and disease treatments.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenhui Tang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
45
|
Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL. Mechanical Regulation of Transcription: Recent Advances. Trends Cell Biol 2021; 31:457-472. [PMID: 33712293 PMCID: PMC8221528 DOI: 10.1016/j.tcb.2021.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Mechanotransduction is the ability of a cell to sense mechanical cues from its microenvironment and convert them into biochemical signals to elicit adaptive transcriptional and other cellular responses. Here, we describe recent advances in the field of mechanical regulation of transcription, highlight mechanical regulation of the epigenome as a key novel aspect of mechanotransduction, and describe recent technological advances that could further elucidate the link between mechanical stimuli and gene expression. In this review, we emphasize the importance of mechanotransduction as one of the governing principles of cancer progression, underscoring the need to conduct further studies of the molecular mechanisms involved in sensing mechanical cues and coordinating transcriptional responses.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Momoko Ishikawa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Chhetri A, Rispoli JV, Lelièvre SA. 3D Cell Culture for the Study of Microenvironment-Mediated Mechanostimuli to the Cell Nucleus: An Important Step for Cancer Research. Front Mol Biosci 2021; 8:628386. [PMID: 33644116 PMCID: PMC7902798 DOI: 10.3389/fmolb.2021.628386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery that the stiffness of the tumor microenvironment (TME) changes during cancer progression motivated the development of cell culture involving extracellular mechanostimuli, with the intent of identifying mechanotransduction mechanisms that influence cell phenotypes. Collagen I is a main extracellular matrix (ECM) component used to study mechanotransduction in three-dimensional (3D) cell culture. There are also models with interstitial fluid stress that have been mostly focusing on the migration of invasive cells. We argue that a major step for the culture of tumors is to integrate increased ECM stiffness and fluid movement characteristic of the TME. Mechanotransduction is based on the principles of tensegrity and dynamic reciprocity, which requires measuring not only biochemical changes, but also physical changes in cytoplasmic and nuclear compartments. Most techniques available for cellular rheology were developed for a 2D, flat cell culture world, hence hampering studies requiring proper cellular architecture that, itself, depends on 3D tissue organization. New and adapted measuring techniques for 3D cell culture will be worthwhile to study the apparent increase in physical plasticity of cancer cells with disease progression. Finally, evidence of the physical heterogeneity of the TME, in terms of ECM composition and stiffness and of fluid flow, calls for the investigation of its impact on the cellular heterogeneity proposed to control tumor phenotypes. Reproducing, measuring and controlling TME heterogeneity should stimulate collaborative efforts between biologists and engineers. Studying cancers in well-tuned 3D cell culture platforms is paramount to bring mechanomedicine into the realm of oncology.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Joseph V Rispoli
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
47
|
LINC complex regulation of genome organization and function. Curr Opin Genet Dev 2021; 67:130-141. [PMID: 33524904 DOI: 10.1016/j.gde.2020.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
The regulation of genomic function is in part mediated through the physical organization and architecture of the nucleus. Disruption to nuclear organization and architecture is increasingly being recognized by its contribution to many diseases. The LINC complexes - protein structures traversing the nuclear envelope, that physically connect the nuclear interior, and hence the genome, to cytoplasmic cytoskeletal networks are an important component in the physical organization of the genome and its function. This connection, potentially allows for the constant detection of environmental mechanical stimuli, resulting in altered regulation of nuclear architecture and genome function, either directly or via the process of mechanotransduction. Here, we review the influences LINC complexes exert on genome functions and their impact on cellular/organismal health.
Collapse
|
48
|
Song Y, Soto J, Li S. Mechanical regulation of histone modifications and cell plasticity. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100872. [PMID: 33214755 PMCID: PMC7671577 DOI: 10.1016/j.cossms.2020.100872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cell plasticity is important in development and tissue remodeling. Cells can sense physical and chemical cues from their local microenvironment and transduce the signals into the nucleus to regulate the epigenetic state and gene expression, resulting in a change in cell phenotype. In this review, we highlight the role of mechanical cues in regulating stem cell differentiation and cell reprogramming through the modulation of histone modifications. The effects of various mechanical cues, including matrix stiffness, mechanical stretch, and shear stress, on cell fate during tissue regeneration and remodeling will be discussed. Taken together, recent work demonstrates that the alterations in histone modifications by mechanical stimuli can facilitate epigenetic changes during cell phenotypic switching, which has potential applications in the development of biomaterials and bioreactors for cell engineering.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Javier-Torrent M, Zimmer-Bensch G, Nguyen L. Mechanical Forces Orchestrate Brain Development. Trends Neurosci 2020; 44:110-121. [PMID: 33203515 DOI: 10.1016/j.tins.2020.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
During brain development, progenitors generate successive waves of neurons that populate distinct cerebral regions, where they settle and differentiate within layers or nuclei. While migrating and differentiating, neurons are subjected to mechanical forces arising from the extracellular matrix, and their interaction with neighboring cells. Changes in brain biomechanical properties, during its formation or aging, are converted in neural cells by mechanotransduction into intracellular signals that control key neurobiological processes. Here, we summarize recent findings that support the contribution of mechanobiology to neurodevelopment, with focus on the cerebral cortex. Also discussed are the existing toolbox and emerging technologies made available to assess and manipulate the physical properties of neurons and their environment.
Collapse
Affiliation(s)
- Míriam Javier-Torrent
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | | | - Laurent Nguyen
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
50
|
Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol 2020; 8:595497. [PMID: 33240867 PMCID: PMC7680962 DOI: 10.3389/fbioe.2020.595497] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies have shown that cells can sense and modulate the biomechanical properties of the ECM within their resident microenvironment. Thus, targeting the mechanotransduction signaling pathways provides a promising way for disease intervention. However, how cells perceive these mechanical cues of the microenvironment and transduce them into biochemical signals remains to be answered. Förster or fluorescence resonance energy transfer (FRET) based biosensors are a powerful tool that can be used in live-cell mechanotransduction imaging and mechanopharmacological drug screening. In this review, we will first introduce FRET principle and FRET biosensors, and then, recent advances on the integration of FRET biosensors and mechanobiology in normal and pathophysiological conditions will be discussed. Furthermore, we will summarize the current applications and limitations of FRET biosensors in high-throughput drug screening and the future improvement of FRET biosensors. In summary, FRET biosensors have provided a powerful tool for mechanobiology studies to advance our understanding of how cells and matrices interact, and the mechanopharmacological screening for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|