1
|
Cui M, Yu Y, Shen K, Kong J, Wu L, Qi X. Antarctic krill habitat suitability changes: Historical trends and future projections under climate scenarios. MARINE POLLUTION BULLETIN 2025; 217:118142. [PMID: 40378713 DOI: 10.1016/j.marpolbul.2025.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
Antarctic krill plays a crucial role in the Southern Ocean ecosystem. However, data limitations leave a significant gap in understanding the changes in krill habitat suitability. This study integrated data from Chinese Antarctic research expeditions and KRILLBASE database, using Maxent model to assess spatiotemporal shifts in krill suitable habitat from 1991 to 2100 across the eastern and western Antarctic under SSP-RCP scenarios. The results reveal regional differences in climate and environmental impacts on krill habitats. Sea temperature and pH are dominant environmental factors affecting habitat suitability. With climate changes, the suitable habitats are shifting toward higher latitudes, and the latitudinal shift of habitats in CCAMLR Areas 48 and 58 is in the opposite direction. Under high-emission scenarios, krill habitats face severe contraction and loss, whereas low-emission scenarios suggest partial recovery by 2100. Coordinated global action to protect krill habitats is essential to address the biodiversity crisis in the Southern Ocean.
Collapse
Affiliation(s)
- Meng Cui
- National Arctic and Antarctic Data Center, Polar Research Institute of China, Shanghai 201209, China; Ministry of Natural Resources Key Laboratory of Polar Science, Polar Research Institute of China, Shanghai 201209, China
| | - Yong Yu
- National Arctic and Antarctic Data Center, Polar Research Institute of China, Shanghai 201209, China; Ministry of Natural Resources Key Laboratory of Polar Science, Polar Research Institute of China, Shanghai 201209, China; Key Laboratory of Polar Ecosystem and Climate Change (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Kewei Shen
- School of marine technology and geomatics, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Jing Kong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Lizong Wu
- National Arctic and Antarctic Data Center, Polar Research Institute of China, Shanghai 201209, China
| | - Xin Qi
- National Arctic and Antarctic Data Center, Polar Research Institute of China, Shanghai 201209, China
| |
Collapse
|
2
|
Pala N, Vorkamp K, Bossi R, Bignert A, Traversa G, Fugazza D, Ancora S, Ademollo N, Baroni D, Corsolini S. Temporal trends of persistent organic pollutants (POPs) and perfluoroalkyl substances (PFAS) in Adèlie penguin (Pygoscelis adeliae) eggs from the Ross Sea (Antarctica), including their relationship with climate parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126130. [PMID: 40157488 DOI: 10.1016/j.envpol.2025.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Temporal trends of contaminants represent an important tool to evaluate the effectiveness of chemical restriction measures. In this work, 50 eggs of Adèlie penguin (Pygoscelis adeliae) collected along the Ross Sea coasts from 1997 to 2021 were analysed for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), perfluoroalkyl substances (PFAS). Some PCB congeners showed a significantly decreasing trend, whereas HCB and p,p'-DDE indicated decreasing but not significant trends, potentially related to the unintentional production of HCB and ongoing use of DDT, even if a contribution from climate-driven remobilisation mechanisms may also play a role. PBDE-47 also indicated a decreasing but not significant trend, which might be explained by the more recent global restriction. PFAS trends agreed with what has been previously observed in the Arctic, i.e. significantly decreasing perfluorooctane sulfonate (PFOS) according to its global ban and increasing long-chain perfluorinated carboxylic acids (PFCAs). Correlations with selected climate parameters showed an association between PBDE-47 and sampling year precipitations. To our knowledge, this work represents the longest time trend study of pollutants in penguins from the Ross Sea and the first one reporting PFAS. It highlights the importance of global regulations for the contaminant developments in polar ecosystems.
Collapse
Affiliation(s)
- Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Giacomo Traversa
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 20126, Milan, Italy
| | - Davide Fugazza
- Department of Environmental Science and Policy (ESP), University of Milan, 20133, Milan, Italy
| | - Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 40129, Bologna, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy; Institute of Polar Sciences, Italian National Research Council (ISP-CNR), 40129, Bologna, Italy
| |
Collapse
|
3
|
Bahrndorff S, Convey P, Chown SL, Sørensen JG. Polar ectotherms more vulnerable to warming than expected. Trends Ecol Evol 2025:S0169-5347(25)00097-7. [PMID: 40335408 DOI: 10.1016/j.tree.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
Polar regions are heavily impacted by climate change. Yet, vulnerability assessments suggest little concern about heat-related challenges for polar terrestrial ectotherms. These conclusions are based, however, on assumptions and extrapolation from temperate regions; the limited data available suggest that polar ectotherms are more sensitive to warming than previously recognized.
Collapse
Affiliation(s)
- Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg East, Denmark.
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; Millennium Institute - Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven L Chown
- Securing Antarctica's Environmental Future, Monash University, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|
4
|
Zhao G, Wang D, Yang H, Chen S, Sun H, Wu S, Yang F, Yu Z, Chen Z. Raising wastewater collection and discharge standards will reduce greenhouse gas emissions from metropolitan rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126390. [PMID: 40339886 DOI: 10.1016/j.envpol.2025.126390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
Urban rivers are increasingly recognized as significant sources for greenhouse gas (GHG) emissions. Few studies, however, quantify emissions of all three GHG from rehabilitating urban rivers that receive treated wastewater. This study analyzed carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations and diffusive fluxes from the Suzhou Creek in Shanghai that were investigated across the four seasons in 2021. Our results show that Suzhou Creek behaves as a source of atmospheric GHG emissions. The mean concentrations of CO2 CH4 and N2O, in the main and tributaries were 80.62 ± 37.81 versus 82.07 ± 50.77 μmol L-1, 0.38 ± 0.31 versus 0.73 ± 0.87 μmol L-1, and 37.33 ± 17.70 versus 51.26 ± 35.84 nmol L-1, respectively. The corresponding fluxes of CO2, CH4, and N2O were 3.04 ± 2.36 versus 2.78 ± 2.25 mmol m-2 h-1, 17.82 ± 18.91 versus 35.35 ± 49.51 μmol m-2 h-1, and 1.44 ± 1.25 versus 2.2 ± 2.95 μmol m-2 h-1, respectively. GHG emissions from Suzhou Creek are lower than global urban rivers. N2O generation in the nitrate-rich mainstem may primarily be attributed to denitrification and nitrification, and ammonium-rich tributaries may mainly associate with nitrification and coupling nitrification-denitrification. Tributaries are more suitable for CH4 generation. CO2 in the basin comes mainly from heterotrophic respiration of organic matter, and the high nutrient load and Chlorophyll a concentration in tributaries support photosynthesis. Although wastewater treatment plants and sewage treatment stations provide direct inputs of GHG and nutrient substrates, respectively, their input load (including GHG and nutrient substrates) is lower than that of other urban rivers. The study highlights that with the improvement of sewage collection capacity and treatment discharge standards in large cities, the input load and water pollution situation in urbanized areas will be greatly improved, thus reducing GHG emissions from urban rivers.
Collapse
Affiliation(s)
- Guanghui Zhao
- Department of Earth Science and Engineering, Cultivation Base of Shanxi Key Laboratory of Mining Area Ecological Restoration and Solid Wastes Utilization, Shanxi Institute of Technology, Yangquan, 045000, China; School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Dongqi Wang
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
| | - Shu Chen
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Research Institute of Carbon Neutrality, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hechen Sun
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Shengnan Wu
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Fanyan Yang
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Zhongjie Yu
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, 61801, IL, USA
| | - Zhenlou Chen
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Kubiszewski I, Adams VM, Baird R, Boothroyd A, Costanza R, MacDonald DH, Finau G, Fulton EA, King CK, King MA, Lannuzel D, Leane E, Melbourne-Thomas J, Ooi CS, Raghavan M, Senigaglia V, Stoeckl N, Tian J, Yamazaki S. Cascading tipping points of Antarctica and the Southern Ocean. AMBIO 2025; 54:642-659. [PMID: 39656414 PMCID: PMC11871256 DOI: 10.1007/s13280-024-02101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/05/2024] [Accepted: 11/01/2024] [Indexed: 03/03/2025]
Abstract
Antarctica and the Southern Ocean are key elements in the physical and biological Earth system. Human-induced climate change, and other human activities in the region, are leading to several potential interacting tipping points with major and irreversible consequences. Here, we examine eight potential physical, biological, chemical, and social Antarctic tipping points. These include ice sheets, ocean acidification, ocean circulation, species redistribution, invasive species, permafrost melting, local pollution, and the Antarctic Treaty System. We discuss the nature of each potential tipping point, its control variables, thresholds, timescales, and impacts, and focus on the potential for cumulative and cascading effects as a result of their interactions. The analysis provides substantial evidence of the need for more concerted and rapid action to limit climate change and to minimise the impacts of local human activities to avoid these cascading tipping points.
Collapse
Affiliation(s)
- Ida Kubiszewski
- Institute for Global Prosperity, University College London, London, UK.
- College of Business and Economics, University of Tasmania, Hobart, Australia.
| | - Vanessa M Adams
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Australia
| | - Rachel Baird
- College of Arts, Law and Education, University of Tasmania, Hobart, Australia
| | - Anne Boothroyd
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Australia
| | - Robert Costanza
- Institute for Global Prosperity, University College London, London, UK
- College of Business and Economics, University of Tasmania, Hobart, Australia
| | | | - Glenn Finau
- College of Business and Economics, University of Tasmania, Hobart, Australia
| | - Elizabeth A Fulton
- CSIRO Environment, Hobart, TAS, Australia
- Centre for Marine Socioecology, Hobart, TAS, Australia
| | - Catherine K King
- Environmental Stewardship Program, Australian Antarctic Division, Kingston, TAS, Australia
| | - Matt A King
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Australia
- Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
| | - Delphine Lannuzel
- Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Elizabeth Leane
- College of Arts, Law and Education, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, Hobart, TAS, Australia
| | - Jess Melbourne-Thomas
- CSIRO Environment, Hobart, TAS, Australia
- Centre for Marine Socioecology, Hobart, TAS, Australia
| | - Can-Seng Ooi
- School of Social Sciences, University of Tasmania, Hobart, Australia
| | - Mala Raghavan
- College of Business and Economics, University of Tasmania, Hobart, Australia
| | - Valeria Senigaglia
- Securing Antarctica's Environmental Future, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Natalie Stoeckl
- College of Business and Economics, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, Hobart, TAS, Australia
| | - Jing Tian
- College of Business and Economics, University of Tasmania, Hobart, Australia
| | - Satoshi Yamazaki
- College of Business and Economics, University of Tasmania, Hobart, Australia
| |
Collapse
|
6
|
Isla E, Menschel E, González HH. Intense autumnal coastal biogenic particle settling fluxes align with phytoplankton phenology changes off the western Antarctic Peninsula. Sci Rep 2025; 15:10038. [PMID: 40122932 PMCID: PMC11930981 DOI: 10.1038/s41598-025-92914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Autumnal settling particle fluxes were studied in the Antarctic coastal zone. The study revealed that the particulate organic carbon (POC) flux exported from the euphotic zone towards the seabed equals the magnitude of the summer pulse when typically, > 95% of the Antarctic annual flux develops. The pelagic POC flux was accompanied with centric and pennate diatoms and euphausiid faecal pellets, which together comprised most of the biogenic particles (and biogenic silica) collected in the sediment trap used in the Gerlache Strait. Our results strongly suggest that the most important drivers of the unusual seasonal extension observed for the settling particle export were increasing glacier melting and an extended productive period. The present study may provide a baseline for Antarctic coastal biogenic particle flux studies and shows that ongoing environmental warming makes the autumnal biogenic settling particle production near shore more intense than typically observed off shore.
Collapse
Affiliation(s)
- Enrique Isla
- Instituto de Ciencias del Mar-CSIC, Barcelona, Spain.
| | - Eduardo Menschel
- Corporación Regional de Investigación y Desarrollo Cooperativo, Centro de Investigación en Ecosistemas de la Patagonia, CIEP, Coyhaique, Chile
| | - Humberto H González
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Punta Arenas, Chile
| |
Collapse
|
7
|
Thomson AI, Gray A, Colesie C, Thomas N, Moulton H, Convey P, Smith AG, Fretwell P, Peck L, Davey MP. Surface darkening by abundant and diverse algae on an Antarctic ice cap. Nat Commun 2025; 16:2647. [PMID: 40102384 PMCID: PMC11920422 DOI: 10.1038/s41467-025-57725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Algal blooms play important roles in physical and biological processes on glacial surfaces. Despite this, their occurrence and impacts within an Antarctic context remain understudied. Here, we present evidence of the large-scale presence, diversity and bioalbedo effects of algal blooms on Antarctic ice cap systems based on fieldwork conducted on Robert Island (South Shetland Islands, Antarctica). Algal blooms are observed covering up to 2.7 km2 (~20%) of the measured area of the Robert Island ice cap, with cell densities of up to 1.4 × 106 cells ml-1. Spectral characterisation reveal that these blooms increase melting of the ice cap surface, contributing up to 2.4% of total melt under the observed conditions. Blooms are composed of typical cryoflora taxa, dominated by co-occurring Chlorophyceae, Trebouxiophyceae, and Ancylonema. However, morphological variation and genetic diversity in Ancylonema highlight the influence of regional endemism and point to a large and under-characterised diversity in Antarctic cryoflora.
Collapse
Affiliation(s)
| | - Andrew Gray
- Global Change Institute, School of GeoSciences, University of Edinburgh, Edinburgh, UK.
- Terrestrial Ecology Section, Norwegian Institute for Nature Research-NINA, Oslo, Norway.
| | - Claudia Colesie
- Global Change Institute, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Naomi Thomas
- Scottish Association for Marine Science (SAMS), Oban, UK
- Culture Collection of Algae and Protozoa (CCAP), Natural Environment Research Council, Oban, Argyll, Oban, UK
| | - Hannah Moulton
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, UK
| | - Peter Convey
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems, Santiago, Chile
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Peter Fretwell
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, UK
| | - Lloyd Peck
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, UK
| | | |
Collapse
|
8
|
Guerrero PC, Contador T, Díaz A, Escobar C, Orlando J, Marín C, Medina P. Southern Islands Vascular Flora (SIVFLORA) dataset: A global plant database from Southern Ocean islands. Sci Data 2025; 12:397. [PMID: 40055331 PMCID: PMC11889263 DOI: 10.1038/s41597-025-04702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
The Southern Islands Vascular Flora (SIVFLORA) dataset is a globally significant, open-access resource that compiles essential biodiversity data on vascular plants from islands across the Southern Ocean. The SIVFLORA dataset was generated through five steps: study area delimitation, compiling the dataset, validating and harmonizing taxonomy, structuring dataset attributes, and establishing file format and open access. Covering major taxonomic divisions, SIVFLORA offers a comprehensive overview of plant occurrences, comprising 14,589 records representing 886 species, 95 families, and 42 orders. This dataset documents that 58.62% of the taxa are native, 9.61% are endemic, and 31.77% are alien species. The Falkland/Malvinas Archipelago, the most species-rich, contrast sharply with less diverse islands like the South Orkney Archipelago. SIVFLORA serves as a taxonomically harmonized, interoperable resource for investigating plant diversity patterns, ecosystem responses to climate change in extreme environments, island biogeography, endemism, and the effects of anthropogenic pressures on Southern Ocean flora.
Collapse
Affiliation(s)
- Pablo C Guerrero
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile.
| | - Tamara Contador
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Laboratorio Wankara, Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
| | - Angie Díaz
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Catalina Escobar
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catalina Marín
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Patricio Medina
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| |
Collapse
|
9
|
Wood JR, Zhou C, Cole TL, Coleman M, Anderson DP, Lyver PO, Tan S, Xiang X, Long X, Luo S, Lou M, Southon JR, Li Q, Zhang G. Sedimentary DNA insights into Holocene Adélie penguin (Pygoscelis adeliae) populations and ecology in the Ross Sea, Antarctica. Nat Commun 2025; 16:1798. [PMID: 40044673 PMCID: PMC11883008 DOI: 10.1038/s41467-025-56925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
We report 156 sediment metagenomes from Adélie penguin (Pygoscelis adeliae) colonies dating back 6000 years along the Ross Sea coast, Antarctica, and identify marine and terrestrial eukaryotes, including locally occurring bird and seal species. The data reveal spatiotemporal patterns of Adélie penguin diet, including spatial patterns in consumption of cnidarians, a historically overlooked component of Adélie penguin diets. Relative proportions of Adélie penguin mitochondrial lineages detected at each colony are comparable to those previously reported from bones. Elevated levels of Adélie penguin mitochondrial nucleotide diversity in upper stratigraphic samples of several active colonies are consistent with recent population growth. Moreover, the highest levels of Adélie penguin mitochondrial nucleotide diversity recovered from surface sediment layers are from the two largest colonies, indicating that sedaDNA could provide estimates for the former size of abandoned colonies. SedaDNA also reveals prior occupation of the Cape Hallett Adélie penguin colony site by southern elephant seal (Mirounga leonina), demonstrating how terrestrial sedaDNA can detect faunal turnover events in Antarctica driven by past climate or sea ice conditions. Low rates of cytosine deamination indicate exceptional sedaDNA preservation within the region, suggesting there is high potential for recovering much older sedaDNA records from local Pleistocene terrestrial sediments.
Collapse
Affiliation(s)
- Jamie R Wood
- Australian Centre for Ancient DNA, School of Biological Sciences, North Terrace Campus, University of Adelaide, Adelaide, South Australia, Australia.
- Environment Institute, University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia.
| | - Chengran Zhou
- BGI Research, Wuhan, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, China
| | - Theresa L Cole
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, New Zealand
| | - Morgan Coleman
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, New Zealand
| | - Dean P Anderson
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, New Zealand
| | - Phil O'B Lyver
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, New Zealand
| | - Shangjin Tan
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Xiang
- BGI Research, Wuhan, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, China
| | - Xinrui Long
- BGI Research, Wuhan, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Senyu Luo
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao Lou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - John R Southon
- Department of Earth System Science, University of California-Irvine, Irvine, California, USA
| | - Qiye Li
- BGI Research, Wuhan, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology and Women's Hospital at Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Prado T, Degrave WMS, Duarte GF. Lichens and Health-Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem. J Fungi (Basel) 2025; 11:198. [PMID: 40137236 PMCID: PMC11942898 DOI: 10.3390/jof11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 03/27/2025] Open
Abstract
Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. The preservation of biodiversity and genetic resources is fundamental for the balance of ecosystems and for human and animal health. In order to assess the current knowledge on Antarctic lichens, we carried out a systematic review of the international applied research published between January 2019 and February 2024, using the PRISMA model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Articles that included the descriptors "lichen" and "Antarctic" were gathered from the web, and a total of 110 and 614 publications were retrieved from PubMed and ScienceDirect, respectively. From those, 109 publications were selected and grouped according to their main research characteristics, namely, (i) biodiversity, ecology and conservation; (ii) biomonitoring and environmental health; (iii) biotechnology and metabolism; (iv) climate change; (v) evolution and taxonomy; (vi) reviews; and (vii) symbiosis. Several topics were related to the discovery of secondary metabolites with potential for treating neurodegenerative, cancer and metabolic diseases, besides compounds with antimicrobial activity. Survival mechanisms under extreme environmental conditions were also addressed in many studies, as well as research that explored the lichen-associated microbiome, its biodiversity, and its use in biomonitoring and climate change, and reviews. The main findings of these studies are discussed, as well as common themes and perspectives.
Collapse
Affiliation(s)
- Tatiana Prado
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Wim Maurits Sylvain Degrave
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Gabriela Frois Duarte
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
- Federal University of Rio de Janeiro (UFRJ), Av. Pedro Calmon, 550, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
11
|
Vecchio MA, Abou-Zeid L, Suàrez-Criado L, Vandermeiren M, Grotti M, Vanhaecke F. Enhanced insight into the biogeochemical cycle of Hg in the Antarctic marine environment of Terra Nova Bay via isotopic analysis. CHEMOSPHERE 2025; 373:144157. [PMID: 39884140 DOI: 10.1016/j.chemosphere.2025.144157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mercury (Hg) is a globally significant pollutant, which is particularly concerning due to its ability to undergo long-range atmospheric transport and its bioaccumulation and biomagnification in marine ecosystems, even in remote regions like Antarctica. This study explores the biogeochemical cycling of Hg in the marine coastal environment of Terra Nova Bay (Antarctica) by determining the total content of mercury (THg) and its isotopic composition in fish (Trematomus bernacchii), bivalve molluscs (Adamussium colbecki) and sediment samples, collected in 1996-1998 and 2021. Significantly lower THg concentrations are found in the organisms sampled in 2021 compared to those sampled in 1996-1998, with a concurrent shift toward higher δ202Hg (governed by mass-dependent isotope fractionation MDF) and lower Δ199Hg and Δ201Hg (governed by mass-independent isotope fractionation MIF) values. These results suggest changes in the exposure to Hg and the photochemical processes that the element and its species undergo, likely influenced by differences in the environmental conditions during the sampling periods, such as light exposure and ice cover. Sex-specific analysis of the 2021 fish samples further suggests differences in Hg accumulation and both MDF and MIF isotopic patterns between male and female specimens, emphasising a potential effect of sex on Hg exposure and dynamics. However, due to the limited number of individuals analyzed and the pooling of samples, this sex differentiation is still preliminary. Finally, the linear increase of Δ199Hg as a function of Δ201Hg during trophic transfer suggests MeHg bioaccumulation along the food chain. These findings provide valuable insights into the biogeochemical cycling of Hg in the Antarctic coastal marine environment and underscore the need for ongoing monitoring of Hg (including isotopic analysis) in this fragile ecosystem.
Collapse
Affiliation(s)
- Maria Alessia Vecchio
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy; Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Lana Abou-Zeid
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Laura Suàrez-Criado
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Mathias Vandermeiren
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Ottaviani A, Pietrafesa D, Soren BC, Dasari JB, Olsen SSH, Messina B, Demofonti F, Chicarella G, Agama K, Pommier Y, Morozzo della Rocca B, Iacovelli F, Romeo A, Falconi M, Baker BJ, Fiorani P. Unveiling the Mechanism of Action of Palmitic Acid, a Human Topoisomerase 1B Inhibitor from the Antarctic Sponge Artemisina plumosa. Int J Mol Sci 2025; 26:2018. [PMID: 40076642 PMCID: PMC11900379 DOI: 10.3390/ijms26052018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading cause of death worldwide, highlighting the urgent need for novel and more effective treatments. Natural products, with their structural diversity, represent a valuable source for the discovery of anticancer compounds. In this study, we screened 750 Antarctic extracts to identify potential inhibitors of human topoisomerase 1 (hTOP1), a key enzyme in DNA replication and repair, and a target of cancer therapies. Bioassay-guided fractionation led to the identification of palmitic acid (PA) as the active compound from the Antarctic sponge Artemisina plumosa, selectively inhibiting hTOP1. Our results demonstrate that PA irreversibly blocks hTOP1-mediated DNA relaxation and specifically inhibits the DNA religation step of the enzyme's catalytic cycle. Unlike other fatty acids, PA exhibited unique specificity, which we confirmed through comparisons with linoleic acid. Molecular dynamics simulations and binding assays further suggest that PA interacts with hTOP1-DNA complexes, enhancing the inhibitory effect in the presence of camptothecin (CPT). These findings identify PA as a hTOP1 inhibitor with potential therapeutic implications, offering a distinct mechanism of action that could complement existing cancer therapies.
Collapse
Affiliation(s)
- Alessio Ottaviani
- Department of Onco-Hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital-IRCCS, Via Ferdinando Baldelli 38, 00146 Rome, Italy;
| | - Davide Pietrafesa
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Bini Chhetri Soren
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Jagadish Babu Dasari
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Stine S. H. Olsen
- Department of Chemistry, University of South Florida, USF Sweetgum Ln 12111, Tampa, FL 33620, USA; (S.S.H.O.)
| | - Beatrice Messina
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Francesco Demofonti
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Giulia Chicarella
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Convent Drive 37, Bethesda, MD 20892, USA; (K.A.); (Y.P.)
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Convent Drive 37, Bethesda, MD 20892, USA; (K.A.); (Y.P.)
| | - Blasco Morozzo della Rocca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Bill J. Baker
- Department of Chemistry, University of South Florida, USF Sweetgum Ln 12111, Tampa, FL 33620, USA; (S.S.H.O.)
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
- Institute of Translational Pharmacology, National Research Council, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
13
|
Pellizzari FM, Santos KC, Osaki S, Rosa LH. Marine heatwaves and changes in macroalgae richness and composition from Antarctic Peninsula and South Shetland Islands: concise review. AN ACAD BRAS CIENC 2025; 97:e20240580. [PMID: 39968980 DOI: 10.1590/0001-3765202520240580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/22/2024] [Indexed: 02/20/2025] Open
Abstract
The emerging global events of Marine Heatwaves (MHW), including those in Antarctica, are generally caused by large-scale meteorological and oceanographic changes responsible for rapid warming, but with lasting consequences in marine communities worldwide. Several abiotic features, such as surface seawater temperature (SST), salinity, pH, nutrients, and ice dynamic limit the reproduction, growth and distribution of macroalgae, which are sensitive to abrupt oscillations in these features resulting in changes in polar assemblages. This review compiled and related MHWs spatial data from South Shetland Islands (SSI), Eastern and Western Antarctic Peninsula (EAP/WAP), discussing seaweed assemblages possible responses on composition, distribution and richness, as well species expansion and retreat. Additionally, we present an updated and compiled checklist of macroalgal taxa from the WAP. The present data showed a clear enhance in MHWs events in SSI, when compared to EAP and WAP. Also, this coincides with the increase in richness and distributional changes of seaweed assemblages along the SSI, in the last decade. Changes in these marine sentinel assemblages constitute a warning to the Antarctic biota. Besides, the present review expands current polar knowledge and detects gaps in Antarctic phycological conservation studies and their connections facing climate change.
Collapse
Affiliation(s)
- Franciane M Pellizzari
- Universidade Estadual do Paraná, Laboratório de Ficologia e Qualidade de Água Marinha, Departamento de Ciências Biológicas da Campus Paranaguá, R. Comendador Correia Júnior, 117, Centro, 83203-560 Paranaguá, PR, Brazil
| | - Kevlyn Caroline Santos
- Universidade Estadual do Paraná, Laboratório de Ficologia e Qualidade de Água Marinha, Departamento de Ciências Biológicas da Campus Paranaguá, R. Comendador Correia Júnior, 117, Centro, 83203-560 Paranaguá, PR, Brazil
| | - Sayuri Osaki
- USP, Instituto de Biociências, Rua do Matão, Trav. 14, nº 321, Cidade Universitária, 05508-090 São Paulo, SP, Brazil
| | - Luiz H Rosa
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Pertierra LR, Convey P, Barbosa A, Biersma EM, Cowan D, Diniz-Filho JAF, de Los Ríos A, Escribano-Álvarez P, Fraser CI, Fontaneto D, Greve M, Griffiths HJ, Harris M, Hughes KA, Lynch HJ, Ladle RJ, Liu XP, le Roux PC, Majewska R, Molina-Montenegro MA, Peck LS, Quesada A, Ronquillo C, Ropert-Coudert Y, Sancho LG, Terauds A, Varliero G, Vianna JA, Wilmotte A, Chown SL, Olalla-Tárraga MÁ, Hortal J. Advances and shortfalls in knowledge of Antarctic terrestrial and freshwater biodiversity. Science 2025; 387:609-615. [PMID: 39913585 DOI: 10.1126/science.adk2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2025] [Indexed: 04/23/2025]
Abstract
Antarctica harbors many distinctive features of life, yet much about the diversity and functioning of Antarctica's life remains unknown. Evolutionary histories and functional ecology are well understood only for vertebrates, whereas research on invertebrates is largely limited to species descriptions and some studies on environmental tolerances. Knowledge on Antarctic vegetation cover showcases the challenges of characterizing population trends for most groups. Recent community-level microbial studies have provided insights into the functioning of life at its limits. Overall, biotic interactions remain largely unknown across all groups, restricted to basic information on trophic level placement. Insufficient knowledge of many groups limits the understanding of ecological processes on the continent. Remedies for the current situation rely on identifying the caveats of each ecological discipline and finding targeted solutions. Such precise delimitation of knowledge gaps will enable a more aware, representative, and strategic systematic conservation planning of Antarctica.
Collapse
Affiliation(s)
- L R Pertierra
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Mostoles, Spain
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Millennium Institute of Biodiversity of Antarctic and sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - P Convey
- Millennium Institute of Biodiversity of Antarctic and sub-Antarctic Ecosystems (BASE), Santiago, Chile
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - A Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| | - E M Biersma
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - D Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - J A F Diniz-Filho
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- National Institute for Science and Technology in Ecology, Evolution, and Biodiversity Conservation (INCT EECBio), Universidade Federal de Goiás, Goiânia, Brazil
| | - A de Los Ríos
- Departamento de Biogeoquimica y Ecologia Microbiana, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| | - P Escribano-Álvarez
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Mostoles, Spain
| | - C I Fraser
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - D Fontaneto
- Natural Research Council, Water Research Institute (CNR-IRSA), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - M Greve
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - M Harris
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - H J Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - R J Ladle
- National Institute for Science and Technology in Ecology, Evolution, and Biodiversity Conservation (INCT EECBio), Universidade Federal de Goiás, Goiânia, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - X P Liu
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - P C le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - R Majewska
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - L S Peck
- British Antarctic Survey, Cambridge, UK
| | - A Quesada
- Departamento de Biologia, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - C Ronquillo
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Y Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, La Rochelle Université, Villiers-en-Bois, France
| | - L G Sancho
- Departamento de Biologia Vegetal II, Universidad Complutense de Madrid, Madrid, Spain
| | - A Terauds
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, Australia
- Securing Antarctica's Environmental Future, Queensland University of Technology, Brisbane, QLD, Australia
| | - G Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - J A Vianna
- Millennium Institute of Biodiversity of Antarctic and sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - A Wilmotte
- Bios Research Unit, University of Liège, Liège, Belgium
| | - S L Chown
- Securing Antarctica's Environmental Future, Monash University, Melbourne, VIC, Australia
| | - M Á Olalla-Tárraga
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Mostoles, Spain
| | - J Hortal
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- National Institute for Science and Technology in Ecology, Evolution, and Biodiversity Conservation (INCT EECBio), Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
15
|
Garnica S, Soto-Rauch G, Leffler EM, Núñez C, Gómez-Espinoza J, Romero E, Ahumada-Rudolph R, Cabrera-Pardo JR. High diversity of fungal ecological groups from ice-free pristine and disturbed areas in the Fildes Peninsula, King George Island, Antarctica. PLoS One 2025; 20:e0317571. [PMID: 39841713 PMCID: PMC11753637 DOI: 10.1371/journal.pone.0317571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Ice-free areas are habitats for most of Antarctica's terrestrial biodiversity. Although fungal communities are an important element of these habitats, knowledge of their assemblages and ecological functions is still limited. Herein, we investigated the diversity, composition, and ecological functionality of fungal communities inhabiting sediments from ice-free areas across pristine and anthropogenically impacted sites in the Fildes Peninsula on King George Island, Antarctica. Samples were collected from both pristine and disturbed areas. We used the internal transcribed spacer (ITS1) region via Illumina sequencing of 34 sediment samples for fungal identification. The Ascomycota (14.6%) and Chytridiomycota (11.8%) were the most dominant phyla, followed by Basidiomycota (8.1%), Rozellomycota (7.0%), Mucoromycota (4.0%), while 34.9% of the fungal diversity remained unidentified. From a total of 1073 OTUs, 532 OTUs corresponded to 114 fungal taxa at the genus level, and 541 OTUs remained unassigned taxonomically. The highest diversity, with 18 genera, was detected at site A-3. At the genus level, there was no preference for either pristine or disturbed sites. The most widely distributed genera were Betamyces (Chytridiomycota), occurring in 29 of the 34 sites, and Thelebolus (Ascomycota), detected in 8 pristine sites and 7 disturbed sites. The Glomeraceae gen. incertae sedis was more common in disturbed sites. A total of 23 different ecological guilds were recorded, with the most abundant guilds being undefined saprotrophs, plant pathogens, plant saprotrophs, pollen saprotrophs, and endophytes. The fungal communities did not show significant differences between pristine and disturbed sites, suggesting that the anthropogenic impact is either not too intense or prolonged, that the spatial distance between the sampled sites is small, and/or that the environmental factors are similar. Although our study revealed a high fungal diversity with various ecological specializations within these communities, nearly one-third of the diversity could not be assigned to any specific taxonomic category. These findings highlight the need for further taxonomic research on fungal species inhabiting ice-free areas. Without identifying the species present, it is difficult to assess potential biodiversity loss due to environmental changes and/or human activities.
Collapse
Affiliation(s)
- Sigisfredo Garnica
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Genaro Soto-Rauch
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Ellen M. Leffler
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Christian Núñez
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
| | | | - Enzo Romero
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
| | - Ramón Ahumada-Rudolph
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
| | - Jaime R. Cabrera-Pardo
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States of America
| |
Collapse
|
16
|
Deregibus D, Quartino ML, Barlett ER, Zacher K, Bartsch I. Climate-driven changes in underwater irradiance and primary productivity in an Antarctic fjord (Potter Cove, Western Antarctic Peninsula). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178249. [PMID: 39756096 DOI: 10.1016/j.scitotenv.2024.178249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The West Antarctic Peninsula (WAP) is a hotspot of climate warming, evidencing glacier retreat and a decrease in the fast-ice duration. This study provides a > 30-y time-series (1987-2022) on annual and seasonal air temperatures in Potter Cove (Isla 25 de Mayo/King George Island). It investigates the interaction between warming, glacial melt, fast-ice and the underwater conditions (light, salinity, temperature, turbidity) over a period of 10 years along the fjord axis (2010-2019), and for the first time provides a unique continuous underwater irradiance time series over 5 years (2014-2018). The effects on the annual light budget in the water column were studied along the fjord axis in three areas, a low glacier influence area (LGI), an intermediate glacier influence area (IGI), and a high glacier influence area (HGI). To determine the possible impact of light limitation on the viability of benthic primary producers, the minimum annual light requirements and the daily metabolic carbon balance of two key macroalgal Antarctic species, Himantothallus grandifolius and Palmaria decipiens, were estimated. The mean annual, autumn, winter and spring air temperature has risen during the last three decades, but summer temperatures kept rather stable. Turbidity caused by glacial melt mostly governs the underwater light climate while fast-ice duration is currently of minor importance for the annual light budget. Glacier melting differentially affected the fjord system along its axis. The three areas showed quantitative differences in turbidity and underwater irradiance varying across seasons and years. Water clarity significantly decreased within the last few years, with key macroalgal species probably not reaching their minimum annual light requirements during warmer years. This may have considerable effects on the primary productivity of the ecosystem.
Collapse
Affiliation(s)
- Dolores Deregibus
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| | - María Liliana Quartino
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina
| | - Eduardo Ruiz Barlett
- Departamento de Oceanografía, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Katharina Zacher
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Inka Bartsch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
17
|
Wong SY, Machado-de-Lima NM, Wilkins D, Zhang E, Ferrari BC. Fine-scale landscape heterogeneity drives microbial community structure at Robinson Ridge, East Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177964. [PMID: 39700981 DOI: 10.1016/j.scitotenv.2024.177964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Life at Robinson Ridge, located in the Windmill Islands region of East Antarctica, is susceptible to a changing climate. At this site, responses of the vegetation communities and moss-beds have been well researched, but corresponding information for microbial counterparts is still lacking. To bridge this knowledge gap, we established baseline data for monitoring the environmental drivers shaping the soil microbial community on the local 'hillslope' scale. Using triplicate 300-m long transects encompassing a hillslope with wind-exposed arid soils near the top, and snowmelt-sustained-moss beds at the bottom, we assessed the fine-scale heterogeneity of the soil environmental and microbial properties. Moist, low-lying, and vegetated soils exhibited higher soil fertility and unique biodiversity, with taxa adapted to thrive in moist conditions (i.e., Tardigrada, Phragmoplastophyta, Chloroflexi) and those that have previously demonstrated strong specificity for moss species (i.e., Fibrobacterota, Mucoromycota and Cyanobacteria) dominating. In contrast, elevated soils with limited moisture and nutrients were dominated by metabolically diverse phyla like Actinobacteriota and Ascomycota. Significant differences in microbial communities were observed at both hillslope (50-300 m) and fine spatial scales, as small as 0.1 m. Vertical heterogeneity was observed with higher abundances of Cyanobacteria and micro-algae in surfaces compared to subsoil, potentially indicating early biocrust formation. Stochastic and deterministic processes governing phylogenetic assembly were linked to soil positional groups and microbial domains rather than soil depth. Gradient Forest modeling identified critical environmental thresholds, such as ammonia, manganese, and sulphur, responsible for drastic community changes following level alterations. This reinforces the existence of strong niche preferences and distinct distribution patterns within the local microbial communities. This study highlights the need for finer-scale investigations considering site topography to better understand the relationship between environmental drivers and local microbiota. Ultimately, these insights enable us to understand environmental drivers and predict Antarctic ecosystem responses, helping safeguard this fragile environment.
Collapse
Affiliation(s)
- Sin Yin Wong
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Evolution and Ecology Research Centre, UNSW Sydney, Australia
| | | | - Daniel Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Australia
| | - Eden Zhang
- Sydney Informatics Hub, University of Sydney, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Evolution and Ecology Research Centre, UNSW Sydney, Australia.
| |
Collapse
|
18
|
Wethington MJ, Şen B, Lynch HJ. Predicting pack-ice seal occupancy of ice floes along the Western Antarctic Peninsula. PLoS One 2024; 19:e0311747. [PMID: 39739774 DOI: 10.1371/journal.pone.0311747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/24/2024] [Indexed: 01/02/2025] Open
Abstract
We explore the habitat use of Antarctic pack-ice seals by analyzing their occupancy patterns on pack-ice floes, employing a novel combination of segmented generalized linear regression and fine-scale (∼ 50 cm pixel resolution) sea ice feature extraction in satellite imagery. Our analysis of environmental factors identified ice floe size, fine-scale sea ice concentration and nearby marine topography as significantly correlated with seal haul out abundance. Further analysis between seal abundance and ice floe size identified pronounced shifts in the relationship between the number of seals hauled out and floe size, with a positive relationship up to approximately 50 m2 that diminishes for larger floe sizes and largely plateaus after 500 m2. These patterns provide information on pack-ice seal behavior and, when combined with methods to delineate individual ice floes, can yield predictions on the number of seals likely to be found in each satellite image scene. This work represents another step in the pipeline required to automate the survey of pack-ice seals using satellite imagery, a necessary step towards pan-Antarctic monitoring of these key marine predators.
Collapse
Affiliation(s)
- Michael J Wethington
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Bilgecan Şen
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, United States of America
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, United States of America
| | - Heather J Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
19
|
Hernandez-Martelo J, Contador T, Kim S, Salina C, Maturana CS, Suazo M, Convey P, Benítez HA. Uncharted territory: the arrival of Psychoda albipennis (Zetterstedt, 1850) (Diptera: Psychodidae) in Maritime Antarctica. FRONTIERS IN INSECT SCIENCE 2024; 4:1481444. [PMID: 39741496 PMCID: PMC11685106 DOI: 10.3389/finsc.2024.1481444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Despite increasing awareness of the threats they pose, exotic species continue to arrive in Antarctica with anthropogenic assistance, some of which inevitably have the potential to become aggressively invasive. Here, we provide the first report of the globally cosmopolitan species Psychoda albipennis (Diptera, Psychodidae; commonly known as moth flies) in Antarctica during the austral summer of 2021/2022, with the identification confirmed using traditional taxonomic and molecular approaches. The species was present in very large numbers and, although predominantly associated with the drainage and wastewater systems of Antarctic national operator stations in synanthropic situations, it was also present in surrounding natural habitats. While it is unclear if P. albipennis is capable of long-distance dispersal, adult psychodid flies are known to travel more than 90 m from their emergence sites, and up to 1.5 km with wind assistance. Thus, once established in the natural environment of King George Island there appears to be a high risk of the species rapidly becoming invasive. The introduction of non-native species such as P. albipennis can be a significant driver of future biodiversity change and loss, and seriously impact ecosystem health. In vulnerable low diversity ecosystems, such as in the terrestrial environments of Antarctica, non-native species can lead to step changes in ecological functions and interactions, displace native species and, potentially, lead to the extinction of native biota.
Collapse
Affiliation(s)
- Jordan Hernandez-Martelo
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Puerto William, Chile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
- Programa de Doctorado en Salud Ecosistémica, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Tamara Contador
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Puerto William, Chile
- Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Sanghee Kim
- División of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Carla Salina
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Claudia S. Maturana
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Puerto William, Chile
| | - Manuel Suazo
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Peter Convey
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Puerto William, Chile
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge, United Kingdom
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Hugo A. Benítez
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Puerto William, Chile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
20
|
Bennett-Laso B, Berazay B, Muñoz G, Ariyama N, Enciso N, Braun C, Krüger L, Barták M, González-Aravena M, Neira V. Confirmation of highly pathogenic avian influenza H5N1 in skuas, Antarctica 2024. Front Vet Sci 2024; 11:1423404. [PMID: 39711804 PMCID: PMC11660801 DOI: 10.3389/fvets.2024.1423404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024] Open
Abstract
From December 2023 to March 2024, a surveillance program aiming to detect Highly Pathogenic Avian Influenza (HPAI) H5N1 was conducted on Antarctica territories, specifically at Fildes Peninsula (King George Island, Maritime Antarctic), and James Ross Island. At Fildes Peninsula, samples from marine birds and mammals were collected from four accessible sampling locations with significant animal colonies: Ardley Island, hosting a large concentration of Gentoo penguins (Pygoscelis papua); Ardley Cove, where small groups of likely non-breeding Chinstrap penguins (Pygoscelis antarcticus) were present; seal haul-out sites of Southern elephant (Mirounga leonina) and Weddell (Leptonycotes wedellii); and, a nesting site of Southern giant petrels (Macronectes giganteus). Additionally, six samples were collected from five dead skuas near the Lachman lakes on James Ross Island (63.7989S, 57.8105W) on March 3, 2024. Despite collecting a total of 943 samples from Fildes Peninsula, all results tested negative for HPAI, and no animals displayed clinical signs or behaviors consistent with HPAI infection. However, all skua samples from James Ross Island tested positive for HPAI H5N1 clade 2.3.4.4 by specific real-time RT-PCR reactions, confirming the first recorded HPAI-related mortality event in Antarctica (south of 60°S), specifically in skuas. Further research is necessary to genetically characterize the virus and better understand the role of skuas in viral dissemination in Antarctica.
Collapse
Affiliation(s)
- Benjamín Bennett-Laso
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Bárbara Berazay
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Magister en Ciencias Animales y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Gabriela Muñoz
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Naomi Ariyama
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Nikita Enciso
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Christina Braun
- Polar & Bird Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Lucas Krüger
- Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Miloš Barták
- Department of Experimental Biology, Masaryk University, Faculty of Science, Brno, Czechia
| | | | - Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Serga S, Kovalenko PA, Maistrenko OM, Deconninck G, Shevchenko O, Iakovenko N, Protsenko Y, Susulovsky A, Kaczmarek Ł, Pavlovska M, Convey P, Kozeretska I. Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered? ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70040. [PMID: 39533947 PMCID: PMC11558105 DOI: 10.1111/1758-2229.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates. Wolbachia is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of Wolbachia in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of Wolbachia in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of Wolbachia in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.
Collapse
Affiliation(s)
- Svitlana Serga
- CBGP, Univ Montpellier, CIRAD, INRAE, IRDInstitut Agro MontpellierMontpellierFrance
- National Antarctic Scientific Center of UkraineKyivUkraine
| | - Pavlo A. Kovalenko
- National Antarctic Scientific Center of UkraineKyivUkraine
- State Institution Institute for Evolutionary EcologyNational Academy of Sciences of UkraineKyivUkraine
| | - Oleksandr M. Maistrenko
- European Molecular Biology LaboratoryStructural and Computational Biology UnitHeidelbergGermany
- Royal Netherlands Institute for Sea Research, 't Horntje (Texel)Den HoornNetherlands
| | - Gwenaëlle Deconninck
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'InsecteUniversité de Tours, Parc GrandmontToursFrance
| | - Oleksandra Shevchenko
- Institute for Problems of Cryobiology and CryomedicineNational Academy of Sciences of UkraineKharkivUkraine
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
| | - Nataliia Iakovenko
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
- Czech University of Life Sciences PragueFaculty of Forestry and Wood SciencesSuchdolCzech Republic
- Institute of Animal Physiology and Genetics AS ČRLaboratory of Nonmendelian EvolutionLibechovCzech Republic
| | | | - Andrij Susulovsky
- State Museum of Natural HistoryNational Academy of Sciences of UkraineLvivUkraine
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Peter Convey
- British Antarctic Survey, NERC, High CrossCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
- Biodiversity of Antarctic and Sub‐Antarctic Ecosystems (BASE)SantiagoChile
| | | |
Collapse
|
22
|
González R, Pertierra LR, Guerrero PC, Díaz A. High vulnerability of the endemic Southern Ocean snail Neobuccinum eatoni (Buccinidae) to critical projected oceanographic changes. Sci Rep 2024; 14:29095. [PMID: 39582032 PMCID: PMC11586395 DOI: 10.1038/s41598-024-80353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Climate change is projected to substantially alter the Southern Ocean's physical and chemical properties, thereby impacting its marine ecosystems and species, particularly those in Antarctic and sub-Antarctic regions. This study focuses on Neobuccinum eatoni, a polar marine 'true whelk' endemic to these regions, utilizing 166 spatially independent occurrence data records to model potential distribution shifts under future climate scenarios. Employing Species Distribution Models (SDMs) on spatially cross-validated occurrences, we achieved high predictive accuracy, identifying "sea water salinity range" at mean bottom depth as the most significant predictor of habitat preferences. Additionally, dissolved iron (minimum), ocean temperature (range), and pH (long-term maximum) emerged as critical factors influencing the species' modeled distribution. By 2050, future projections under the SSP2-4.5 scenario predict an eastward expansion, particularly in the Antarctic Peninsula, the Scotia Arc and the Weddell Sea, with an expansion in the latter region also predicted under the SSP5-8.5 scenario. However, in both scenarios, a reduction in habitat suitability is expected in certain sectors around the Antarctic continent and the Kerguelen Archipelago. By 2100, under the moderate emissions scenario (SSP2-4.5), the species is projected to move to deeper areas and lower latitudes, with notable expansions in the Weddell Sea and in the Southern Ocean surrounding the Kerguelen Archipelago. However, under the SSP5-8.5 scenario, expansion is projected in the Weddell Sea and reductions in Antarctic and subantarctic regions. This study highlights the critical influence of changing salinity on N. eatoni's distribution, predicting a significant habitat reduction under high CO2 emissions scenarios (SSP5-8.5). The findings underscore the urgent need for focused research on the vulnerability of endemic marine invertebrates to develop effective conservation strategies in the face of rapid climatic changes.
Collapse
Affiliation(s)
- Rosvita González
- Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Concepción, Chile
| | - Luis R Pertierra
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Concepción, Chile
- Department of Biogeography & Global Change, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| | - Pablo C Guerrero
- Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción, Chile.
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Concepción, Chile.
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile.
| | - Angie Díaz
- Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción, Chile.
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Concepción, Chile.
| |
Collapse
|
23
|
Wilkie Johnston L, Manno C, Salinas CX. Assessment of plastic debris and biofouling in a specially protected area of the Antarctic Peninsula region. MARINE POLLUTION BULLETIN 2024; 207:116844. [PMID: 39163732 DOI: 10.1016/j.marpolbul.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
The aim of this paper is to characterize the plastic and to study a potential relationship between plastic debris characteristics and the presence of fouling biota in an Antarctic Specially Protected Area Robert Island, on the Antarctic peninsula region. A combination of lab-based sorting, advanced spectral analysis and general linear modelling was used to assess the abundance and type of plastic debris washed up on the shore. Observations recorded 730 debris items, with 85 % being plastic. Polystyrene (PS) and Polyethylene terephthalate (PET) were the dominant plastics (61 %). Biofouling was observed on 25 % of plastic debris, with debris complexity and degradation significantly increasing the likelihood of fouling occurring. There was no correlation found between biofouling type and plastic polymer type. Findings raise concerns that even with the highest level of environmental protection, an external marine-based source of pollution can intrude the coastal habitat, with uncertain consequences to local flora and fauna.
Collapse
Affiliation(s)
| | - Clara Manno
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - Carla Ximena Salinas
- Instituto Antártico Chileno (INACH), Plaza Benjamín Muñoz Gamero 1055, Punta Arenas, Chile.
| |
Collapse
|
24
|
Jeunen GJ, Mills S, Lamare M, Duffy GA, Knapp M, Stanton JAL, Mariani S, Treece J, Ferreira S, Durán-Vinet B, Zavodna M, Gemmell NJ. Unlocking Antarctic molecular time-capsules - Recovering historical environmental DNA from museum-preserved sponges. Mol Ecol Resour 2024; 24:e14001. [PMID: 39051108 DOI: 10.1111/1755-0998.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Marine sponges have recently emerged as efficient natural environmental DNA (eDNA) samplers. The ability of sponges to accumulate eDNA provides an exciting opportunity to reconstruct contemporary communities and ecosystems with high temporal and spatial precision. However, the use of historical eDNA, trapped within the vast number of specimens stored in scientific collections, opens up the opportunity to begin to reconstruct the communities and ecosystems of the past. Here, we define the term 'heDNA' to denote the historical environmental DNA that can be obtained from the recent past with high spatial and temporal accuracy. Using a variety of Antarctic sponge specimens stored in an extensive marine invertebrate collection, we were able to recover information on Antarctic fish biodiversity from specimens up to 20 years old. We successfully recovered 64 fish heDNA signals from 27 sponge specimens. Alpha diversity measures did not differ among preservation methods, but sponges stored frozen had a significantly different fish community composition compared to those stored dry or in ethanol. Our results show that we were consistently and reliably able to extract the heDNA trapped within marine sponge specimens, thereby enabling the reconstruction and investigation of communities and ecosystems of the recent past with a spatial and temporal resolution previously unattainable. Future research into heDNA extraction from other preservation methods, as well as the impact of specimen age and collection method, will strengthen and expand the opportunities for this novel resource to access new knowledge on ecological change during the last century.
Collapse
Affiliation(s)
- Gert-Jan Jeunen
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sadie Mills
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Michael Knapp
- Coastal People: Southern Skies Centre of Research Excellence, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Jackson Treece
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sara Ferreira
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Monika Zavodna
- Otago Genomics Facility, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Cecchetto M, Dettai A, Gallut C, Obst M, Kuklinski P, Balazy P, Chelchowski M, Małachowicz M, Poćwierz-Kotus A, Zbawicka M, Reiss H, Eléaume MP, Ficetola GF, Pavloudi C, Exter K, Fontaneto D, Schiaparelli S. Seasonality of primary production explains the richness of pioneering benthic communities. Nat Commun 2024; 15:8340. [PMID: 39333524 PMCID: PMC11436788 DOI: 10.1038/s41467-024-52673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
A pattern of increasing species richness from the poles to the equator is frequently observed in many animal taxa. Ecological limits, determined by the abiotic conditions and biotic interactions within an environment, are one of the major factors influencing the geographical distribution of species diversity. Energy availability is often considered a crucial limiting factor, with temperature and productivity serving as empirical measures. However, these measures may not fully explain the observed species richness, particularly in marine ecosystems. Here, through a global comparative approach and standardised methodologies, such as Autonomous Reef Monitoring Structures (ARMS) and DNA metabarcoding, we show that the seasonality of primary production explains sessile animal richness comparatively or better than surface temperature or primary productivity alone. A Hierarchical Generalised Additive Model (HGAM) is validated, after a model selection procedure, and the prediction error is compared, following a cross-validation approach, with HGAMs including environmental variables commonly used to explain animal richness. Moreover, the linear effect of production magnitude on species richness becomes apparent only when considered jointly with seasonality, and, by identifying world coastal areas characterized by extreme values of both, we postulate that this effect may result in a positive relationship in environments with lower seasonality.
Collapse
Affiliation(s)
- Matteo Cecchetto
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy.
| | - Agnès Dettai
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Cyril Gallut
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA Station Marine de Concarneau, Concarneau, France
| | - Matthias Obst
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Piotr Kuklinski
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Maciej Chelchowski
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Magdalena Małachowicz
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Anita Poćwierz-Kotus
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Henning Reiss
- Nord University, Faculty of Biosciences and Aquaculture, 8049, Bodø, Norway
| | - Marc P Eléaume
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA Station Marine de Concarneau, Concarneau, France
| | | | | | - Katrina Exter
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400, Oostende, Belgium
| | - Diego Fontaneto
- National Research Council of Italy-Water Research Institute (CNR-IRSA), I-28922, Verbania, Italy
- National Biodiversity Future Center (NBFC), I-90133, Palermo, Italy
| | - Stefano Schiaparelli
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
- Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa, Italy
| |
Collapse
|
26
|
Pala N, Vorkamp K, Bossi R, Ancora S, Ademollo N, Baroni D, Sarà G, Corsolini S. Chemical threats for the sentinel Pygoscelis adeliae from the Ross Sea (Antarctica): Occurrence and levels of persistent organic pollutants (POPs), perfluoroalkyl substances (PFAS) and mercury within the largest marine protected area worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174562. [PMID: 38981544 DOI: 10.1016/j.scitotenv.2024.174562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The Ross Sea Marine Protected Area (RS-MPA) hosts endemic species that have to cope with multiple threats, including chemical contamination. Adèlie penguin is considered a good sentinel species for monitoring pollutants. Here, 23 unhatched eggs, collected from three colonies along the Ross Sea coasts, were analysed to provide updated results on legacy pollutants and establish a baseline for newer ones. Average sum of polychlorinated biphenyls (∑PCBs) at the three colonies ranged 20.9-24.3 ng/g lipid weight (lw) and included PCBs IUPAC nos. 28, 118, 153, 138, 180. PCBs were dominated by hexachlorinated congeners as previously reported. Hexachlorobenzene (HCB) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) ranged between 134 and 166 and 181-228 ng/g lw, respectively. Overall, ∑PCBs was exceeded by pesticides, contrary to previous studies from the Ross Sea. Sum of polybrominated diphenyl ethers (∑PBDEs) ranged between 0.90 and 1.18 ng/g lw and consisted of BDE-47 (that prevailed as expected, representing 60-80 % of the ∑PBDEs) and BDE-85. Sum of perfluoroalkyl substances (∑PFAS) ranged from 1.04 to 1.53 ng/g wet weight and comprised five long-chain perfluorinated carboxylic acids (PFCAs), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA); perfluorooctane sulfonamide (PFOSA) was also detected. The PFAS profile was dominated by PFCAs as already observed in Arctic seabirds. Mercury ranged from 0.07 to 0.15 mg/kg dry weight similarly to previous studies. Legacy pollutants confirmed their ongoing presence in Antarctic biota and their levels seemed mostly in line with the past, but with minor variations in some cases, likely due to continued input or release from past reservoirs. PFAS were reported for the first time in penguins from the Ross Sea, highlighting their ubiquity. Although further studies would be useful to increase the sample size and accordingly improve our knowledge on spatial and temporal trends, this study provides interesting data for future monitoring programs within the RS-MPA that will be crucial to test its effectiveness against human impacts.
Collapse
Affiliation(s)
- Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences, Italian National Research Council (ISP-CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy
| | - Gianluca Sarà
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; Institute of Polar Sciences, Italian National Research Council (ISP-CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
27
|
Power SN, Thomas VA, Salvatore MR, Barrett JE. Habitat suitability of biocrust communities in a cold desert ecosystem. Ecol Evol 2024; 14:e11649. [PMID: 38952663 PMCID: PMC11213821 DOI: 10.1002/ece3.11649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Drylands are unique among terrestrial ecosystems in that they have a significant proportion of primary production facilitated by non-vascular plants such as colonial cyanobacteria, moss, and lichens, i.e., biocrusts, which occur on and in the surface soil. Biocrusts inhabit all continents, including Antarctica, an increasingly dynamic continent on the precipice of change. Here, we describe in-situ field surveying and sampling, remote sensing, and modeling approaches to assess the habitat suitability of biocrusts in the Lake Fryxell basin of Taylor Valley, Antarctica, which is the main site of the McMurdo Dry Valleys Long-Term Ecological Research Program. Soils suitable for the development of biocrusts are typically wetter, less alkaline, and less saline compared to unvegetated soils. Using random forest models, we show that gravimetric water content, electrical conductivity, and snow frequency are the top predictors of biocrust presence and biomass. Areas most suitable for the growth of dense biocrusts are soils associated with seasonal snow patches. Using geospatial data to extrapolate our habitat suitability model to the whole basin predicts that biocrusts are present in 2.7 × 105 m2 and contain 11-72 Mg of aboveground carbon, based on the 90% probability of occurrence. Our study illustrates the synergistic effect of combining field and remote sensing data for understanding the distribution and biomass of biocrusts, a foundational community in the carbon balance of this region. Extreme weather events and changing climate conditions in this region, especially those influencing snow accumulation and persistence, could have significant effects on the future distribution and abundance of biocrusts and therefore soil organic carbon storage in the McMurdo Dry Valleys.
Collapse
Affiliation(s)
- Sarah N. Power
- Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Valerie A. Thomas
- Department of Forest Resources and Environmental ConservationVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Mark R. Salvatore
- Department of Astronomy & Planetary ScienceNorthern Arizona UniversityFlagstaffArizonaUSA
| | - John E. Barrett
- Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
28
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
29
|
Liao L, Qin Q, Yi D, Lai Q, Cong B, Zhang H, Shao Z, Zhang J, Chen B. Evolution and adaptation of terrestrial plant-associated Plantibacter species into remote marine environments. Mol Ecol 2024; 33:e17385. [PMID: 38738821 DOI: 10.1111/mec.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Microbes are thought to be distributed and circulated around the world, but the connection between marine and terrestrial microbiomes remains largely unknown. We use Plantibacter, a representative genus associated with plants, as our research model to investigate the global distribution and adaptation of plant-related bacteria in plant-free environments, particularly in the remote Southern Ocean and the deep Atlantic Ocean. The marine isolates and their plant-associated relatives shared over 98% whole-genome average nucleotide identity (ANI), indicating recent divergence and ongoing speciation from plant-related niches to marine environments. Comparative genomics revealed that the marine strains acquired new genes via horizontal gene transfer from non-Plantibacter species and refined existing genes through positive selection to improve adaptation to new habitats. Meanwhile, marine strains retained the ability to interact with plants, such as modifying root system architecture and promoting germination. Furthermore, Plantibacter species were found to be widely distributed in marine environments, revealing an unrecognized phenomenon that plant-associated microbiomes have colonized the ocean, which could serve as a reservoir for plant growth-promoting microbes. This study demonstrates the presence of an active reservoir of terrestrial plant growth-promoting bacteria in remote marine systems and advances our understanding of the microbial connections between plant-associated and plant-free environments at the genome level.
Collapse
Affiliation(s)
- Li Liao
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Qilong Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian Yi
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, China
| | - Qiliang Lai
- Third Institute of Oceanography, Ministry of Natural Resources, P. R. China, Xiamen, China
| | - Bolin Cong
- First Institute of Oceanography, Ministry of Natural Resources, P. R. China, Qingdao, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, China
| | - Zongze Shao
- Third Institute of Oceanography, Ministry of Natural Resources, P. R. China, Xiamen, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
30
|
Zhu W, Liu W, Jin H. Sediment-seawater partitioning, bioaccumulation, and biomagnification of perfluorobutane sulfonamide in marine environment. WATER RESEARCH 2024; 255:121466. [PMID: 38493741 DOI: 10.1016/j.watres.2024.121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Environmental occurrence of perfluorobutane sulfonamide (PFBSA) has only been recently discovered. The current knowledge regarding the occurrence and environmental behaviors of PFBSA in the marine environment is still relatively limited. In this study, PFBSA and other 37 poly- and perfluoroalkyl substances were analyzed in seawater (n = 43), sediment (n = 43), and marine fish (n = 176) samples collected from East China Sea and Antarctic Ocean. PFBSA was detected in > 90% of seawater from East China Sea and Antarctic Ocean, with the concentrations of 1.0 - 19 ng/L and < LOD-228 pg/L, respectively. The field-based mean log-transformed sediment-seawater partitioning coefficients of PFBSA were 1.6 ± 0.19 L/kg dw and 1.1 ± 0.19 L/kg dw in East China Sea and Antarctic Ocean, respectively, which are lower than that of perfluorooctanoate and perfluorooctane sulfonate. This indicates its long-range transport potential in global oceans with ocean currents. The mean log-transformed bioaccumulation factor values of PFBSA determined in the multiple species of whole-body marine fishes from East China Sea and Antarctic Ocean were 2.3 L/kg ww and 2.4 L/kg ww, respectively, which are comparable to that of perfluoroheptanoate (2.3 L/kg ww) in marine fishes from East China Sea. We did not observe an obvious biomagnification or biodilution of PFBSA along the marine food chain in East China Sea or Antarctic Ocean. This study provides the first data on the environmental behaviors of PFBSA in the marine environment.
Collapse
Affiliation(s)
- Wenbin Zhu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Wenbo Liu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
31
|
Robinson SA, Revell LE, Mackenzie R, Ossola R. Extended ozone depletion and reduced snow and ice cover-Consequences for Antarctic biota. GLOBAL CHANGE BIOLOGY 2024; 30:e17283. [PMID: 38663017 DOI: 10.1111/gcb.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.
Collapse
Affiliation(s)
- Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, New South Wales, Australia
- Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Roy Mackenzie
- Cape Horn International Center CHIC, Universidad de Magallanes, Puerto Williams, Chile
- Millenium Institut Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
32
|
Bayley DTI, Brewin PE, James R, McCarthy AH, Brickle P. Identifying marine invasion threats and management priorities through introduction pathway analysis in a remote sub-Antarctic ecosystem. Ecol Evol 2024; 14:e11299. [PMID: 38654709 PMCID: PMC11036081 DOI: 10.1002/ece3.11299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
The threat from novel marine species introductions is a global issue. When non-native marine species are introduced to novel environments and become invasive, they can affect biodiversity, industry, ecosystem function, and both human and wildlife health. Isolated areas with sensitive or highly specialised endemic species can be particularly impacted. The global increase in the scope of tourism and other human activities, together with a rapidly changing climate, now put these remote ecosystems under threat. In this context, we analyse invasion pathways into South Georgia and the South Sandwich Islands (SGSSI) for marine non-native species via vessel biofouling. The SGSSI archipelago has high biodiversity and endemism, and has historically been highly isolated from the South American mainland. The islands sit just below the Polar Front temperature boundary, affording some protection against introductions. However, the region is now warming and SGSSI increasingly acts as a gateway port for vessel traffic into the wider Antarctic, amplifying invasion likelihood. We use remote Automatic Identification System vessel-tracking data over a 2-year period to map vessel movement and behaviour around South Georgia, and across the 'Scotia Sea', 'Magellanic' and northern 'Continental High Antarctic' ecoregions. We find multiple vessel types from locations across the globe frequently now enter shallow inshore waters and stop for prolonged periods (weeks/months) at anchor. Vessels are active throughout the year and stop at multiple port hubs, frequently crossing international waters and ecoregions. Management recommendations to reduce marine invasion likelihood within SGSSI include initiating benthic and hull monitoring at the identified activity/dispersion hubs of King Edward Point, Bay of Isles, Gold Harbour, St Andrews Bay and Stromness Bay. More broadly, regional collaboration and coordination is necessary at neighbouring international ports. Here vessels need increased pre- and post-arrival biosecurity assessment following set protocols, and improved monitoring of hulls for biofouling to pre-emptively mitigate this threat.
Collapse
Affiliation(s)
- Daniel T. I. Bayley
- South Atlantic Environment Research InstituteStanleyFalkland Islands
- Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
| | - Paul E. Brewin
- South Atlantic Environment Research InstituteStanleyFalkland Islands
- Shallow Marine Surveys GroupStanleyFalkland Islands
| | - Ross James
- Government of South Georgia & the South Sandwich IslandsStanleyFalkland Islands
| | - Arlie H. McCarthy
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB)OldenburgGermany
- Alfred‐Wegener‐InstitutHelmholtz‐Zentrum für Polar‐ Und MeeresforschungBremerhavenGermany
| | - Paul Brickle
- South Atlantic Environment Research InstituteStanleyFalkland Islands
- Shallow Marine Surveys GroupStanleyFalkland Islands
- School of Biological Sciences (Zoology)University of AberdeenAberdeenUK
| |
Collapse
|
33
|
Camacho KF, de Melo Carlos L, Bernal SPF, de Oliveira VM, Ruiz JLM, Ottoni JR, Vieira R, Neto A, Rosa LH, Passarini MRZ. Antarctic marine sediment as a source of filamentous fungi-derived antimicrobial and antitumor compounds of pharmaceutical interest. Extremophiles 2024; 28:21. [PMID: 38532228 DOI: 10.1007/s00792-024-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Antarctica harbors a microbial diversity still poorly explored and of inestimable biotechnological value. Cold-adapted microorganisms can produce a diverse range of metabolites stable at low temperatures, making these compounds industrially interesting for biotechnological use. The present work investigated the biotechnological potential for antimicrobial and antitumor activity of filamentous fungi and bacteria isolated from marine sediment samples collected at Deception Island, Antarctica. A total of 89 microbial isolates were recovered from marine sediments and submitted to an initial screening for L-glutaminase with antitumoral activity and for antimicrobial metabolites. The isolates Pseudogymnoascus sp. FDG01, Pseudogymnoascus sp. FDG02, and Penicillium sp. FAD33 showed potential antiproliferative action against human pancreatic carcinoma cells while showing no toxic effect on non-tumor cells. The microbial extracts from unidentified three bacteria and four filamentous fungi showed antibacterial activity against at least one tested pathogenic bacterial strain. The isolate FDG01 inhibited four bacterial species, while the isolate FDG01 was active against Micrococcus luteus in the minimal inhibitory concentration of 0.015625 μg mL -1. The results pave the way for further optimization of enzyme production and characterization of enzymes and metabolites found and reaffirm Antarctic marine environments as a wealthy source of compounds potentially applicable in the healthcare and pharmaceutical industry.
Collapse
Affiliation(s)
- Karine Fernandes Camacho
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Foz Do Iguaçu, PR, 85870-650, Brazil
| | - Layssa de Melo Carlos
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Foz Do Iguaçu, PR, 85870-650, Brazil
| | - Suzan Prado Fernandes Bernal
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Foz Do Iguaçu, PR, 85870-650, Brazil
| | | | - Jorge Luiz Maria Ruiz
- Laboratório de Biotecnologia da Saúde, Universidade Federal da Integração Latino-Integração Latino-Americana - UNILA, Foz Do Iguaçu, PR, 85870-650, Brazil
| | - Júlia Ronzella Ottoni
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Foz Do Iguaçu, PR, 85870-650, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Arthur Neto
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michel Rodrigo Zambrano Passarini
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Foz Do Iguaçu, PR, 85870-650, Brazil.
| |
Collapse
|
34
|
Siddique A, Shahid N, Liess M. Revealing the cascade of pesticide effects from gene to community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170472. [PMID: 38296075 DOI: 10.1016/j.scitotenv.2024.170472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Global pesticide exposure in agriculture leads to biodiversity loss, even at ultra-low concentrations below the legal limits. The mechanisms by which the effects of toxicants act at such low concentrations are still unclear, particularly in relation to their propagation across the different biological levels. In this study, we demonstrate, for the first time, a cascade of effects from the gene to the community level. At the gene level, agricultural pesticide exposure resulted in reduced genetic diversity of field-collected Gammarus pulex, a dominant freshwater crustacean in Europe. Additionally, we identified alleles associated with adaptations to pesticide contamination. At the individual level, this genetic adaptation to pesticides was linked to a lower fecundity, indicating related fitness costs. At the community level, the combined effect of pesticides and competitors caused a decline in the overall number and abundance of pesticides susceptible macroinvertebrate competing with gammarids. The resulting reduction in interspecific competition provided an advantage for pesticide-adapted G. pulex to dominate macroinvertebrate communities in contaminated areas, despite their reduced fitness due to adaptation. These processes demonstrate the complex cascade of effects, and also illustrate the resilience and adaptability of biological systems across organisational levels to meet the challenges of a changing environment.
Collapse
Affiliation(s)
- Ayesha Siddique
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Naeem Shahid
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100 Vehari, Pakistan.
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
35
|
Méheust Y, Delord K, Bonnet-Lebrun AS, Raclot T, Vasseur J, Allain J, Decourteillle V, Bost CA, Barbraud C. Human infrastructures correspond to higher Adélie penguin breeding success and growth rate. Oecologia 2024; 204:675-688. [PMID: 38459994 DOI: 10.1007/s00442-024-05523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
Anthropogenic activities generate increasing disturbance in wildlife especially in extreme environments where species have to cope with rapid environmental changes. In Antarctica, while studies on human disturbance have mostly focused on stress response through physiological and behavioral changes, local variability in population dynamics has been addressed more scarcely. In addition, the mechanisms by which breeding communities are affected around research stations remain unclear. Our study aims at pointing out the fine-scale impact of human infrastructures on the spatial variability in Adélie penguin (Pygoscelis adeliae) colonies dynamics. Taking 24 years of population monitoring, we modeled colony breeding success and growth rate in response to both anthropic and land-based environmental variables. Building density around colonies was the second most important variable explaining spatial variability in breeding success after distance from skua nests, the main predators of penguins on land. Building density was positively associated with penguins breeding success. We discuss how buildings may protect penguins from avian predation and environmental conditions. The drivers of colony growth rate included topographical variables and the distance to human infrastructures. A strong correlation between 1-year lagged growth rate and colony breeding success was coherent with the use of public information by penguins to select their initial breeding site. Overall, our study brings new insights about the relative contribution and ecological implications of human presence on the local population dynamics of a sentinel species in Antarctica.
Collapse
Affiliation(s)
- Yann Méheust
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Anne-Sophie Bonnet-Lebrun
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Thierry Raclot
- Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS, 69037, Strasbourg, France
| | - Julien Vasseur
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Jimmy Allain
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Virgil Decourteillle
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
36
|
Tengku-Mazuki TA, Darham S, Convey P, Shaharuddin NA, Zulkharnain A, Khalil KA, Zahri KNM, Subramaniam K, Merican F, Gomez-Fuentes C, Ahmad SA. Effects of heavy metals on bacterial growth parameters in degradation of phenol by an Antarctic bacterial consortium. Braz J Microbiol 2024; 55:629-637. [PMID: 38110706 PMCID: PMC10920555 DOI: 10.1007/s42770-023-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
Antarctica has often been perceived as a pristine continent until the recent few decades as pollutants have been observed accruing in the Antarctic environment. Irresponsible human activities such as accidental oil spills, waste incineration and sewage disposal are among the primary anthropogenic sources of heavy metal contaminants in Antarctica. Natural sources including animal excrement, volcanism and geological weathering also contribute to the increase of heavy metals in the ecosystem. A microbial growth model is presented for the growth of a bacterial cell consortium used in the biodegradation of phenol in media containing different metal ions, namely arsenic (As), cadmium (Cd), aluminium (Al), nickel (Ni), silver (Ag), lead (Pb) and cobalt (Co). Bacterial growth was inhibited by these ions in the rank order of Al < As < Co < Pb < Ni < Cd < Ag. Greatest bacterial growth occurred in 1 ppm Al achieving an OD600 of 0.985 and lowest in 1 ppm Ag with an OD600 of 0.090. At a concentration of 1.0 ppm, Ag had a considerable effect on the bacterial consortium, inhibiting the degradation of phenol, whereas this concentration of the other metal ions tested had no effect on degradation. The biokinetic growth model developed supports the suitability of the bacterial consortium for use in phenol degradation.
Collapse
Affiliation(s)
- Tengku Athirrah Tengku-Mazuki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Syazani Darham
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-Ku, Saitama, 337-8570, Japan
| | - Khalilah Abdul Khalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 45000 Section 2, Shah Alam, Selangor, Malaysia
| | - Khadijah Nabilah Mohd Zahri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Kavilasni Subramaniam
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, 01855, Bulnes, Chile
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, 01855, Bulnes, Chile.
| |
Collapse
|
37
|
González-Herrero S, Navarro F, Pertierra LR, Oliva M, Dadic R, Peck L, Lehning M. Southward migration of the zero-degree isotherm latitude over the Southern Ocean and the Antarctic Peninsula: Cryospheric, biotic and societal implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168473. [PMID: 38007123 DOI: 10.1016/j.scitotenv.2023.168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
The seasonal movement of the zero-degree isotherm across the Southern Ocean and Antarctic Peninsula drives major changes in the physical and biological processes around maritime Antarctica. These include spatial and temporal shifts in precipitation phase, snow accumulation and melt, thawing and freezing of the active layer of the permafrost, glacier mass balance variations, sea ice mass balance and changes in physiological processes of biodiversity. Here, we characterize the historical seasonal southward movement of the monthly near-surface zero-degree isotherm latitude (ZIL), and quantify the velocity of migration in the context of climate change using climate reanalyses and projections. From 1957 to 2020, the ZIL exhibited a significant southward shift of 16.8 km decade-1 around Antarctica and of 23.8 km decade-1 in the Antarctic Peninsula, substantially faster than the global mean velocity of temperature change of 4.2 km decade-1, with only a small fraction being attributed to the Southern Annular Mode (SAM). CMIP6 models reproduce the trends observed from 1957 to 2014 and predict a further southward migration around Antarctica of 24 ± 12 km decade-1 and 50 ± 19 km decade-1 under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The southward migration of the ZIL is expected to have major impacts on the cryosphere, especially on the precipitation phase, snow accumulation and in peripheral glaciers of the Antarctic Peninsula, with more uncertain changes on permafrost, ice sheets and shelves, and sea ice. Longer periods of temperatures above 0 °C threshold will extend active biological periods in terrestrial ecosystems and will reduce the extent of oceanic ice cover, changing phenologies as well as areas of productivity in marine ecosystems, especially those located on the sea ice edge.
Collapse
Affiliation(s)
- Sergi González-Herrero
- WSL Institute for Snow and Avalanche Research (SLF), Davos, Switzerland; Antarctic Group, Agencia Estatal de Meteorología (AEMET), Barcelona, Spain.
| | - Francisco Navarro
- Departmento de Matemática Aplicada a las TIC, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis R Pertierra
- Plant & Soil Sciences Department, University of Pretoria, Pretoria, South Africa; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad Católica de Chile, Santiago, Chile
| | - Marc Oliva
- Department of Geography, Universitat de Barcelona, Barcelona, Spain
| | - Ruzica Dadic
- WSL Institute for Snow and Avalanche Research (SLF), Davos, Switzerland
| | - Lloyd Peck
- British Antarctic Survey, UKRI-NERC, Cambridge, UK
| | - Michael Lehning
- WSL Institute for Snow and Avalanche Research (SLF), Davos, Switzerland; School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
38
|
Yang L, Yu B, Liu H, Ji X, Xiao C, Cao M, Fu J, Zhang Q, Hu L, Yin Y, Shi J, Jiang G. Foraging behavior and sea ice-dependent factors affecting the bioaccumulation of mercury in Antarctic coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169557. [PMID: 38141978 DOI: 10.1016/j.scitotenv.2023.169557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
To elucidate the potential risks of the toxic pollutant mercury (Hg) in polar waters, the study of accumulated Hg in fish is compelling for understanding the cycling and fate of Hg on a regional scale in Antarctica. Herein, the Hg isotopic compositions of Antarctic cod Notothenia coriiceps were assessed in skeletal muscle, liver, and heart tissues to distinguish the differences in Hg accumulation in isolated coastal environments of the eastern (Chinese Zhongshan Station, ZSS) and the antipode western Antarctica (Chinese Great Wall Station, GWS), which are separated by over 4000 km. Differences in odd mass-independent isotope fractionation (odd-MIF) and mass-dependent fractionation (MDF) across fish tissues were reflection of the specific accumulation of methylmercury (MeHg) and inorganic Hg (iHg) with different isotopic fingerprints. Internal metabolism including hepatic detoxification and processes related to heart may also contribute to MDF. Regional heterogeneity in iHg end-members further provided evidence that bioaccumulated Hg origins can be largely influenced by polar water circumstances and foraging behavior. Sea ice was hypothesized to play critical roles in both the release of Hg with negative odd-MIF derived from photoreduction of Hg2+ on its surface and the impediment of photochemical transformation of Hg in water layers. Overall, the multitissue isotopic compositions in local fish species and prime drivers of the heterogeneous Hg cycling and bioaccumulation patterns presented here enable a comprehensive understanding of Hg biogeochemical cycling in polar coastal waters.
Collapse
Affiliation(s)
- Lin Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Yu
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Ji
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Benitez HA, Salinas C, Hernández J, Contador Mejías T, Kim S, Maturana CS, Rebolledo L, Pérez LM, Câmara PEAS, Alves Ferreira V, Lobos I, Piñeiro A, Convey P. An outsider on the Antarctic Peninsula: A new record of the non-native moth Plodia interpunctella (Lepidoptera: Pyralidae). Ecol Evol 2024; 14:e10838. [PMID: 38322004 PMCID: PMC10844584 DOI: 10.1002/ece3.10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
We report the first record of the microlepidopteran Plodia interpunctella beyond the South Shetland Islands at the Chilean Yelcho scientific station (64°52'33.1428″ S; 63°35'1.9572″ W), Doumer Island, close to the west coast of the Antarctic Peninsula. It is notable that P. interpunctella, a globally distributed stored product pest species, exhibits a remarkable capacity for prolonged viability within food storage facilities. The dual challenges of food transportation and storage in the context of Antarctica's challenging operational conditions may have facilitated P. interpunctella's initial arrival to the Antarctic region. Non-perishable food items, such as grains, flour and rice, provide practical options for the bulk food transportation and storage required in the long-term operation of Antarctic research stations. The presence of P. interpunctella in Antarctica, even if restricted to synanthropic environments within buildings, is a clear threat to Antarctic biodiversity, not only through being an invasive species itself but also as a potential vector for other non-native species (bacteria, acari, between others.), which could carry diseases to the native species.
Collapse
Affiliation(s)
- Hugo A. Benitez
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)SantiagoChile
- Cape Horn International Center (CHIC)Centro Universitario Cabo de Hornos, Universidad de MagallanesPuerto WilliamsChile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del MauleUniversidad Católica del MauleTalcaChile
| | - Carla Salinas
- Departamento CientíficoInstituto Antártico ChilenoPunta ArenasChile
| | - Jordan Hernández
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)SantiagoChile
- Cape Horn International Center (CHIC)Centro Universitario Cabo de Hornos, Universidad de MagallanesPuerto WilliamsChile
- Programa de Doctorado en Salud Ecosistémica, Centro de Investigación de Estudios Avanzados del MauleUniversidad Católica del MauleTalcaChile
| | - Tamara Contador Mejías
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)SantiagoChile
- Cape Horn International Center (CHIC)Centro Universitario Cabo de Hornos, Universidad de MagallanesPuerto WilliamsChile
- Núcleo Milenio de Salmónidos Invasores (INVASAL)ConcepciónChile
| | - Sanghee Kim
- Division of Life SciencesKorea Polar Research InstituteIncheonKorea
| | - Claudia S. Maturana
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)SantiagoChile
- Cape Horn International Center (CHIC)Centro Universitario Cabo de Hornos, Universidad de MagallanesPuerto WilliamsChile
| | - Lorena Rebolledo
- Departamento CientíficoInstituto Antártico ChilenoPunta ArenasChile
| | - Laura M. Pérez
- Departamento de Física, FACIUniversidad de TarapacáAricaChile
| | | | | | - Isabel Lobos
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)SantiagoChile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del MauleUniversidad Católica del MauleTalcaChile
| | - Alejandro Piñeiro
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)SantiagoChile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del MauleUniversidad Católica del MauleTalcaChile
| | - Peter Convey
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)SantiagoChile
- Cape Horn International Center (CHIC)Centro Universitario Cabo de Hornos, Universidad de MagallanesPuerto WilliamsChile
- British Antarctic Survey (BAS)Natural Environment Research CouncilCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
40
|
Brooks ST, Jabour J, Hughes KA, Morgan F, Convey P, Polymeropoulos ET, Bergstrom DM. Systematic conservation planning for Antarctic research stations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119711. [PMID: 38070424 DOI: 10.1016/j.jenvman.2023.119711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
The small ice-free areas of Antarctica are essential locations for both biodiversity and scientific research but are subject to considerable and expanding human impacts, resulting primarily from station-based research and support activities, and local tourism. Awareness by operators of the need to conserve natural values in and around station and visitor site footprints exists, but the cumulative nature of impacts often results in reactive rather than proactive management. With human activity spread across many isolated pockets of ice-free ground, the pathway to the greatest reduction of human impacts within this natural reserve is through better management of these areas, which are impacted the most. Using a case study of Australia's Casey Station, we found significant natural values persist within the immediate proximity (<10 m) of long-term station infrastructure, but encroachment by physical disturbance results in ongoing pressures. Active planning to better conserve such values would provide a direct opportunity to enhance protection of Antarctica's environment. Here we introduce an approach to systematic conservation planning, tailored to Antarctic research stations, to help managers improve the conservation of values surrounding their activity locations. Use of this approach provides a potential mechanism to balance the need for scientific access to the continent with international obligations to protect its environment. It may also facilitate the development of subordinate conservation tools, including management plans and natural capital accounting. By proactively minimising and containing their station footprints, national programs can also independently demonstrate their commitment to protecting Antarctica's environment.
Collapse
Affiliation(s)
- Shaun T Brooks
- CSIRO Environment, Hobart, Tasmania, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
| | - Julia Jabour
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Kevin A Hughes
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| | - Fraser Morgan
- Manaaki Whenua Landcare Research, Auckland, New Zealand; Te Pūnaha Matatini, University of Auckland, Auckland, New Zealand
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom; Department of Zoology, University of Johannesburg, Auckland Park, South Africa; Cape Horn International Center (CHIC), Puerto Williams, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Dana M Bergstrom
- Global Challenges Program, University of Wollongong, Wollongong, NSW, Australia; University of Johannesburg, Johannesburg, South Africa; Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Australia
| |
Collapse
|
41
|
Varliero G, Lebre PH, Adams B, Chown SL, Convey P, Dennis PG, Fan D, Ferrari B, Frey B, Hogg ID, Hopkins DW, Kong W, Makhalanyane T, Matcher G, Newsham KK, Stevens MI, Weigh KV, Cowan DA. Biogeographic survey of soil bacterial communities across Antarctica. MICROBIOME 2024; 12:9. [PMID: 38212738 PMCID: PMC10785390 DOI: 10.1186/s40168-023-01719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. RESULTS Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. CONCLUSIONS Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Pedro H Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Byron Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton, VA, 3800, Australia
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Paul G Dennis
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW, 2052, Australia
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - David W Hopkins
- SRUC - Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Thulani Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gwynneth Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Kevin K Newsham
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Mark I Stevens
- Securing Antarctica's Environmental Future, Earth and Biological Sciences, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Katherine V Weigh
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
42
|
Gomes F, Prado T, Degrave W, Moreira L, Magalhães M, Magdinier H, Vilela R, Siqueira M, Brandão M, Ogrzewalska M. Active surveillance for influenza virus and coronavirus infection in Antarctic birds and mammals in environmental fecal samples, South Shetland Islands. AN ACAD BRAS CIENC 2023; 95:e20230741. [PMID: 38126386 DOI: 10.1590/0001-3765202320230741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Numerous Antarctic species are recognized as reservoirs for various pathogens, and their migratory behavior allows them to reach the Brazilian coast, potentially contributing to the emergence and circulation of new infectious diseases. To address the potential zoonotic risks, we conducted surveillance of influenza A virus (IAV) and coronaviruses (CoVs) in the Antarctic Peninsula, specifically focusing on different bird and mammal species in the region. During the summer of 2021/2022, as part of the Brazilian Antarctic Expedition, we collected and examined a total of 315 fecal samples to target these respiratory viruses. Although we did not detect the viruses of interest during this particular expedition, previous research conducted by our team has shown the presence of the H11N2 subtype of influenza A virus in penguin fecal samples from the same region. Given the continuous emergence of new viral strains worldwide, it is crucial to maintain active surveillance in the area, contributing to strengthening integrated One Health surveillance efforts.
Collapse
Affiliation(s)
- Fernanda Gomes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Tatiana Prado
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Wim Degrave
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Genômica Aplicada e Bioinovação, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lucas Moreira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Laboratório de Micologia, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maithê Magalhães
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Genômica Aplicada e Bioinovação, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Harrison Magdinier
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada a Micobactérias, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Roberto Vilela
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marilda Siqueira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Martha Brandão
- Vice-Presidência de Produção e Inovação em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria Ogrzewalska
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos e Entéricos e Emergências Virais, Av. Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
43
|
de França P, Costa JH, Fill TP, Lancellotti M, Ruiz ALTG, Fantinatti-Garboggini F. Genome mining reveals secondary metabolites of Antarctic bacterium Streptomyces albidoflavus related to antimicrobial and antiproliferative activities. Arch Microbiol 2023; 205:354. [PMID: 37828121 DOI: 10.1007/s00203-023-03691-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The urgent need for new antimicrobials arises from antimicrobial resistance. Actinobacteria, especially Streptomyces genus, are responsible for production of numerous clinical antibiotics and anticancer agents. Genome mining reveals the biosynthetic gene clusters (BGCs) related to secondary metabolites and the genetic potential of a strain to produce natural products. However, this potential may not be expressed under laboratory conditions. In the present study, the Antarctic bacterium was taxonomically affiliated as Streptomyces albidoflavus ANT_B131 (CBMAI 1855). The crude extracts showed antimicrobial activity against both fungi, Gram-positive and Gram-negative bacteria and antiproliferative activity against five human tumor cell lines. Whole-genome sequencing reveals a genome size of 6.96 Mb, and the genome mining identified 24 BGCs, representing 13.3% of the genome. The use of three culture media and three extraction methods reveals the expression and recovery of 20.8% of the BGCs. The natural products identified included compounds, such as surugamide A, surugamide D, desferrioxamine B + Al, desferrioxamine E, and ectoine. This study reveals the potential of S. albidoflavus ANT_B131 as a natural product producer. Yet, the diversity of culture media and extraction methods could enhance the BGCs expression and recovery of natural products, and could be a strategy to intensify the BGC expression of natural products.
Collapse
Affiliation(s)
- Paula de França
- Division of Microbial Resources, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, University of Campinas, Paulínia, SP, Brazil.
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Jonas Henrique Costa
- Institute of Chemistry, University of Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Fabiana Fantinatti-Garboggini
- Division of Microbial Resources, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, University of Campinas, Paulínia, SP, Brazil.
| |
Collapse
|
44
|
Morten JM, Buchanan PJ, Egevang C, Glissenaar IA, Maxwell SM, Parr N, Screen JA, Vigfúsdóttir F, Vogt‐Vincent NS, Williams DA, Williams NC, Witt MJ, Hawkes LA, Thurston W. Global warming and arctic terns: Estimating climate change impacts on the world's longest migration. GLOBAL CHANGE BIOLOGY 2023; 29:5596-5614. [PMID: 37492997 PMCID: PMC10946559 DOI: 10.1111/gcb.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023]
Abstract
Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: 'middle-of-the-road' and 'fossil-fuelled development' scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a 'fossil-fuelled development' scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s-1 ) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.
Collapse
Affiliation(s)
- Joanne M. Morten
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - Pearse J. Buchanan
- Department of Earth, Ocean and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - C. Egevang
- Greenland Institute of Natural ResourcesNuukGreenland
| | - Isolde A. Glissenaar
- Bristol Glaciology Centre, School of Geographical SciencesUniversity of BristolBristolUK
| | - Sara M. Maxwell
- School of Interdisciplinary Arts & SciencesUniversity of WashingtonBothellWashingtonUSA
| | - Nicole Parr
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - James A. Screen
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | | | | | - Daniel A. Williams
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Ned C. Williams
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Matthew J. Witt
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - Lucy A. Hawkes
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | | |
Collapse
|
45
|
Elshishka M, Mladenov A, Lazarova S, Peneva V. Terrestrial nematodes from the Maritime Antarctic. Biodivers Data J 2023; 11:e102057. [PMID: 37809281 PMCID: PMC10552655 DOI: 10.3897/bdj.11.e102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Background Soil nematodes are one of the most important terrestrial faunal groups in Antarctica, as they are a major component of soil micro-food webs. Despite their crucial role in soil processes, knowledge of their species diversity and distribution is still incomplete. Taxonomic studies of Antarctic nematodes are fragmented, which prevents assessment of the degree of endemicity and distribution of the species, as well as other aspects of biogeography. New information The present study is focused on the nematode fauna of one of the three Antarctic sub-regions, the Maritime Antarctic and summarises all findings published up to April 2023. A species list that includes 44 species, belonging to 21 genera, 16 families and eight orders is provided. A review of the literature on terrestrial nematodes inhabiting the Maritime Antarctic showed that the sites are unevenly studied. Three islands (Signy, King George and Livingston Islands) revealed highest species richness, probably due to the highest rates of research effort. Most species and four genera (Antarctenchus, Pararhyssocolpus, Amblydorylaimus and Enchodeloides) are endemic, proving that nematode fauna of the Maritime Antarctic is autochthonous and unique. Several groups of islands/sites have been revealed, based on their nematode fauna. The study showed that species with a limited distribution prevailed, while only two species (Plectusantarcticus and Coomansusgerlachei) have been found in more than 50% of the sites. Based on the literature data, details on species localities, microhabitat distribution, plant associations and availability of DNA sequences are provided.
Collapse
Affiliation(s)
- Milka Elshishka
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113SofiaBulgaria
| | - Aleksandar Mladenov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113SofiaBulgaria
| | - Stela Lazarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113SofiaBulgaria
| | - Vlada Peneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113SofiaBulgaria
| |
Collapse
|
46
|
Moran AL, McLachlan RH, Thurber AR. Sea star wasting syndrome reaches the high Antarctic: Two recent outbreaks in McMurdo Sound. PLoS One 2023; 18:e0282550. [PMID: 37498849 PMCID: PMC10374074 DOI: 10.1371/journal.pone.0282550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Sea star wasting syndrome (SSWS) can cause widespread mortality in starfish populations as well as long-lasting changes to benthic community structure and dynamics. SSWS symptoms have been documented in numerous species and locations around the world, but to date there is only one record of SSWS from the Antarctic and this outbreak was associated with volcanically-driven high temperature anomalies. Here we report outbreaks of SSWS-like symptoms that affected ~30% of individuals of Odontaster validus at two different sites in McMurdo Sound, Antarctica in 2019 and 2022. Unlike many SSWS events in other parts of the world, these outbreaks were not associated with anomalously warm temperatures. Instead, we suggest they may have been triggered by high nutrient input events on a local scale. Although the exact cause of these outbreaks is not known, these findings are of great concern because of the keystone role of O. validus and the slow recovery rate of Antarctic benthic ecosystems to environmental stressors.
Collapse
Affiliation(s)
- Amy L Moran
- School of Life Sciences, University of Hawai'i at Mānoa, Mānoa, Hawaii, United States of America
| | - Rowan H McLachlan
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Andrew R Thurber
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
47
|
Détrée C, Navarro JM, Figueroa A, Cardenas L. Acclimation of the Antarctic sea urchin Sterechinus neumayeri to warmer temperatures involves a modulation of cellular machinery. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105979. [PMID: 37099993 DOI: 10.1016/j.marenvres.2023.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 06/11/2023]
Abstract
Global warming is threatening marine Antarctic fauna, which has evolved in isolation in a cold environment for millions of years. Facing increasing temperatures, marine Antarctic invertebrates can either tolerate or develop adaptations to these changes. On a short timescale, their survival and resistance to warming will be driven by the efficiency of their phenotypic plasticity through their capacity for acclimation. The current study aims at evaluating the capacity for acclimation of the Antarctic sea urchin Sterechinus neumayeri to predicted ocean warming scenarios (+2, RCP 2.6 and + 4 °C, RCP 8.5, IPCC et al., 2019) and deciphering the subcellular mechanisms underlying their acclimation. A combination of transcriptomics, physiological (e.g. growth rate, gonad growth, ingestion rate and oxygen consumption), and behavioral-based approaches were used on individuals incubated at 1, 3 and, 5 °C for 22 weeks. Mortality was low at warmer temperatures (20%) and oxygen consumption and ingestion rate seemed to reach a stable state around 16 weeks suggesting that S. neumayeri might be able to acclimate to warmer temperatures (until 5 °C). Transcriptomic analyses highlighted adjustments of the cellular machinery with the activation of replication, recombination, and repair processes as well as cell cycle and division and repression of transcriptional and signal transduction mechanisms and defense processes. These results suggest that acclimation to warmer scenarios might require more than 22 weeks for the Antarctic Sea urchins S. neumayeri but that projections of climate change for the end of the century may not strongly affect the population of S. neumayeri of this part of the Antarctic.
Collapse
Affiliation(s)
- Camille Détrée
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Jorge M Navarro
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnologicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alvaro Figueroa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Leyla Cardenas
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
48
|
Burrows JL, Lee JR, Wilson KA. Evaluating the conservation impact of Antarctica's protected areas. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14059. [PMID: 36661063 DOI: 10.1111/cobi.14059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 05/30/2023]
Abstract
Antarctic specially protected areas (ASPAs) are a key regulatory mechanism for protecting Antarctic environmental values. Previous evaluations of the effectiveness of the ASPA system focused on its representativeness and design characteristics, presenting a compelling rationale for its systematic revision. Upgrading the system could increase the representation of values within ASPAs, but representation alone does not guarantee the avoided loss or improvement of those values. Identifying factors that influence the effectiveness of ASPAs would inform the design and management of an ASPA system with the greatest capacity to deliver its intended conservation outcomes. To facilitate evaluations of ASPA effectiveness, we devised a research and policy agenda that includes articulating a theory of change for what outcomes ASPAs generate and how; building evaluation principles into ASPA design and designation processes; employing complementary approaches to evaluate multiple dimensions of effectiveness; and extending evaluation findings to identify and exploit drivers of positive conservation impact. Implementing these approaches will enhance the efficacy of ASPAs as a management tool, potentially leading to improved outcomes for Antarctic natural values in an era of rapid global change. Evaluación del impacto de conservación de las áreas protegidas de la Antártida.
Collapse
Affiliation(s)
- Joanna L Burrows
- Securing Antarctica's Environmental Future, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jasmine R Lee
- Securing Antarctica's Environmental Future, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
- British Antarctic Survey, Cambridge, UK
| | - Kerrie A Wilson
- Securing Antarctica's Environmental Future, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Belgrano A, Lindmark M. Biodiversity transformations in the global ocean: A climate change and conservation management perspective. GLOBAL CHANGE BIOLOGY 2023; 29:3235-3236. [PMID: 36880894 DOI: 10.1111/gcb.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Understanding the biological diversity of different communities and evaluating the risks to biological sustainability in a time of rapid environmental change is a key challenge for providing an adapting management approach for biodiversity transformations in the ocean linked to human well-being. (Photo credit: Andrea Belgrano).
Collapse
Affiliation(s)
- Andrea Belgrano
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
- Swedish Institute for the Marine Environment (SIME), University of Gothenburg, Gothenburg, Sweden
| | - Max Lindmark
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| |
Collapse
|
50
|
Jordaan RK, Oosthuizen WC, Reisinger RR, de Bruyn PJN. The effect of prey abundance and fisheries on the survival, reproduction, and social structure of killer whales ( Orcinus orca) at subantarctic Marion Island. Ecol Evol 2023; 13:e10144. [PMID: 37284666 PMCID: PMC10239896 DOI: 10.1002/ece3.10144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Most marine apex predators are keystone species that fundamentally influence their ecosystems through cascading top-down processes. Reductions in worldwide predator abundances, attributed to environmental- and anthropogenic-induced changes to prey availability and negative interactions with fisheries, can have far-reaching ecosystem impacts. We tested whether the survival of killer whales (Orcinus orca) observed at Marion Island in the Southern Indian Ocean correlated with social structure and prey variables (direct measures of prey abundance, Patagonian toothfish fishery effort, and environmental proxies) using multistate models of capture-recapture data spanning 12 years (2006-2018). We also tested the effect of these same variables on killer whale social structure and reproduction measured over the same period. Indices of social structure had the strongest correlation with survival, with higher sociality associated with increased survival probability. Survival was also positively correlated with Patagonian toothfish fishing effort during the previous year, suggesting that fishery-linked resource availability is an important determinant of survival. No correlation between survival and environmental proxies of prey abundance was found. At-island prey availability influenced the social structure of Marion Island killer whales, but none of the variables explained variability in reproduction. Future increases in legal fishing activity may benefit this population of killer whales through the artificial provisioning of resources they provide.
Collapse
Affiliation(s)
- Rowan K. Jordaan
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - W. Chris Oosthuizen
- Centre for Statistics in Ecology, the Environment (SEEC)University of Cape TownCape TownSouth Africa
| | - Ryan R. Reisinger
- Ocean and Earth ScienceUniversity of Southampton, National Oceanography Centre SouthamptonSouthamptonUK
| | - P. J. Nico de Bruyn
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|