1
|
Dharmaiah S, Malgulwar PB, Johnson WE, Chen BA, Sharin V, Whitfield BT, Alvarez C, Tadimeti V, Farooqi AS, Huse JT. G-quadruplex stabilizer CX-5461 effectively combines with radiotherapy to target α-thalassemia/mental retardation X-linked-deficient malignant glioma. Neuro Oncol 2025; 27:932-947. [PMID: 39570009 PMCID: PMC12083236 DOI: 10.1093/neuonc/noae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Inactivation of α-thalassemia/mental retardation X-linked (ATRX) represents a defining molecular feature in large subsets of malignant glioma. ATRX deficiency gives rise to abnormal G-quadruplex (G4) DNA secondary structures, enhancing replication stress and genomic instability. Building on earlier work, we evaluated the extent to which pharmacological G4 stabilization selectively enhances DNA damage and cell death in ATRX-deficient preclinical glioma models. METHODS Using the G4 stabilizer CX-5461, we treated patient-derived glioma stem cells (GSCs) in vitro and GSC flank and intracranial murine xenografts in vivo to evaluate efficacy as both a single agent and in combination with ionizing radiation (IR), the latter a central element of current treatment standards. RESULTS CX-5461 promoted dose-sensitive lethality in ATRX-deficient GSCs relative to ATRX-intact controls. Mechanistic studies revealed that CX-5461 disrupted histone variant H3.3 deposition, enhanced replication stress and DNA damage, activated p53-independent apoptosis, and induced G2/M arrest to a greater extent in ATRX-deficient GSCs than in ATRX-intact counterparts. These data were corroborated in vivo, where CX-5461/IR treatment profoundly delayed tumor growth and prolonged survival in mice bearing ATRX-deficient flank xenografts. Histopathological analyses revealed decreased proliferation, increased apoptosis, and significant G4 induction, replication stress, and DNA damage in CX-5461-treated tumors, both alone and in combination with IR. Finally, despite suboptimal blood-brain-barrier penetration, systemic CX-5461 treatment induced tangible pharmacodynamic effects in ATRX-deficient intracranial GSC models. CONCLUSIONS In totality, our work substantively demonstrates efficacy and defines mechanisms of action for G4 stabilization as a novel therapeutic strategy targeting ATRX-deficient malignant glioma, laying the groundwork for clinical translation.
Collapse
Affiliation(s)
- Sharvari Dharmaiah
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, Cancer Biology, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, Texas, USA
| | - Prit Benny Malgulwar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William E Johnson
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandon A Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vladislav Sharin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin T Whitfield
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, Cancer Biology, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, Texas, USA
| | - Christian Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vasudev Tadimeti
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahsan S Farooqi
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Nassif Haddad E, Javle MM, Yap TA. Poly(adenosine diphosphate ribose) polymerase inhibition in isocitrate dehydrogenase 1 and 2-mutant tumors: Bridging science with the clinic. Cancer 2025; 131:e35890. [PMID: 40323702 DOI: 10.1002/cncr.35890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In this issue of Cancer, Cecchini et al. report findings from a phase 2, open‐label trial of olaparib in 30 patients with advanced cholangiocarcinoma with isocitrate dehydrogenase 1 and 2 mutations. Although the trial did not meet its primary end point, a subset of patients experienced prolonged clinical benefit, which highlights the potential for alternative therapeutic strategies involving poly(adenosine diphosphate ribose) polymerase inhibitors in future clinical trials.
Collapse
Affiliation(s)
- Elise Nassif Haddad
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Karajannis MA, Onar-Thomas A, Lin T, Baxter PA, Boué DR, Cole BL, Fuller C, Haque S, Jabado N, Lucas JT, MacDonald SM, Matsushima C, Patel N, Pierson CR, Souweidane MM, Thomas DL, Walsh MF, Zaky W, Leary SES, Gajjar A, Fouladi M, Cohen KJ. Phase 2 trial of veliparib, local irradiation, and temozolomide in patients with newly diagnosed high-grade glioma: a Children's Oncology Group study. Neuro Oncol 2025; 27:1092-1101. [PMID: 39560182 PMCID: PMC12083075 DOI: 10.1093/neuonc/noae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The outcome for pediatric patients with high-grade glioma (HGG) remains poor. Veliparib, a potent oral poly(adenosine diphosphate-ribose) polymerase (PARP) 1/2 inhibitor, enhances the activity of radiotherapy and DNA-damaging chemotherapy. METHODS We conducted a single-arm, non-randomized phase 2 clinical trial to determine whether treatment with veliparib and radiotherapy, followed by veliparib and temozolomide, improves progression-free survival in pediatric patients with newly diagnosed HGG without H3 K27M or BRAF mutations, compared to patient-level data from historical cohorts with closely matching clinical and molecular features. Following surgical resection, newly diagnosed children with non-metastatic HGG were screened by rapid central pathology review and molecular testing. Eligible patients were enrolled on Stratum 1 (IDH wild-type) or Stratum 2 (IDH mutant). RESULTS Both strata were closed to accrual for futility after planned interim analyses. Among the 23 eligible patients who enrolled on Stratum 1 and received protocol therapy, the 1-year event-free survival (EFS) was 23% (standard error, SE = 9%) and the 1-year overall survival (OS) was 64% (SE = 10%). Among the 14 eligible patients who enrolled on Stratum 2 and received protocol therapy, the 1-year EFS was 57% (SE = 13%) and 1-year OS was 93% (SE = 0.7%). CONCLUSIONS Rapid central pathology review and molecular testing for eligibility were feasible. The protocol therapy including radiation, veliparib, and temozolomide was well tolerated but failed to improve outcomes compared to clinically and molecularly matched historical control cohorts treated with higher doses of alkylator chemotherapy. CLINICALTRIALS.GOV IDENTIFIER NCT03581292 (first posted: July 10, 2018).
Collapse
Affiliation(s)
- Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Patricia A Baxter
- Department of Pediatrics, Texas Children’s Hospital/Baylor College of Medicine, Houston, Texas
| | - Daniel R Boué
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Bonnie L Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Christine Fuller
- Department of Pathology, Upstate Medical University, Syracuse, New York, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - John T Lucas
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste Matsushima
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Namrata Patel
- Department of Pharmacy, Stanford Medicine Children’s Health, Palo Alto, California, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wafik Zaky
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah E S Leary
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
4
|
Swensen SN, Figuracion KCF, Venur VA, Emerson S, Tseng YD, Lo SS, Ermoian RP, Halasz LM. Treatment Options for IDH-Mutant Malignant Gliomas. Curr Treat Options Oncol 2024; 25:1594-1604. [PMID: 39612163 DOI: 10.1007/s11864-024-01280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
OPINION STATEMENT As the peak incidence of isocitrate dehydrogenase (IDH)-mutant gliomas is amongst young adults, there is a need to balance tumor control with long term side effects of therapy. Following initial clinical presentation and acquisition of contrasted diagnostic imaging, tissue diagnosis is essential in suspected diffuse glioma. Depending on the location and extent of disease, maximal surgical resection is preferred both for histologic diagnosis and initial therapy. Partial resection or biopsy alone is considered when the tumor cannot be completely resected or if there are clinical reservations regarding a more significant operation. The classification of diffuse glioma has evolved over time, with histopathology and molecular marker status guiding discussions of prognosis and postoperative management. In patients with IDH-mutant grade 2 glioma and low-risk features, observation with active surveillance is generally recommended following a gross total resection. For those with high-risk features, which historically included age > 40 years or subtotal resection, adjuvant chemotherapy and radiation therapy are generally recommended, however decisions for adjuvant therapy pose challenges as many of the landmark historical trials guiding adjuvant therapy were performed prior to the molecularly defined era. This is an area where multiple clinical trials are ongoing and hold promise to inform treatment paradigms, including recent data on the use of IDH-mutant inhibitors in grade 2 tumors with recurrent or residual disease. For IDH-mutant grade 3 and 4 glioma, adjuvant chemotherapy and radiation are recommended for all patients after initial resection.
Collapse
Affiliation(s)
- Sasha N Swensen
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA.
| | - Karl Cristie F Figuracion
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| | - Vyshak A Venur
- Division of Medical Oncology, Department of Medicine/Fred Hutchinson Cancer Center, University of Washington, 1959 NE Pacific St, Box 356182, Seattle, WA, 98195, USA
| | - Samuel Emerson
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St, Box 356470, Seattle, WA, 98195, USA
| | - Yolanda D Tseng
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| | - Ralph P Ermoian
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, 1959 NE Pacific St, Box 356043, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
7
|
Faggiani I, D’Amico F, Furfaro F, Zilli A, Parigi TL, Cicerone C, Fiorino G, Peyrin-Biroulet L, Danese S, Allocca M. Small Bowel Cancer in Crohn's Disease. Cancers (Basel) 2024; 16:2901. [PMID: 39199671 PMCID: PMC11352503 DOI: 10.3390/cancers16162901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) that frequently affects the small bowel. Individuals diagnosed with CD are at increased risk of developing bowel cancer compared to the general population. Small bowel cancer is a rare but significant CD complication. Adenocarcinoma represents the most prevalent of these neoplasms, followed by neuroendocrine tumors and sarcomas. The primary risk factors identified are being of the male sex, disease duration, previous surgical intervention, perianal disease, and chronic inflammation. The precise etiology remains unclear. Another crucial issue concerns the role of immunomodulators and advanced therapies. By inhibiting inflammation, these therapies can reduce the risk of cancer, which is often initiated by the inflammation-dysplasia-adenocarcinoma sequence. In accordance with the most recent guidelines, it is not necessary to conduct surveillance in patients with small bowel cancer among CD patients, as it is considered a rare disease. Nevertheless, it is of significant importance for gastroenterologists to be aware of this potential CD complication, as well as the patients who are most at risk of developing it. The purpose of this review is to provide a comprehensive overview of CD-SBC, focusing on epidemiology, etiopathogenesis, risk factors, diagnosis, and the role of advanced therapies in CD-SBC.
Collapse
Affiliation(s)
- Ilaria Faggiani
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| | - Ferdinando D’Amico
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| | - Gionata Fiorino
- IBD Unit, Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France;
- INSERM, NGERE, University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- FHU-CURE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privè Ambroise Parè-Hartmann, Paris IBD Center, F-92200 Neuilly-sur-Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, 20132 Milan, Italy; (I.F.); (F.D.); (F.F.); (A.Z.); (T.L.P.); (C.C.); (S.D.)
| |
Collapse
|
8
|
Schiff D. Low-Grade Gliomas: A New Mutation, New Targeted Therapy, and Many Questions. Neurology 2024; 103:e209688. [PMID: 39008801 DOI: 10.1212/wnl.0000000000209688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The discovery in 2008 that many adult gliomas harbor a hitherto unknown mutation in the metabolic gene isocitrate dehydrogenase (IDH) initiated revolutionary advances in our understanding of the biology, and correspondingly our classification, of gliomas. IDH mutations are found in most nonglioblastoma adult gliomas and portend a better prognosis. Massive efforts have unraveled many of the pleiotropic cellular effects of these mutations and spawned several lines of investigation to target the effect to therapeutic benefit. In this article are reviewed the implications of the IDH mutation in gliomas, in particular focusing on recent studies that have culminated in a rare positive phase 3 trial in these generally refractory tumors.
Collapse
Affiliation(s)
- David Schiff
- From the Departments of Neurology, Neurological Surgery, and Medicine, University of Virginia Health System
| |
Collapse
|
9
|
Rahman R, Shi DD, Reitman ZJ, Hamerlik P, de Groot JF, Haas-Kogan DA, D’Andrea AD, Sulman EP, Tanner K, Agar NYR, Sarkaria JN, Tinkle CL, Bindra RS, Mehta MP, Wen PY. DNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology. Neuro Oncol 2024; 26:1367-1387. [PMID: 38770568 PMCID: PMC11300028 DOI: 10.1093/neuonc/noae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana D Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Petra Hamerlik
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University, New York, New York, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Minesh P Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Xu S, Cao L, Chen R, Ye C, Li Q, Jiang Q, Yan F, Wan M, Zhang X, Ruan J. Differential isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 mutation-related landscape in intrahepatic cholangiocarcinoma. Oncologist 2024; 29:e1061-e1072. [PMID: 38842680 PMCID: PMC11299938 DOI: 10.1093/oncolo/oyae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Patients with intrahepatic cholangiocarcinoma (ICC) are prone to recurrence and poor survival. Targeted therapy related to isocitrate dehydrogenase (IDH) is an extremely important treatment. IDH1 and IDH2 mutations are generally thought to have similar effects on the tumor landscape. However, it is doubtful whether these 2 mutations have exactly the same effects on tumor cells and the tumor microenvironment. METHODS All collected tumor samples were subjected to simultaneous whole-exon sequencing and proteome sequencing. RESULTS IDH1 mutations accounted for 12.2%, and IDH2 mutations accounted for 5.5%, all missense mutations. Tumors with IDH mutations had lower proportions of KRAS and TP53 mutations. Mutated genes were obviously enriched in the kinase pathway in the tumors with IDH2 mutations. The signaling pathways were mainly enriched in the activation of cellular metabolic activities and an increase of inhibitory immune cells in the tumors with IDH mutations. Moreover, tumors had unique enrichment in DNA repair in IDH1 mutants and secretion of biological molecules in IDH2 mutants. Inhibitory immune cells might be more prominent in IDH2 mutants, and the expression of immune checkpoints PVR and HLA-DQB1 was more prominent in IDH1 mutants. IDH mutants were more related to metabolism-related and inflammation-immune response clusters, and some belonged to the DNA replication and repair cluster. CONCLUSIONS These results revealed the differential IDH1 and IDH2 mutation-related landscapes, and we have provided an important reference database to guide ICC treatment.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, People’s Republic of China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Feifei Yan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
11
|
Carosi F, Broseghini E, Fabbri L, Corradi G, Gili R, Forte V, Roncarati R, Filippini DM, Ferracin M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:2752. [PMID: 39123479 PMCID: PMC11311780 DOI: 10.3390/cancers16152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are involved in key metabolic processes in human cells, regulating differentiation, proliferation, and oxidative damage response. IDH mutations have been associated with tumor development and progression in various solid tumors such as glioma, cholangiocarcinoma, chondrosarcoma, and other tumor types and have become crucial markers in molecular classification and prognostic assessment. The intratumoral and serum levels of D-2-hydroxyglutarate (D-2-HG) could serve as diagnostic biomarkers for identifying IDH mutant (IDHmut) tumors. As a result, an increasing number of clinical trials are evaluating targeted treatments for IDH1/IDH2 mutations. Recent studies have shown that the focus of these new therapeutic strategies is not only the neomorphic activity of the IDHmut enzymes but also the epigenetic shift induced by IDH mutations and the potential role of combination treatments. Here, we provide an overview of the current knowledge about IDH mutations in solid tumors, with a particular focus on available IDH-targeted treatments and emerging results from clinical trials aiming to explore IDHmut tumor-specific features and to identify the clinical benefit of IDH-targeted therapies and their combination strategies. An insight into future perspectives and the emerging roles of circulating biomarkers and radiomic features is also included.
Collapse
Affiliation(s)
- Francesca Carosi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | | | - Laura Fabbri
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Giacomo Corradi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Riccardo Gili
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Valentina Forte
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Roncarati
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 40136 Bologna, Italy;
| | - Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
12
|
Knight W, Margaryan T, Sanai N, Tovmasyan A. A validated LC-MS/MS method for determination of neuro-pharmacokinetic behavior of niraparib in brain tumor patients. J Pharm Biomed Anal 2024; 245:116150. [PMID: 38657366 DOI: 10.1016/j.jpba.2024.116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Niraparib is a potent and orally bioavailable inhibitor of poly (ADP-ribose) polymerase (PARP) with high specificity for isoforms 1 and 2. It has been approved by the U.S. Food and Drug Administration for ovarian cancer maintenance therapy and is currently under development for various cancers, including glioblastoma. To assess central nervous system (CNS) penetration of niraparib in glioblastoma patients, a novel bioanalytical method was developed to measure total and unbound niraparib levels in human brain tumor tissue and cerebrospinal fluid (CSF). The method was validated using plasma as a surrogate matrix over the concentration range of 1-10,000 nM on an LC-MS/MS system. The MS/MS detection was conducted in positive electrospray ionization mode, while chromatography was performed using a Kinetex™ PS C18 column with a total 3.5-minute gradient elution run time. The maximum coefficient of variation for both intra- and inter-day precision was 10.6%, with accuracy ranging from 92.8% - 118.5% across all matrices. Niraparib was stable in human brain homogenate for at least 6 hours at room temperature (RT) and 32 days at -20°C, as well as in stock and working solutions for at least 21 hours (RT) and 278 days (4°C). Equilibrium dialysis experiments revealed the fractions unbound of 0.05 and 0.16 for niraparib in human brain and plasma, respectively. The validated method is currently employed to assess niraparib levels in human glioblastoma tissue, CSF, and plasma in an ongoing trial on newly diagnosed glioblastoma and recurrent IDH1/2(+) ATRX mutant glioma patients (NCT05076513). Initial results of calculated total (Kp) and unbound (Kp,uu) tumor-to-plasma partition coefficients indicate significant brain penetration ability of niraparib in glioblastoma patients.
Collapse
Affiliation(s)
- William Knight
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Tigran Margaryan
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Artak Tovmasyan
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
| |
Collapse
|
13
|
Yu K, Tian Q, Feng S, Zhang Y, Cheng Z, Li M, Zhu H, He J, Li M, Xiong X. Integration analysis of cell division cycle-associated family genes revealed potential mechanisms of gliomagenesis and constructed an artificial intelligence-driven prognostic signature. Cell Signal 2024; 119:111168. [PMID: 38599441 DOI: 10.1016/j.cellsig.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cell division cycle-associated (CDCA) gene family members are essential cell proliferation regulators and play critical roles in various cancers. However, the function of the CDCA family genes in gliomas remains unclear. This study aims to elucidate the role of CDCA family members in gliomas using in vitro and in vivo experiments and bioinformatic analyses. We included eight glioma cohorts in this study. An unsupervised clustering algorithm was used to identify novel CDCA gene family clusters. Then, we utilized multi-omics data to elucidate the prognostic disparities, biological functionalities, genomic alterations, and immune microenvironment among glioma patients. Subsequently, the scRNA-seq analysis and spatial transcriptomic sequencing analysis were carried out to explore the expression distribution of CDCA2 in glioma samples. In vivo and in vitro experiments were used to investigate the effects of CDCA2 on the viability, migration, and invasion of glioma cells. Finally, based on ten machine-learning algorithms, we constructed an artificial intelligence-driven CDCA gene family signature called the machine learning-based CDCA gene family score (MLCS). Our results suggested that patients with the higher expression levels of CDCA family genes had a worse prognosis, more activated RAS signaling pathways, and more activated immunosuppressive microenvironments. CDCA2 knockdown inhibited the proliferation, migration, and invasion of glioma cells. In addition, the MLCS had robust and favorable prognostic predictive ability and could predict the response to immunotherapy and chemotherapy drug sensitivity.
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ziqi Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianying He
- Department of Orthopedics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
14
|
Gregucci F, Beal K, Knisely JPS, Pagnini P, Fiorentino A, Bonzano E, Vanpouille-Box CI, Cisse B, Pannullo SC, Stieg PE, Formenti SC. Biological Insights and Radiation-Immuno-Oncology Developments in Primary and Secondary Brain Tumors. Cancers (Basel) 2024; 16:2047. [PMID: 38893165 PMCID: PMC11171192 DOI: 10.3390/cancers16112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant central nervous system (CNS) cancers include a group of heterogeneous dis-eases characterized by a relative resistance to treatments and distinguished as either primary tumors arising in the CNS or secondary tumors that spread from other organs into the brain. Despite therapeutic efforts, they often cause significant mortality and morbidity across all ages. Radiotherapy (RT) remains the main treatment for brain cancers, improving associated symptoms, improving tumor control, and inducing a cure in some. However, the ultimate goal of cancer treatment, to improve a patient's survival, remains elusive for many CNS cancers, especially primary tumors. Over the years, there have thus been many preclinical studies and clinical trials designed to identify and overcome mechanisms of resistance to improve outcomes after RT and other therapies. For example, immunotherapy delivered concurrent with RT, especially hypo-fractionated stereotactic RT, is synergistic and has revolutionized the clinical management and outcome of some brain tumors, in particular brain metastases (secondary brain tumors). However, its impact on gliomas, the most common primary malignant CNS tumors, remains limited. In this review, we provide an overview of radioresistance mechanisms, the emerging strategies to overcome radioresistance, the role of the tumor microenviroment (TME), and the selection of the most significant results of radiation-immuno-oncological investigations. We also identify novel therapeutic opportunities in primary and secondary brain tumors with the purpose of elucidating current knowledge and stimulating further research to improve tumor control and patients' survival.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
| | - Kathryn Beal
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Jonathan P. S. Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Paul Pagnini
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, 27100 Pavia, Italy;
| | - Claire I. Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
| | - Susan C. Pannullo
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Philip E. Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
Kitagawa Y, Kobayashi A, Cahill DP, Wakimoto H, Tanaka S. Molecular biology and novel therapeutics for IDH mutant gliomas: The new era of IDH inhibitors. Biochim Biophys Acta Rev Cancer 2024; 1879:189102. [PMID: 38653436 DOI: 10.1016/j.bbcan.2024.189102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gliomas with Isocitrate dehydrogenase (IDH) mutation represent a discrete category of primary brain tumors with distinct and unique characteristics, behaviors, and clinical disease outcomes. IDH mutations lead to aberrant high-level production of the oncometabolite D-2-hydroxyglutarate (D-2HG), which act as a competitive inhibitor of enzymes regulating epigenetics, signaling pathways, metabolism, and various other processes. This review summarizes the significance of IDH mutations, resulting upregulation of D-2HG and the associated molecular pathways in gliomagenesis. With the recent finding of clinically effective IDH inhibitors in these gliomas, this article offers a comprehensive overview of the new era of innovative therapeutic approaches based on mechanistic rationales, encompassing both completed and ongoing clinical trials targeting gliomas with IDH mutations.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655 Bunkyo-ku, Tokyo, Japan
| | - Ami Kobayashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA.
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 7008558, Okayama, Japan
| |
Collapse
|
16
|
Hu X, Zhao M, Bai M, Xue Z, Wang F, Zhu Z, Yu J, Yue J. PARP inhibitor plus radiotherapy reshape the immune suppressive microenvironment and potentiate the efficacy of immune checkpoint inhibitors in tumors with IDH1 mutation. Cancer Lett 2024; 586:216676. [PMID: 38278469 DOI: 10.1016/j.canlet.2024.216676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Isocitrate dehydrogenase 1 mutant (IDH1mut) tumors respond poorly to immunotherapy, but are more sensitive to chemoradiotherapy and poly (ADP-ribose) polymerase inhibition (PARPi). Accordingly, some efforts have aimed to capitalize on the IDH1 mutation rather than reverse it. Moreover, radiotherapy (RT) and PARPi can stimulate antitumor immunity, raising the possibility of reversing the immunosuppression caused by IDH1 mutation while killing the tumor. To assess this possibility, we treated IDH1mut tumors and cells with RT + PARPi. RT + PARPi showed enhanced efficacy over either modality alone both in vitro and in vivo. RT + PARPi induced more DNA damage and activated the cGAS-STING pathway more. IFNβ, CXCL10, and CCL5 were also more highly expressed at both the mRNA and protein levels. In two different tumor models, RT + PARPi increased infiltration and cytolytic function of CD8+ T cells, with one model also showing increased CD8+T cell proliferation. RT+PARPi also increased PD-L1 expression and enhanced checkpoint inhibition. Knocking out cGAS reversed the increased CD8+ T cell infiltration and the antitumor effect of RT+PARPi. We conclude that RT + PARPi reshapes the IDH1mut tumor immunosuppressive microenvironment, thereby augmenting checkpoint inhibition.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Menglin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuang Xue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Makawita S, Lee S, Kong E, Kwong LN, Abouelfetouh Z, Danner De Armas A, Xiao L, Murugesan K, Danziger N, Pavlick D, Korkut A, Ross JS, Javle M. Comprehensive Immunogenomic Profiling of IDH1-/ 2-Altered Cholangiocarcinoma. JCO Precis Oncol 2024; 8:e2300544. [PMID: 38547421 PMCID: PMC10994443 DOI: 10.1200/po.23.00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE Isocitrate dehydrogenase (IDH)1/2 genomic alterations (GA) occur in 20% of intrahepatic cholangiocarcinoma (iCCA); however, the immunogenomic landscape of IDH1-/2-mutated iCCA is largely unknown. METHODS Comprehensive genomic profiling (CGP) was performed on 3,067 cases of advanced iCCA. Tumor mutational burden (TMB), PD-L1 expression (Dako 22C3), microsatellite instability (MSI), and genomic loss of heterozygosity (gLOH) as a surrogate marker for homologous recombination deficiency were examined. RNA sequencing of 73 patient samples was analyzed for differences in stromal/immune cell infiltration, immune marker expression, and T-cell inflammation. Tissue microarray arrays were subjected to multiplex immunohistochemistry and colocalization analysis in 100 surgical samples. Retrospective clinical data were collected for 501 patients with cholangiocarcinoma to examine median overall survival (mOS) in IDH1/2+ versus IDHwt. RESULTS Of 3,067 iCCA cases subjected to CGP, 426 (14%) were IDH1+ and 125 (4%) were IDH2+. IDH1 GA included R132C (69%) and R132L/G/S/H/F (16%/7%/4%/3%/<1%). IDH2 GA occurred at R172 (94.4%) and R140 (6.6%). No significant difference was seen in median gLOH between IDH1+ versus IDHwt iCCA (P = .37), although patterns of comutations differed. MSI-High (P = .009), TMB ≥10 mut/Mb (P < .0001), and PD-L1 positivity were lower in IDH1/2+ versus IDHwt iCCA. Resting natural killer cell population, CD70, and programmed cell death 1 expression were significantly higher in non-IDH1-mutated cases, whereas V-set domain containing T-cell activation inhibitor 1 (B7-H4) expression was significantly higher in IDH1+. No significant difference in mOS was observed between IDH1/2+ versus IDHwt patients. CONCLUSION Significant differences in GA and immune biomarkers are noted between IDH1/2+ and IDHwt iCCA. IDH1-/2-mutated tumors appear immunologically cold without gLOH. These immunogenomic data provide insight for precision targeting of iCCA with IDH alterations.
Collapse
Affiliation(s)
- Shalini Makawita
- Department of Hematology & Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Sunyoung Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elisabeth Kong
- Department of Bioinformatics and Computational Biology, The University of Texas MD, Houston, TX
| | - Lawrence N. Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Anaemy Danner De Armas
- Department of Pediatrics-Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Natalie Danziger
- Cancer Genomics Research and Pathology, Foundation Medicine Inc, Cambridge, MA
| | - Dean Pavlick
- Cancer Genomics Research and Pathology, Foundation Medicine Inc, Cambridge, MA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD, Houston, TX
| | - Jeffrey S. Ross
- Cancer Genomics Research and Pathology, Foundation Medicine Inc, Cambridge, MA
- Departments of Pathology, Urology and Medicine (Oncology), Upstate Medical University, Syracuse, NY
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
18
|
Squalli Houssaini A, Lamrabet S, Senhaji N, Sekal M, Nshizirungu JP, Mahfoudi H, Elfakir S, Karkouri M, Bennis S. Prognostic Value of ATRX and p53 Status in High-Grade Glioma Patients in Morocco. Cureus 2024; 16:e56361. [PMID: 38633919 PMCID: PMC11022269 DOI: 10.7759/cureus.56361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Glioblastoma and astrocytoma, grade 4, are the most common and aggressive brain tumors. Several biomarkers, such as the isocitrate dehydrogenase mutation (IDH-1), alpha-thalassemia/mental retardation, and the X-linked mutation (ATRX), enable more accurate glioma classification and facilitate patient management. This study aimed to determine the prognostic value of clinical and molecular factors (IDH, TP53, and ATRX mutations). We also studied the relationship between these molecular markers and the overall survival (OS) of 126 patients with grade 4 glioblastoma/astrocytoma. METHODS The immunohistochemical study was conducted using antibodies namely, IDH1, R132H, p53, and ATRX. Statistical tests were used to investigate factors that might influence overall survival using IBM SPSS Statistics, version 25.0 (IBM Corp., Armonk, NY). RESULTS The median age at diagnosis was 51.5 years. Patients with a Karnofsky performance score (KPS) <70 presented less favorable survival outcomes compared to those with a KPS ≥70. The median OS for patients was found to be 11.17 months. Expression of IDH1 R132H was found in 13.5% of patients, p53 overexpression was identified in 55.6% of cases, and loss of ATRX expression was detected in 11.9%. The group of patients with IDH mutant/ATRX mutant/p53 wild-type had the best prognosis (OS = 27.393 months; p = 0.015). Our results were in line with previous studies. CONCLUSION The clinical value of IDH and ATRX mutations in prognostic assessment was confirmed (p ≤0.05). The overexpression of p53 had no significant impact on OS (p = 0.726). Therefore, p53 alone cannot predict survival in glioblastoma patients. Based on the results, these biomarkers may be a potential therapeutic target to prolong patient survival, hence the need for further investigations.
Collapse
Affiliation(s)
- Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, MAR
| | - Mohammed Sekal
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Jean Paul Nshizirungu
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, RWA
| | - Hajar Mahfoudi
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Samira Elfakir
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Mehdi Karkouri
- Department of Pathology, Ibn Rochd University Hospital Center, Casablanca, MAR
- Department of Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, MAR
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| |
Collapse
|
19
|
Guerini C, Furlan D, Ferrario G, Grillo F, Libera L, Arpa G, Klersy C, Lenti MV, Riboni R, Solcia E, Fassan M, Mastracci L, Ardizzone S, Moens A, De Hertogh G, Ferrante M, Graham RP, Sessa F, Paulli M, Di Sabatino A, Vanoli A. IDH1-mutated Crohn's disease-associated small bowel adenocarcinomas: Distinctive pathological features and association with MGMT methylation and serrated-type dysplasia. Histopathology 2024; 84:515-524. [PMID: 37988281 DOI: 10.1111/his.15095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
AIMS Patients with Crohn's disease (CrD) have an elevated risk for the development of small bowel adenocarcinomas (SBAs). Actionable isocitrate dehydrogenase 1 (IDH1) mutations have been reported to be more frequent in CrD-SBAs than in sporadic SBAs. The present study aimed to investigate the clinicopathological and immunophenotypical features, as well as methylation profiles, of IDH1-mutated CrD-SBAs. METHODS AND RESULTS An international multicentre series of surgically resected CrD-SBAs was tested for IDH1 mutation. Clinicopathological features, immunophenotypical marker expression and O6-methylguanine-DNA methyltransferase (MGMT) and long interspersed nuclear element-1 (LINE-1) methylation were compared between IDH1-mutated and IDH1 wild-type CrD-SBAs. Ten (20%) of the 49 CrD-SBAs examined harboured an IDH1 mutation and all the mutated cancers harboured the R132C variant. Compared to IDH1 wild-type cases, IDH1-mutated CrD-SBAs showed significantly lower rates of cytokeratin 7 expression (P = 0.005) and higher rates of p53 overexpression (P = 0.012) and MGMT methylation (P = 0.012). All three dysplastic growths associated with IDH1-mutated SBAs harboured the same IDH1 variant (R132C) of the corresponding invasive cancer, and all were of non-conventional subtype (two serrated dysplastic lesions and one goblet cell-deficient dysplasia). In particular, non-conventional serrated dysplasia was significantly associated with IDH1-mutated CrD-SBAs (P = 0.029). No significant cancer-specific survival difference between IDH1-mutated CrD-SBA patients and IDH1 wild-type CrD-SBA patients was found (hazard ratio = 0.55, 95% confidence interval = 0.16-1.89; P = 0.313). CONCLUSIONS IDH1-mutated CrD-SBAs, which represent approximately one-fifth of total cases, are characterised by distinctive immunophenotypical features and methylation profiles, with potential therapeutic implications. Moreover, IDH1-mutated non-conventional, serrated dysplasia is likely to represent a precursor lesion to such CrD-SBAs.
Collapse
Affiliation(s)
- Camilla Guerini
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Daniela Furlan
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Giuseppina Ferrario
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Federica Grillo
- Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino University Hospital, Genoa, Italy
| | - Laura Libera
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Giovanni Arpa
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Catherine Klersy
- Clinical Epidemiology and Biometry, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Marco V Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Roberta Riboni
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Enrico Solcia
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino University Hospital, Genoa, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, Luigi Sacco University Hospital, Milan, Italy
| | - Annick Moens
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, KU Leuven University Hospitals, Leuven, Belgium
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Fausto Sessa
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Marco Paulli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| |
Collapse
|
20
|
Feng S, Zhang Y, Zhu H, Jian Z, Zeng Z, Ye Y, Li Y, Smerin D, Zhang X, Zou N, Gu L, Xiong X. Cuproptosis facilitates immune activation but promotes immune escape, and a machine learning-based cuproptosis-related signature is identified for predicting prognosis and immunotherapy response of gliomas. CNS Neurosci Ther 2024; 30:e14380. [PMID: 37515314 PMCID: PMC10848101 DOI: 10.1111/cns.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
AIMS Cell death, except for cuproptosis, in gliomas has been extensively studied, providing novel targets for immunotherapy by reshaping the tumor immune microenvironment through multiple mechanisms. This study aimed to explore the effect of cuproptosis on the immune microenvironment and its predictive power in prognosis and immunotherapy response. METHODS Eight glioma cohorts were included in this study. We employed the unsupervised clustering algorithm to identify novel cuproptosis clusters and described their immune microenvironmental characteristics, mutation landscape, and altered signaling pathways. We verified the correlation among FDX1, SLC31A1, and macrophage infiltration in 56 glioma tissues. Next, based on multicenter cohorts and 10 machine learning algorithms, we constructed an artificial intelligence-driven cuproptosis-related signature named CuproScore. RESULTS Our findings suggested that glioma patients with high levels of cuproptosis had a worse prognosis owing to immunosuppression caused by unique immune escape mechanisms. Meanwhile, we experimentally validated the positive association between cuproptosis and macrophages and its tumor-promoting mechanism in vitro. Furthermore, our CuproScore exhibited powerful and robust prognostic predictive ability. It was also capable of predicting response to immunotherapy and chemotherapy drug sensitivity. CONCLUSIONS Cuproptosis facilitates immune activation but promotes immune escape. The CuproScore could predict prognosis and immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yingze Ye
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yina Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Daniel Smerin
- Department of NeurosurgeryUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Xu Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lijuan Gu
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
21
|
Esparragosa Vazquez I, Sanson M, Chinot OL, Fontanilles M, Rivoirard R, Thomas-Maisonneuve L, Cartalat S, Tabouret E, Appay R, Bonneville-Levard A, Darlix A, Meyronet D, Barritault M, Gueyffier F, Remontet L, Maucort-Boulch D, Honnorat J, Dehais C, Ducray F. Olaparib in recurrent isocitrate dehydrogenase mutant high-grade glioma: A phase 2 multicenter study of the POLA Network. Neurooncol Adv 2024; 6:vdae078. [PMID: 38855053 PMCID: PMC11157627 DOI: 10.1093/noajnl/vdae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Background Based on preclinical studies showing that IDH-mutant (IDHm) gliomas could be vulnerable to PARP inhibition we launched a multicenter phase 2 study to test the efficacy of olaparib monotherapy in this population. Methods Adults with recurrent IDHm high-grade gliomas (HGGs) after radiotherapy and at least one line of alkylating chemotherapy were enrolled. The primary endpoint was a 6-month progression-free survival rate (PFS-6) according to response assessment in neuro-oncology criteria. Pre-defined threshold for study success was a PFS-6 of at least 50%. Results Thirty-five patients with recurrent IDHm HGGs were enrolled, 77% at ≥ 2nd recurrence. Median time since diagnosis and radiotherapy were 7.5 years and 33 months, respectively. PFS-6 was 31.4% (95% CI [16.9; 49.3%]). Two patients (6%) had an objective response and 14 patients (40%) had a stable disease as their best response. Median PFS and median overall survival were 2.05 and 15.9 months, respectively. Oligodendrogliomas (1p/19q codeleted) had a higher PFS-6 (53.4% vs. 15.7%, P = .05) than astrocytomas while an initial diagnosis of grade 4 astrocytoma tended to be associated with a lower PFS-6 compared to grade 2/3 gliomas (0% vs 31.4%, P = .16). A grade 2 or 3 treatment-related adverse event was observed in 15 patients (43%) and 5 patients (14%), respectively. No patient definitively discontinued treatment due to side effects. Conclusions Although it did not meet its primary endpoint, the present study shows that in this heavily pretreated population, olaparib monotherapy was well tolerated and resulted in some activity, supporting further PARP inhibitors evaluation in IDHm HGGs, especially in oligodendrogliomas.
Collapse
Affiliation(s)
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
- Service de Neurologie 2, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Olivier L Chinot
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Maxime Fontanilles
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rouen, France
- UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine, Normandie university, Rouen University Hospital, Rouen, France
| | - Romain Rivoirard
- Oncology Department, CHU de Saint-Etienne, Saint Etienne, France
| | | | - Stéphanie Cartalat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Romain Appay
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Pathology, AP-HM, University Hospital Timone, Marseille, France
| | | | - Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, Institut de Génomique Fonctionnelle, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - David Meyronet
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
- Department of Pathology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Marc Barritault
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
- Department of Pathology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Laurent Remontet
- Biostatistics-Bioinformatics Department, Public Health Unit. Hospices Civils de Lyon, Lyon, France
| | - Delphine Maucort-Boulch
- Biostatistics-Bioinformatics Department, Public Health Unit. Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284-INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Caroline Dehais
- Service de Neurologie 2, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
| |
Collapse
|
22
|
Hadfield MJ, DeCarli K, Bash K, Sun G, Almhanna K. Current and Emerging Therapeutic Targets for the Treatment of Cholangiocarcinoma: An Updated Review. Int J Mol Sci 2023; 25:543. [PMID: 38203714 PMCID: PMC10779232 DOI: 10.3390/ijms25010543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cholangiocarcinoma is a malignancy of the bile ducts that is often associated with late diagnosis, poor overall survival, and limited treatment options. The standard of care therapy for cholangiocarcinoma has been cytotoxic chemotherapy with modest improvements in overall survival with the addition of immune checkpoint inhibitors. The discovery of actionable mutations has led to the advent of targeted therapies against FGFR and IDH-1, which has expanded the treatment landscape for this patient population. Significant efforts have been made in the pre-clinical space to explore novel immunotherapeutic approaches, as well as antibody-drug conjugates. This review provides an overview of the current landscape of treatment options, as well as promising future therapeutic targets.
Collapse
Affiliation(s)
- Matthew J. Hadfield
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Kathryn DeCarli
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Kinan Bash
- Department of Graduate Studies, University of New England, Biddeford, ME 04005, USA;
| | - Grace Sun
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Khaldoun Almhanna
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| |
Collapse
|
23
|
Venneker S, Bovée JVMG. IDH Mutations in Chondrosarcoma: Case Closed or Not? Cancers (Basel) 2023; 15:3603. [PMID: 37509266 PMCID: PMC10377514 DOI: 10.3390/cancers15143603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical studies have not identified effective treatment modalities (in)directly targeting these mutations. In contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the (epi)genetic landscape in which the IDH mutation functions is an important factor to consider when investigating potential therapeutic strategies or patient outcomes. These findings imply that the dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed exist within chondrosarcoma. Future studies should focus on the identification, characterisation, and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant chondrosarcoma.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
24
|
Shi DD, Anand S, Abdullah KG, McBrayer SK. DNA damage in IDH-mutant gliomas: mechanisms and clinical implications. J Neurooncol 2023; 162:515-523. [PMID: 36352183 PMCID: PMC10956168 DOI: 10.1007/s11060-022-04172-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Since the discovery of IDH mutations in glioma over a decade ago, significant progress has been made in determining how these mutations affect epigenetic, transcriptomic, and metabolic programs in brain tumor cells. In this article, we summarize current understanding of how IDH mutations influence DNA damage in glioma and discuss clinical implications of these findings. METHODS We performed a thorough review of peer-reviewed publications and provide an overview of key mechanisms by which IDH mutations impact response to DNA damage in gliomas, with an emphasis on clinical implications. RESULTS The effects of mutant IDH on DNA damage largely fall into four overarching categories: Gene Expression, Sensitivity to Alkylating Agents, Homologous Recombination, and Oxidative Stress. From a mechanistic standpoint, we discuss how mutant IDH and the oncometabolite (R)-2HG affect each of these categories of DNA damage. We also contextualize these mechanisms with respect to ongoing clinical trials. Studies are underway that incorporate current standard-of-care therapies, including radiation and alkylating agents, in addition to novel therapeutic agents that exert genotoxic stress specifically in IDH-mutant gliomas. Lastly, we discuss key unanswered questions and emerging data in this field that have important implications for our understanding of glioma biology and for the development of new brain tumor therapies. CONCLUSION Mounting preclinical and clinical data suggest that IDH mutations alter DNA damage sensing and repair pathways through distinct mechanisms. Future studies are needed to deepen our understanding of these processes and provide additional mechanistic insights that can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
- Diana D Shi
- Harvard Radiation Oncology Program, MA 02215, Boston, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, TX 75390, Dallas, USA
| | - Soummitra Anand
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, TX 75390, Dallas, USA
- University of Texas Southwestern Medical School, TX 75390, Dallas, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 15213, Pittsburgh, PA, USA.
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 15232, Pittsburgh, PA, USA.
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, TX 75390, Dallas, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, TX 75390, Dallas, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, TX 75235, Dallas, USA.
| |
Collapse
|
25
|
Carney SV, Banerjee K, Mujeeb A, Zhu B, Haase S, Varela ML, Kadiyala P, Tronrud CE, Zhu Z, Mukherji D, Gorla P, Sun Y, Tagett R, Núñez FJ, Luo M, Luo W, Ljungman M, Liu Y, Xia Z, Schwendeman A, Qin T, Sartor MA, Costello JF, Cahill DP, Lowenstein PR, Castro MG. Zinc Finger MYND-Type Containing 8 (ZMYND8) Is Epigenetically Regulated in Mutant Isocitrate Dehydrogenase 1 (IDH1) Glioma to Promote Radioresistance. Clin Cancer Res 2023; 29:1763-1782. [PMID: 36692427 PMCID: PMC10159884 DOI: 10.1158/1078-0432.ccr-22-1896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Mutant isocitrate dehydrogenase 1 (mIDH1) alters the epigenetic regulation of chromatin, leading to a hypermethylation phenotype in adult glioma. This work focuses on identifying gene targets epigenetically dysregulated by mIDH1 to confer therapeutic resistance to ionizing radiation (IR). EXPERIMENTAL DESIGN We evaluated changes in the transcriptome and epigenome in a radioresistant mIDH1 patient-derived glioma cell culture (GCC) following treatment with an mIDH1-specific inhibitor, AGI-5198. We identified Zinc Finger MYND-Type Containing 8 (ZMYND8) as a potential target of mIDH1 reprogramming. We suppressed ZMYND8 expression by shRNA knockdown and genetic knockout (KO) in mIDH1 glioma cells and then assessed cellular viability to IR. We assessed the sensitivity of mIDH1 GCCS to pharmacologic inhibition of ZMYND8-interacting partners: HDAC, BRD4, and PARP. RESULTS Inhibition of mIDH1 leads to an upregulation of gene networks involved in replication stress. We found that the expression of ZMYND8, a regulator of DNA damage response, was decreased in three patient-derived mIDH1 GCCs after treatment with AGI-5198. Knockdown of ZMYND8 expression sensitized mIDH1 GCCs to radiotherapy marked by decreased cellular viability. Following IR, mIDH1 glioma cells with ZMYND8 KO exhibit significant phosphorylation of ATM and sustained γH2AX activation. ZMYND8 KO mIDH1 GCCs were further responsive to IR when treated with either BRD4 or HDAC inhibitors. PARP inhibition further enhanced the efficacy of radiotherapy in ZMYND8 KO mIDH1 glioma cells. CONCLUSIONS These findings indicate the impact of ZMYND8 in the maintenance of genomic integrity and repair of IR-induced DNA damage in mIDH1 glioma. See related commentary by Sachdev et al., p. 1648.
Collapse
Affiliation(s)
- Stephen V Carney
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anzar Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Brandon Zhu
- Graduate Program in Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria L Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Padma Kadiyala
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Claire E Tronrud
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Devarshi Mukherji
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Preethi Gorla
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Yilun Sun
- Department of Radiation Oncology, University Hospitals/Case Western Reserve University, Cleveland, Ohio
| | - Rebecca Tagett
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maowu Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Environmental Health Science, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Yayuan Liu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Ziyun Xia
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Anna Schwendeman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Pedro R Lowenstein
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
26
|
Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207366. [PMID: 36951547 PMCID: PMC10214247 DOI: 10.1002/advs.202207366] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
Gut microbiota-derived metabolites are key hubs connecting the gut microbiome and cancer progression, primarily by remodeling the tumor microenvironment and regulating key signaling pathways in cancer cells and multiple immune cells. The use of microbial metabolites in radiotherapy and chemotherapy mitigates the severe side effects from treatment and improves the efficacy of treatment. Immunotherapy combined with microbial metabolites effectively activates the immune system to kill tumors and overcomes drug resistance. Consequently, various novel strategies have been developed to modulate microbial metabolites. Manipulation of genes involved in microbial metabolism using synthetic biology approaches directly affects levels of microbial metabolites, while fecal microbial transplantation and phage strategies affect levels of microbial metabolites by altering the composition of the microbiome. However, some microbial metabolites harbor paradoxical functions depending on the context (e.g., type of cancer). Furthermore, the metabolic effects of microorganisms on certain anticancer drugs such as irinotecan and gemcitabine, render the drugs ineffective or exacerbate their adverse effects. Therefore, a personalized and comprehensive consideration of the patient's condition is required when employing microbial metabolites to treat cancer. The purpose of this review is to summarize the correlation between gut microbiota-derived metabolites and cancer, and to provide fresh ideas for future scientific research.
Collapse
Affiliation(s)
- Qiqing Yang
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qinghui Zheng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Xuli Meng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
- Center for Infection & Immunity of International Institutes of Medicine The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
- Cancer CenterZhejiang UniversityHangzhou310058China
| |
Collapse
|
27
|
Alshiekh Nasany R, de la Fuente MI. Therapies for IDH-Mutant Gliomas. Curr Neurol Neurosci Rep 2023; 23:225-233. [PMID: 37060388 PMCID: PMC10182950 DOI: 10.1007/s11910-023-01265-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW Isocitrate dehydrogenase (IDH) mutant gliomas are a distinct type of primary brain tumors with unique characteristics, behavior, and disease outcomes. This article provides a review of standard of care treatment options and innovative, therapeutic approaches that are currently under investigation for these tumors. RECENT FINDINGS Extensive pre-clinical data and a variety of clinical studies support targeting IDH mutations in glioma using different mechanisms, which include direct inhibition and immunotherapies that target metabolic and epigenomic vulnerabilities caused by these mutations. IDH mutations have been recognized as an oncogenic driver in gliomas for more than a decade and as a positive prognostic factor influencing the research for new therapeutic methods including IDH inhibitors, DNA repair inhibitors, and immunotherapy.
Collapse
Affiliation(s)
| | - Macarena Ines de la Fuente
- Sylvester Comprehensive Cancer Center and Department of Neurology, 1120 NW 14th Street, Miami, FL, 33136, USA.
| |
Collapse
|
28
|
Ozair A, Bhat V, Alisch RS, Khosla AA, Kotecha RR, Odia Y, McDermott MW, Ahluwalia MS. DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers (Basel) 2023; 15:1342. [PMID: 36831683 PMCID: PMC9954183 DOI: 10.3390/cancers15041342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.
Collapse
Affiliation(s)
- Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Vivek Bhat
- St. John’s Medical College, Bangalore 560034, India
| | - Reid S. Alisch
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Atulya A. Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh R. Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael W. McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| |
Collapse
|
29
|
Testa U, Pelosi E, Castelli G. The clinical value of identifying genetic abnormalities that can be targeted in cholangiocarcinomas. Expert Rev Anticancer Ther 2023; 23:147-162. [PMID: 36654529 DOI: 10.1080/14737140.2023.2170878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Cholangiocarcinomas (CCAs) are a heterogenous group of epithelial malignancies originating at any level of the biliary tree and are subdivided according to their location into intrahepatic (iCCA) and extrahepatic (eCCA). AREAS COVERED This review provides an updated analysis of studies of genetic characterization of CCA at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION With the development of genetic sequencing, several driver mutations have been identified and targeted as novel therapeutic approaches, including FGFR2, IDH1, BRAF, NTRK, HER2, ROS, and RET. Furthermore, identification of the cellular and molecular structure of the tumor microenvironment has contributed to the development of novel therapies, such as tumor immunotherapy. Combination therapies of chemotherapy plus targeted molecules or immunotherapy are under evaluation and offer the unique opportunity to improve the outcomes of CCA patients with advanced disease.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
30
|
Miller JJ, Gonzalez Castro LN, McBrayer S, Weller M, Cloughesy T, Portnow J, Andronesi O, Barnholtz-Sloan JS, Baumert BG, Berger MS, Bi WL, Bindra R, Cahill DP, Chang SM, Costello JF, Horbinski C, Huang RY, Jenkins RB, Ligon KL, Mellinghoff IK, Nabors LB, Platten M, Reardon DA, Shi DD, Schiff D, Wick W, Yan H, von Deimling A, van den Bent M, Kaelin WG, Wen PY. Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro Oncol 2023; 25:4-25. [PMID: 36239925 PMCID: PMC9825337 DOI: 10.1093/neuonc/noac207] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.
Collapse
Affiliation(s)
- Julie J Miller
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | | | - Jana Portnow
- Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ovidiu Andronesi
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill S Barnholtz-Sloan
- Informatics and Data Science (IDS), Center for Biomedical Informatics and Information Technology (CBIIT), Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Brigitta G Baumert
- Cantonal Hospital Graubunden, Institute of Radiation-Oncology, Chur, Switzerland
| | - Mitchell S Berger
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert B Jenkins
- Individualized Medicine Research, Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55901, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Evnin Family Chair in Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - L Burt Nabors
- Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David A Reardon
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Diana D Shi
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Wolfgang Wick
- Neuro-Oncology at the German Cancer Research Center (DKFZ), Program Chair of Neuro-Oncology at the National Center for Tumor Diseases (NCT), and Neurology and Chairman at the Neurology Clinic in Heidelberg, Heidelberg, Germany
| | - Hai Yan
- Genetron Health Inc, Gaithersburg, Maryland 20879, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and, DKTK, INF 224, 69120 Heidelberg, Germany
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - William G Kaelin
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Fortin Ensign SP, Jenkins RB, Giannini C, Sarkaria JN, Galanis E, Kizilbash SH. Translational significance of CDKN2A/B homozygous deletion in isocitrate dehydrogenase-mutant astrocytoma. Neuro Oncol 2023; 25:28-36. [PMID: 35973817 PMCID: PMC9825307 DOI: 10.1093/neuonc/noac205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/26/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) 1 or 2 mutations confer a favorable prognosis compared to IDH-wildtype in astrocytoma, frequently denoting a lower grade malignancy. However, recent molecular profiling has identified specific aggressive tumor subgroups with clear clinical prognostic implications that are independent of histologic grading. The homozygous deletion of CDKN2A/B is the strongest implicated independent indicator of the poor prognosis within IDH-mutant astrocytoma, and the identification of this alteration in these lower histologic grade tumors transforms their biology toward an aggressive grade 4 phenotype clinically. CDKN2A/B homozygous deletion is now sufficient to define a grade 4 tumor in IDH-mutant astrocytomas regardless of histologic appearance, yet there are currently no effective molecularly informed targeted therapies for these tumors. The biological impact of CDKN2A/B homozygous deletion in IDH-mutant tumors and the optimal treatment strategy for this molecular subgroup remains insufficiently explored. Here we review the current understanding of the translational significance of homozygous deletion of CDKN2A/B gene expression in IDH-mutant astrocytoma and associated diagnostic and therapeutic implications.
Collapse
Affiliation(s)
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
32
|
Khurshed M, Prades-Sagarra E, Saleh S, Sminia P, Wilmink JW, Molenaar RJ, Crezee H, van Noorden CJF. Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells. Cancers (Basel) 2022; 14:cancers14246228. [PMID: 36551714 PMCID: PMC9777513 DOI: 10.3390/cancers14246228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate−ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities.
Collapse
Affiliation(s)
- Mohammed Khurshed
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Elia Prades-Sagarra
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Saleh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis J. F. van Noorden
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Somatic point mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) are a defining feature of the majority of WHO grade 2-3 diffuse glioma and the most powerful positive prognostic factor for survival in gliomas. The purpose is to review experimental therapeutic approaches targeting IDH mutations in gliomas including small-molecule inhibitors, immunotherapies, and agents targeting mutant IDH-induced epigenetic and metabolic vulnerabilities. RECENT FINDINGS Extensive preclinical work supports targeting mutant IDH (mIDH) in glioma. In heavily pretreated patients with mIDH glioma, enzyme inhibitors demonstrated to be well tolerated with preliminary evidence of clinical activity in nonenhancing tumors and enhancing tumors when used as single agents. In patients with newly diagnosed WHO grade 3 or 4 astrocytomas, a phase 1 study of a vaccine-targeting IDH1 R132H showed to be well tolerated and demonstrated immunogenicity with a 3-year progression-free and overall survival rates of 0.63 and 0.84, respectively. A variety of ongoing trials aim to target mIDH, including treatments with single agents or combinatory approaches in the upfront or recurrent setting. SUMMARY mIDH are commonly found in gliomas and play a key role in gliomagenesis. This has led to studies using agents to directly inhibit them, immunotherapies, and epigenetic/metabolic drugs with varying and promising results. Ongoing studies may elucidate the precise role of these therapies and the best timing for treatment within the disease course.
Collapse
|
34
|
Ruiz-Rodado V, Dowdy T, Lita A, Kramp T, Zhang M, Shuboni-Mulligan D, Herold-Mende C, Armstrong TS, Gilbert MR, Camphausen K, Larion M. Metabolic biomarkers of radiotherapy response in plasma and tissue of an IDH1 mutant astrocytoma mouse model. Front Oncol 2022; 12:979537. [DOI: 10.3389/fonc.2022.979537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytomas are the most common subtype of brain tumors and no curative treatment exist. Longitudinal assessment of patients, usually via Magnetic Resonance Imaging (MRI), is crucial since tumor progression may occur earlier than clinical progression. MRI usually provides a means for monitoring the disease, but it only informs about the structural changes of the tumor, while molecular changes can occur as a treatment response without any MRI-visible change. Radiotherapy (RT) is routinely performed following surgery as part of the standard of care in astrocytomas, that can also include chemotherapy involving temozolomide. Monitoring the response to RT is a key factor for the management of patients. Herein, we provide plasma and tissue metabolic biomarkers of treatment response in a mouse model of astrocytoma that was subjected to radiotherapy. Plasma metabolic profiles acquired over time by Liquid Chromatography Mass Spectrometry (LC/MS) were subjected to multivariate empirical Bayes time-series analysis (MEBA) and Receiver Operating Characteristic (ROC) assessment including Random Forest as the classification strategy. These analyses revealed a variation of the plasma metabolome in those mice that underwent radiotherapy compared to controls; specifically, fumarate was the best discriminatory feature. Additionally, Nuclear Magnetic Resonance (NMR)-based 13C-tracing experiments were performed at end-point utilizing [U-13C]-Glutamine to investigate its fate in the tumor and contralateral tissues. Irradiated mice displayed lower levels of glycolytic metabolites (e.g. phosphoenolpyruvate) in tumor tissue, and a higher flux of glutamine towards succinate was observed in the radiation cohort. The plasma biomarkers provided herein could be validated in the clinic, thereby improving the assessment of brain tumor patients throughout radiotherapy. Moreover, the metabolic rewiring associated to radiotherapy in tumor tissue could lead to potential metabolic imaging approaches for monitoring treatment using blood draws.
Collapse
|
35
|
Niger M, Nichetti F, Casadei-Gardini A, Rizzato MD, Pircher C, Bini M, Franza A, Rimini M, Burgio V, Sposetti C, Fornaro L, Rapposelli IG, D'Amico FE, Aprile G, Vivaldi C, Frassineti GL, Milione M, Leoncini G, Cappetta A, Vasile E, Fassan M, Morano F, Perrone F, Tamborini E, Pruneri G, Lonardi S, Mazzaferro V, Pietrantonio F, Di Bartolomeo M, de Braud F. Platinum sensitivity in patients with IDH1/2 mutated vs wild-type intrahepatic cholangiocarcinoma: A propensity score-based study. Int J Cancer 2022; 151:1310-1320. [PMID: 35723131 DOI: 10.1002/ijc.34182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022]
Abstract
Isocitrate dehydrogenase (IDH)1/2 mutations are the most frequent druggable alterations in intrahepatic cholangiocarcinoma (iCCA), reported in ~20% of cases. Preclinical evidence indicates that these mutations are associated with homologous recombination deficiency (HRD), which could be exploited as a target for platinum chemotherapy (ChT) and PARP inhibitors. However, the role of IDH1/2 mutations as surrogate biomarkers for platinum efficacy is unknown. We conducted a multicenter, propensity score-matched analysis to investigate the impact of IDH1/2 mutations on progression-free survival (PFS), overall response rate (ORR) and disease control rate (DCR) in patients with iCCA treated with platinum-based ChT. An exploratory comparison of complex HRD estimates between IDH1/2 mutated and wild-type tumors from TCGA was also performed. A total of 120 cases were matched in a 1:1 ratio (60 IDH1/2 mutant and 60 wild-type). No differences were observed for platinum-based PFS (7.7 vs 7.3 months, P = .970), DCR (66.1% vs 74.1%, P = .361) and ORR (27.8% vs 25.0%, P = .741). IDH1/2 mutations showed mutual exclusivity with genomic alterations in ATM, BRCA2, MST1R, NF1, FGFR2 and CDKN2A/B losses, respectively, with no clear survival and response differences. Among TCGA tumors, IDH1/2 mutated CCA did not show higher HRD compared to wild-type cases. IDH1/2 mutations are not associated with increased sensitivity to platinum-based ChT in iCCA patients. Deeper genomic sequencing is needed to elucidate the HRD phenotype in IDH1/2 mutant iCCA and exploit its therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Department of Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Casadei-Gardini
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | | | - Chiara Pircher
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Bini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andrea Franza
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Margherita Rimini
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Valentina Burgio
- Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per lo Studio dei Tumori "Dino Amadori"-IRST, Meldola, Italy
| | | | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per lo Studio dei Tumori "Dino Amadori"-IRST, Meldola, Italy
| | - Massimo Milione
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giuseppe Leoncini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Enrico Vasile
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Federica Perrone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Tamborini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Lonardi
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Vincenzo Mazzaferro
- Department of Surgery, Division of HPB, General Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Yue X, Zheng Y, Li L, Yang Z, Chen Z, Wang Y, Wang Z, Zhang D, Bian E, Zhao B. Integrative analysis of a novel 5 methylated snoRNA genes prognostic signature in patients with glioma. Epigenomics 2022; 14:1089-1104. [PMID: 36222052 DOI: 10.2217/epi-2022-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the prognostic value of methylated snoRNA genes in glioma and construct a prognostic risk signature. Materials & methods: We retrieved clinical information and 450K methylation data from The Cancer Genome Atlas and obtained five methylated snoRNA genes. Then we established a risk signature and verified the effect of SNORA71B on glioma cells with functional assays. Results: A risk signature containing five methylated snoRNA genes was constructed and demonstrated to be an independent predictor of glioma prognosis. Silencing SNORA71B restrained the proliferation, migration and invasion of glioma cells and reduced the expression of mesenchymal and cell cycle marker proteins. Conclusion: This study constructed a methylated snoRNA gene risk signature, which may provide a reference for glioma patients' prognosis assessment.
Collapse
Affiliation(s)
- Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Deran Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
37
|
Ge X, Xu M, Cheng T, Hu N, Sun P, Lu B, Wang Z, Li J. TP53I13 promotes metastasis in glioma via macrophages, neutrophils, and fibroblasts and is a potential prognostic biomarker. Front Immunol 2022; 13:974346. [PMID: 36275718 PMCID: PMC9585303 DOI: 10.3389/fimmu.2022.974346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background TP53I13 is a protein coding tumor suppression gene encoded by the tumor protein p53. Overexpression of TP53I13 impedes tumor cell proliferation. Nevertheless, TP53I13 role and expression in the emergence and progression of glioma (low-grade glioma and glioblastoma) are yet to be identified. Thus, we aim to use comprehensive bioinformatics analyses to investigate TP53I13 and its prognostic value in gliomas. Methods Multiple databases were consulted to evaluate and assess the expression of TP53I13, such as the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GeneMANIA, and Gene Expression Profiling Interactive. TP53I13 expression was further explored using immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Through Gene Set Enrichment Analysis (GSEA), the biological functions of TP53I13 and metastatic processes associated with it were studied. Results The expression of TP53I13 was higher in tumor samples compared to normal samples. In samples retrieved from the TCGA and CGGA databases, high TP53I13 expression was associated with poor survival outcomes. The analysis of multivariate Cox showed that TP53I13 might be an independent prognostic marker of glioma. It was also found that increased expression of TP53I13 was significantly correlated with PRS type, status, 1p/19q codeletion status, IDH mutation status, chemotherapy, age, and tumor grade. According to CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcript), the expression of TP53I13 correlates with macrophages, neutrophils, and dendritic cells. GSEA shows a close correlation between TP53I13 and p53 signaling pathways, DNA replication, and the pentose phosphate pathway. Conclusion Our results reveal a close correlation between TP53I13 and gliomas. Further, TP53I13 expression could affect the survival outcomes in glioma patients. In addition, TP53I13 was an independent marker that was crucial in regulating the infiltration of immune cells into tumors. As a result of these findings, TP53I13 might represent a new biomarker of immune infiltration and prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Xinqi Ge
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Nan Hu
- Medical School of Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| |
Collapse
|
38
|
Param NJ, Bramel ER, Sia D. The Molecular Pathogenesis and Targeted Therapies for Cholangiocarcinoma. Surg Pathol Clin 2022; 15:529-539. [PMID: 36049834 DOI: 10.1016/j.path.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cholangiocarcinoma (CCA) is a group of malignancies of the bile ducts with high mortality rates and limited treatment options. In the past decades, remarkable efforts have been dedicated toward elucidating the specific molecular signaling pathways and oncogenic loops driving cholangiocarcinogenesis to ultimately develop more effective therapies. Despite some recent advances, an extensive intra- and inter-tumor heterogeneity together with a poorly understood immunosuppressive microenvironment significantly compromises the efficacy of available treatments. Here, we provide a concise review of the latest advances and current knowledge of the molecular pathogenesis of CCA focusing on clinically relevant aberrations as well as future research avenues.
Collapse
Affiliation(s)
- Nesteene Joy Param
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 11th Floor Room 70-E, New York, NY 10029, USA
| | - Emily R Bramel
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 11th Floor Room 70-E, New York, NY 10029, USA
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 11th Floor Room 70-E, New York, NY 10029, USA.
| |
Collapse
|
39
|
Høgdall D, O'Rourke CJ, Andersen JB. Molecular therapeutic targets for cholangiocarcinoma: Present challenges and future possibilities. Adv Cancer Res 2022; 156:343-366. [PMID: 35961705 DOI: 10.1016/bs.acr.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diagnosis of cholangiocarcinoma (CCA) is implicit with poor prognosis and limited treatment options, underscoring the near equivalence of incidence and mortality rates in this disease. In less than 9years from genomic identification to FDA-approval of the corresponding inhibitors, fibroblast growth factor receptor 2 (FGFR2) rearrangements and isocitrate dehydrogenase 1 (IDH1) mutations became exemplary successes of precision oncology in subsets of patients with CCA. However, clinical trial results from multikinase inhibitors in unselected populations have been less successful, while the impact of immunotherapies are only beginning to impact this setting. Development of future therapeutics is incumbent with new challenges. Many driver alterations occur in tumor suppressor-like genes which are not directly druggable. Therapeutically, this will require identification of ensuant "non-oncogene addiction" involving genes which are not themselves oncogenes but become tumor survival dependencies when a specific driver alteration occurs. The low recurrence frequency of genomic alterations between CCA patients will require careful evaluation of targeted agents in biomarker-enrolled trials, including basket trial settings. Systematic expansion of candidate drug targets must integrate genes affected by non-genetic alterations which incorporates the fundamental contribution of the microenvironment and immune system to treatment response, disease facets which have been traditionally overlooked by DNA-centric analyses. As treatment resistance is an inevitability in advanced disease, resistance mechanisms require characterization to guide the development of combination therapies to increase the duration of clinical benefit. Patient-focused clinical, technological and analytical synergy is needed to deliver future solutions to these present therapeutic challenges.
Collapse
Affiliation(s)
- Dan Høgdall
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, Herlev and Gentofte Hospital, Herlev, Copenhagen University Hospital, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Current Considerations in the Treatment of Grade 3 Gliomas. Curr Treat Options Oncol 2022; 23:1219-1232. [PMID: 35913658 DOI: 10.1007/s11864-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Treatment recommendations for grade 3 gliomas are guided by their histopathologic and molecular phenotype. In the 2021 WHO classification, these tumors are categorized into two types, grade 3 IDH mutant (IDHmt), 1p/19q codeleted oligodendroglioma and IDH mutant astrocytoma. Treatment consists of maximal safe surgery, followed by radiation therapy (RT) and alkylating agent-based chemotherapy. Based on the updated CATNON result, RT followed by temozolomide improves outcome in patients with non-codeleted grade 3 IDHmt astrocytoma. In patients with IDHmt, codeleted oligodendroglioma, the addition of procarbazine, CCNU, and vincristine regimen is the recommended treatment, based on large randomized controlled trials. These current treatments prolong the overall survival to up to 10 years in patients with grade 3 IDHmt astrocytoma and 14 years in grade 3 IDHmt codeleted oligodendroglioma. Treatment options at recurrence include re-resection, re-irradiation, and other cytotoxic chemotherapy; however, these are of limited benefit. Novel agents targeting IDH mutation and its metabolic effects are currently under investigation to improve the outcome of these patients.
Collapse
|
41
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
42
|
Wu MJ, Shi L, Merritt J, Zhu AX, Bardeesy N. Biology of IDH mutant cholangiocarcinoma. Hepatology 2022; 75:1322-1337. [PMID: 35226770 DOI: 10.1002/hep.32424] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are the most frequently mutated metabolic genes across human cancers. These hotspot gain-of-function mutations cause the IDH enzyme to aberrantly generate high levels of the oncometabolite, R-2-hydroxyglutarate, which competitively inhibits enzymes that regulate epigenetics, DNA repair, metabolism, and other processes. Among epithelial malignancies, IDH mutations are particularly common in intrahepatic cholangiocarcinoma (iCCA). Importantly, pharmacological inhibition of mutant IDH (mIDH) 1 delays progression of mIDH1 iCCA, indicating a role for this oncogene in tumor maintenance. However, not all patients receive clinical benefit, and those who do typically show stable disease rather than significant tumor regressions. The elucidation of the oncogenic functions of mIDH is needed to inform strategies that can more effectively harness mIDH as a therapeutic target. This review will discuss the biology of mIDH iCCA, including roles of mIDH in blocking cell differentiation programs and suppressing antitumor immunity, and the potential relevance of these effects to mIDH1-targeted therapy. We also cover opportunities for synthetic lethal therapeutic interactions that harness the altered cell state provoked by mIDH1 rather than inhibiting the mutant enzyme. Finally, we highlight key outstanding questions in the biology of this fascinating and incompletely understood oncogene.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lei Shi
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joshua Merritt
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew X Zhu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Jiahui International Cancer CenterShanghaiChina
| | - Nabeel Bardeesy
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
43
|
DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives. Cells 2022; 11:cells11091463. [PMID: 35563769 PMCID: PMC9101358 DOI: 10.3390/cells11091463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and its incidence is dramatically increasing. The lack of understanding of the biology of this tumor has slowed down the identification of novel targets and the development of effective treatments. Based on next generation sequencing profiling, alterations in DNA damage response (DDR)-related genes are paving the way for DDR-targeting strategies in CCA. Based on the notion of synthetic lethality, several DDR-inhibitors (DDRi) have been developed with the aim of accumulating enough DNA damage to induce cell death in tumor cells. Observing that DDRi alone could be insufficient for clinical use in CCA patients, the combination of DNA-damaging regimens with targeted approaches has started to be considered, as evidenced by many emerging clinical trials. Hence, novel therapeutic strategies combining DDRi with patient-specific targeted drugs could be the next level for treating cholangiocarcinoma.
Collapse
|
44
|
Gbyli R, Song Y, Liu W, Gao Y, Biancon G, Chandhok NS, Wang X, Fu X, Patel A, Sundaram R, Tebaldi T, Mamillapalli P, Zeidan AM, Flavell RA, Prebet T, Bindra RS, Halene S. In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2. Leukemia 2022; 36:1313-1323. [PMID: 35273342 PMCID: PMC9103411 DOI: 10.1038/s41375-022-01536-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Treatment options for patients with relapsed/ refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and −2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Collapse
Affiliation(s)
- Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510062, China.
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Namrata S Chandhok
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Section of Hematology, Department of Internal Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Xiaman Wang
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Hematology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. of China
| | - Xiaoying Fu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, P. R. of China
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ranjini Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38121, Italy
| | - Padmavathi Mamillapalli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA.,Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Pathology, Yale University, New Haven, CT, 06520, USA. .,Yale Stem Cell Center and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
45
|
Persico P, Lorenzi E, Losurdo A, Dipasquale A, Di Muzio A, Navarria P, Pessina F, Politi LS, Lombardi G, Santoro A, Simonelli M. Precision Oncology in Lower-Grade Gliomas: Promises and Pitfalls of Therapeutic Strategies Targeting IDH-Mutations. Cancers (Basel) 2022; 14:1125. [PMID: 35267433 PMCID: PMC8909346 DOI: 10.3390/cancers14051125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH)1 and its homolog IDH2 are considered an earliest "driver" genetic event during gliomagenesis, representing now the molecular hallmark of lower-grade gliomas (LGGs). IDH-mutated genes encode for a neomorphic enzyme that converts α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate (2-HG), which accumulates to high concentrations and alters cellular epigenetics and metabolism. Targeting IDH mutations is the first attempt to apply "precision oncology" in LGGs. Two distinct strategies have been proposed so far and are under intense clinical investigation: (i) reducing the amount of intratumoral 2-HG by directly blocking the function of mutant IDH enzyme; (ii) exploiting the selective epigenetic and metabolic cellular vulnerabilities as a consequence of 2-HG accumulation. The present review describes the physiopathological mechanisms by which IDH mutations lead to tumorigenesis, discussing their prognostic significance and pivotal role in the gliomas diagnostic classification system. We critically review preclinical evidence and available clinical data of first-generation mutant-selective IDH inhibitors and novel IDH-targeted vaccines. Finally, as an alternative and attractive approach, we present the rationale to take advantage of selective 2-HG related epigenetic and metabolic weaknesses. The results of ongoing clinical trials will help us clarify the complex scenario of IDH-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Pasquale Persico
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (P.P.); (A.D.M.); (A.D.M.); (F.P.); (L.S.P.); (A.S.)
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (E.L.); (A.L.)
| | - Elena Lorenzi
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (E.L.); (A.L.)
| | - Agnese Losurdo
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (E.L.); (A.L.)
| | - Angelo Dipasquale
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (P.P.); (A.D.M.); (A.D.M.); (F.P.); (L.S.P.); (A.S.)
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (E.L.); (A.L.)
| | - Antonio Di Muzio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (P.P.); (A.D.M.); (A.D.M.); (F.P.); (L.S.P.); (A.S.)
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (E.L.); (A.L.)
| | - Pierina Navarria
- Radiotherapy Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy;
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (P.P.); (A.D.M.); (A.D.M.); (F.P.); (L.S.P.); (A.S.)
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Letterio Salvatore Politi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (P.P.); (A.D.M.); (A.D.M.); (F.P.); (L.S.P.); (A.S.)
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (P.P.); (A.D.M.); (A.D.M.); (F.P.); (L.S.P.); (A.S.)
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (E.L.); (A.L.)
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (P.P.); (A.D.M.); (A.D.M.); (F.P.); (L.S.P.); (A.S.)
- Oncology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (E.L.); (A.L.)
| |
Collapse
|
46
|
Kankeu Fonkoua LA, Serrano Uson Junior PL, Mody K, Mahipal A, Borad MJ, Roberts LR. Novel and emerging targets for cholangiocarcinoma progression: therapeutic implications. Expert Opin Ther Targets 2022; 26:79-92. [PMID: 35034558 DOI: 10.1080/14728222.2022.2029412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a heterogeneous group of aggressive biliary malignancies. While surgery and liver transplantation are the only potentially curative modalities for early-stage disease, limited options are available for most patients with incurable-stage disease. Survival outcomes remain dismal. Recent molecular profiling efforts have led to improved understanding of the genomic landscape of CCA and to the identification of subgroups with distinct diagnostic, prognostic, and therapeutic implications. AREAS COVERED : We provide an updated review and future perspectives on features of cholangiocarcinogenesis that can be translated into therapeutic biomarkers and targets. We highlight the critical studies that have established current systemic chemotherapy and targeted therapeutics, while elaborating on novel targeted and immunotherapeutic approaches in development. Relevant literature and clinical studies were identified by searching PubMed and www.ClinicalTrials.gov. EXPERT OPINION : While therapies targeting the various molecular subgroups of CCA are rapidly emerging and changing treatment paradigms, their success has been limited by the genetic heterogeneity of CCA and the plasticity of the targets. Novel strategies aiming to combine immunotherapy, chemotherapy, and molecularly-targeted therapeutics will be required to offer durable clinical benefit and maximize survival.
Collapse
Affiliation(s)
| | | | - Kabir Mody
- Rochester, MN, and Oncology in Jacksonville, FL, Mayo Clinic, USA
| | | | | | | |
Collapse
|
47
|
Rominiyi O, Collis SJ. DDRugging glioblastoma: understanding and targeting the DNA damage response to improve future therapies. Mol Oncol 2022; 16:11-41. [PMID: 34036721 PMCID: PMC8732357 DOI: 10.1002/1878-0261.13020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most frequently diagnosed type of primary brain tumour in adults. These aggressive tumours are characterised by inherent treatment resistance and disease progression, contributing to ~ 190 000 brain tumour-related deaths globally each year. Current therapeutic interventions consist of surgical resection followed by radiotherapy and temozolomide chemotherapy, but average survival is typically around 1 year, with < 10% of patients surviving more than 5 years. Recently, a fourth treatment modality of intermediate-frequency low-intensity electric fields [called tumour-treating fields (TTFields)] was clinically approved for glioblastoma in some countries after it was found to increase median overall survival rates by ~ 5 months in a phase III randomised clinical trial. However, beyond these treatments, attempts to establish more effective therapies have yielded little improvement in survival for patients over the last 50 years. This is in contrast to many other types of cancer and highlights glioblastoma as a recognised tumour of unmet clinical need. Previous work has revealed that glioblastomas contain stem cell-like subpopulations that exhibit heightened expression of DNA damage response (DDR) factors, contributing to therapy resistance and disease relapse. Given that radiotherapy, chemotherapy and TTFields-based therapies all impact DDR mechanisms, this Review will focus on our current knowledge of the role of the DDR in glioblastoma biology and treatment. We also discuss the potential of effective multimodal targeting of the DDR combined with standard-of-care therapies, as well as emerging therapeutic targets, in providing much-needed improvements in survival rates for patients.
Collapse
Affiliation(s)
- Ola Rominiyi
- Weston Park Cancer CentreSheffieldUK
- Department of Oncology & MetabolismThe University of Sheffield Medical SchoolUK
- Department of NeurosurgeryRoyal Hallamshire HospitalSheffield Teaching Hospitals NHS Foundation TrustUK
| | - Spencer J. Collis
- Weston Park Cancer CentreSheffieldUK
- Department of Oncology & MetabolismThe University of Sheffield Medical SchoolUK
- Sheffield Institute for Nucleic Acids (SInFoNiA)University of SheffieldUK
| |
Collapse
|
48
|
Abstract
Dysregulation of DNA damage response and repair (DDR) contributes to oncogenesis, yet also generates the potential for targeted cancer therapies by exploiting synthetic lethal interactions. Oncometabolites, small intermediates of metabolism overproduced in certain cancers, have emerged as a new mechanism of DDR modulation through their effects on multiple DNA repair pathways. Increasing evidence suggests that oncometabolite-induced DDR defects may offer the opportunity for tumor-selective chemo- and radio-sensitization. Here we review the biology of oncometabolites and diverse mechanisms by which they impact DDR, with a focus on emerging therapeutic strategies and ongoing clinical trials targeting oncometabolite-induced DDR defects in cancer.
Collapse
Affiliation(s)
- Susan E Gueble
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
49
|
Zhang R, Puzzoni M, Mariani S, Zheng Y, Liscia N, Guo Y, Donisi C, Liu Y, Impera V, Fang W, Scartozzi M. Emerging treatment evolutions and integrated molecular characteristics of biliary tract cancers. Cancer Sci 2021; 112:4819-4833. [PMID: 34534382 PMCID: PMC8645726 DOI: 10.1111/cas.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Biliary tract cancers (BTCs) consist of a group of highly heterogeneous malignancies that are characterized by genomic differences among tumors from different anatomic sites. The current treatment for BTC includes surgery, chemotherapy, target therapy, and immunotherapy. Although surgery remains the primary option for localized disease, representing the only potential curative treatment, a high risk of recurrence cannot be neglected. Chemotherapy has been considered the standard of care for both advanced and metastatic disease and in adjuvant settings. However, drug resistance is a major obstacle associated with chemotherapy. The development of genetic testing technologies, including next-generation sequencing, has opened the door for the identification of drug targets and candidate molecules. A series of preclinical studies has demonstrated the role of gene mutations, abnormal signaling pathways, and immunosuppression in the pathogenesis of BTC, laying the foundation for the application of targeted therapy and immunotherapy. A variety of molecularly targeted agents, including pemigatinib, have shown promising survival benefits in patients with advanced disease. The rapidly evolving role of multimodal therapy represents the subject of this review.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Marco Puzzoni
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| | - Stefano Mariani
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| | - Yi Zheng
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Nicole Liscia
- Medical Oncology UnitSapienza University of RomeRomeItaly
| | - Yixuan Guo
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Clelia Donisi
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| | - Yu Liu
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | | | - Weijia Fang
- Department of Medical OncologySchool of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Mario Scartozzi
- Department of Medical OncologyMedical OncologyUniversity Hospital of CagliariUniversity of CagliariCagliariItaly
| |
Collapse
|
50
|
Wu MJ, Shi L, Dubrot J, Merritt J, Vijay V, Wei TY, Kessler E, Olander KE, Adil R, Pankaj A, Tummala KS, Weeresekara V, Zhen Y, Wu Q, Luo M, Shen W, Garcia-Beccaria M, Fernandez-Vaquero M, Hudson C, Ronseaux S, Sun Y, Saad-Berreta R, Jenkins RW, Wang T, Heikenwalder M, Ferrone CR, Goyal L, Nicolay B, Deshpande V, Kohli RM, Zheng H, Manguso RT, Bardeesy N. Mutant-IDH inhibits Interferon-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma. Cancer Discov 2021; 12:812-835. [PMID: 34848557 DOI: 10.1158/2159-8290.cd-21-1077] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Isocitrate dehydrogenase 1 mutations (mIDH1) are common in cholangiocarcinoma. (R)-2-hydroxyglutarate generated by the mIDH1 enzyme inhibits multiple a-ketoglutarate-dependent enzymes, altering epigenetics and metabolism. Here, by developing mIDH1-driven genetically engineered mouse models, we show that mIDH1 supports cholangiocarcinoma tumor maintenance through an immunoevasion program centered on dual (R)-2-hydroxyglutarate-mediated mechanisms - suppression of CD8+ T cell activity and tumor cell-autonomous inactivation of TET2 DNA demethylase. Pharmacological mIDH1 inhibition stimulates CD8+ T cell recruitment and IFN-y expression and promotes TET2-dependent induction of IFN-y response genes in tumor cells. CD8+ T cell depletion or tumor cell-specific ablation of TET2 or Interferon-gamma receptor 1 causes treatment resistance. Whereas immune checkpoint activation limits mIDH1 inhibitor efficacy, CTLA4 blockade overcomes immunosuppression, providing therapeutic synergy. The findings in this mouse model of cholangiocarcinoma demonstrate that immune function and the IFN-y-TET2 axis are essential for response to mIDH1 inhibition and suggest a novel strategy for harnessing these inhibitors therapeutically.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Cancer Center, Massachusetts General Hospital
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | | | | | | | - Ting-Yu Wei
- Cancer Center, Massachusetts General Hospital
| | | | | | - Ramzi Adil
- Cancer Center, Massachusetts General Hospital
| | - Amaya Pankaj
- Research Fellow, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | | | | | - Yuanli Zhen
- Cancer Center, Massachusetts General Hospital
| | | | | | | | | | | | | | | | - Yi Sun
- Cancer Center, Massachusetts General Hospital
| | | | | | - Tong Wang
- Biochemistry and Molecular Biophysics, University of Pennsylvania
| | | | | | - Lipika Goyal
- Internal Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | | | | | - Rahul M Kohli
- Medicine; Biochemistry & Biophysics, University of Pennsylvania
| | - Hongwu Zheng
- Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Robert T Manguso
- Center for Cancer Research, Massachusetts General Hospital, Broad Institute
| | | |
Collapse
|