1
|
Chen H, Wang W, Yang Y, Zhang B, Li Z, Chen L, Tu Q, Zhang T, Lin D, Yi H, Xia H, Lu Y. A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury. Biomaterials 2025; 316:122995. [PMID: 39662274 DOI: 10.1016/j.biomaterials.2024.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation.
Collapse
Affiliation(s)
- Hu Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China
| | - Wanshun Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Yiming Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China
| | - Beichen Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China
| | - Zefeng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China
| | - Lingling Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China
| | - Qiang Tu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China
| | - Tao Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China
| | - Dingkun Lin
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Honglei Yi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China.
| | - Hong Xia
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Orthopedics, General Hospital of Southern Theatre Command of PLA, Southern Medical University, Guangzhou, Guangdong, 510010, China.
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
2
|
Collins KH, Lenz KL, Welhaven HD, Ely E, Springer LE, Paradi S, Tang R, Braxton L, Akk A, Yan H, Zhang B, Wu X, Atkinson JP, Oestreich AK, June RK, Pham CTN, Guilak F. Adipose-derived leptin and complement factor D mediate osteoarthritis severity and pain. SCIENCE ADVANCES 2025; 11:eadt5915. [PMID: 40279436 PMCID: PMC12024688 DOI: 10.1126/sciadv.adt5915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Obesity is a risk factor for osteoarthritis (OA), and leptin is among the adipokines implicated in obesity-induced OA. However, the specific role of leptin in OA severity and pain is not known. Using lipodystrophic (LD) mice, we show that fat-secreted factors are required for knee OA development, implicating a fat-cartilage cross-talk. Fat pad implantation or systemic leptin restoration in LD mice reintroduced structural OA and pain, whereas implantation of leptin-deficient fat pad did not change OA susceptibility. Isochronic parabiosis and spatial transcriptomics confirmed that a fat-joint cross-talk likely occurred via soluble mediators. Global unsupervised multiomics of conditioned media from fat implants revealed that leptin exerts a regulatory effect on adipsin (or complement factor D), the activity of which modulates the contrastive OA structural and pain phenotype. These findings suggest that adipokines influence OA pathogenesis, providing conclusive evidence of a fat-joint cross-talk and implicating OA as a systemic disease of adipose tissue.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kristin L. Lenz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hope D. Welhaven
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Chemistry & Biochemistry and Molecular Biosciences Program, Montana State University, Bozeman, MT 59717, USA
| | - Erica Ely
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| | - Luke E. Springer
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sophie Paradi
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lauryn Braxton
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| | - Antonina Akk
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Huimin Yan
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaobo Wu
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John P. Atkinson
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Arin K. Oestreich
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ron K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| |
Collapse
|
3
|
Shi G, Wu Z, Hao Z, Zhu M, Shu F, Yang Z, Wang J, Wang C, Chen R, Li Z, Wei R, Li J. Microenvironment-Responsive Hydrogels Comprising Engineering Zeolitic Imidazolate Framework-8-Anchored Parathyroid Hormone-Related Peptide-1 for Osteoarthritis Therapy. ACS NANO 2025; 19:6529-6553. [PMID: 39899451 DOI: 10.1021/acsnano.4c17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Intra-articular drug injections are effective for osteoarthritis (OA), but challenges such as the complex microenvironment and rapid drug diffusion require frequent injections. Herein, we propose a biofunctional hydrogel-based strategy for prolonged drug delivery and microenvironment remodeling. We propose a strategy to functionalize zeolitic imidazolate framework-8 with tannic acid (TA-ZIF), anchor PTH-related peptide-1 (PTHrP-1) within this framework (TA-ZIF@P1) and incorporate a phenylboronic acid-modified gelatin-based hydrogel (GP hydrogel) drug delivery system (GP@TA-ZIF@P1, GPTP hydrogel) with responsive release properties that respond to the pathological microenvironments of OA. The GPTP hydrogel facilitated controlled, sustained release of PTHrP-1 via dynamic boronic esters, with in vitro and in vivo studies showing continuous release for over 28 days. It not only promotes chondrocyte proliferation but also exhibits significant cytoprotective effects under hyperactive ROS and IL-1β-induced conditions. Notably, transcriptome sequencing confirms that the GPTP hydrogel facilitates both chondrocyte proliferation and chondrogenesis under inflammatory conditions by deactivating Wnt/β-Catenin signaling pathways and enhancing the PI3K/AKT signaling pathway. Additionally, the GPTP hydrogel delays the catabolic metabolism of cartilage explants from mice in inflammatory environments. In a surgical model of mouse OA, we show that the intra-articular injection of GPTP hydrogels reduced periarticular bone remodeling and promoted the production of glycosaminoglycans while offering chondroprotection against cartilage degeneration. To sum up, this pioneering research on PTHrP-1 as a treatment for OA, combined with the GPTP hydrogel system, offers valuable insights and a paradigm for the controlled and sustained release of PTHrP-1, representing a significant advancement in OA treatment strategies.
Collapse
Affiliation(s)
- Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zijian Wu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Mengyue Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang 550499, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chenglong Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zouwei Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Renxiong Wei
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Parr MK, Keiler AM. Oligonucleotide therapeutics in sports? An antidoping perspective. Arch Pharm (Weinheim) 2025; 358:e2400404. [PMID: 39449227 PMCID: PMC11704058 DOI: 10.1002/ardp.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Within the last two decades, the European Medicines Agency and the US Food and Drug Administration have approved several gene therapies. One category is oligonucleotide therapeutics, which allow for the regulation of the expression of target genes. Besides already approved therapeutics, there are several preclinical and clinical trials ongoing. The World Anti-Doping Agency prohibits the use of "nucleic acids or nucleic acid analogs that may alter genome sequences and/or alter gene expression by any mechanism" as a nonspecified method at all times. Hence, the administration of nucleic acids or analogs by athletes would cause an Anti-Doping Rule Violation. Herein, we discuss types of oligonucleotide therapeutics, their potential to be misused in sports, and considerations to sample preparation and mass spectrometric approaches with regard to antidoping analysis.
Collapse
Affiliation(s)
- Maria K. Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal ChemistryFreie Universität BerlinBerlinGermany
| | - Annekathrin M. Keiler
- Institute of Doping Analysis & Sports BiochemistryKreischaGermany
- Environmental Monitoring & Endocrinology, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
5
|
Zhong G, Liu W, Venkatesan JK, Wang D, Madry H, Cucchiarini M. Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes to treat osteoarthritis. Mol Ther 2024:S1525-0016(24)00847-5. [PMID: 39741406 DOI: 10.1016/j.ymthe.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Despite various available treatments, highly prevalent osteoarthritis (OA) cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as a platform to deliver recombinant adeno-associated virus (rAAV) gene vectors with potency for OA. For the first time, to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation; up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to a 9.5-fold difference), including when provided in a pluronic F127 (PF127) hydrogel for reinforced delivery (up to a 5.9-fold difference). Such effects were accompanied by increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and decreased levels of Drp-1 (mitochondria fission) and proinflammatory tumor necrosis factor alpha (TNF-α; up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.
Collapse
Affiliation(s)
- Gang Zhong
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| |
Collapse
|
6
|
Tang R, Harasymowicz NS, Wu CL, Choi YR, Lenz K, Oswald SJ, Guilak F. Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis. Proc Natl Acad Sci U S A 2024; 121:e2402954121. [PMID: 39401356 PMCID: PMC11513907 DOI: 10.1073/pnas.2402954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy for fat-1, a fatty acid desaturase that converts ω-6 to ω-3 FAs, decreasing the serum ω-6:ω-3 FA ratio had a strong senomorphic and therapeutic effect, mitigating metabolic dysfunction, cellular senescence, and joint degeneration. In vitro coculture of bone marrow-derived macrophages and chondrocytes from control and AAV8-fat1-treated mice were used to examine the roles of various FA mediators in regulating chondrocyte senescence. Our results suggest that obesity and joint injury result in a premature "aging" of the joint as measured by senescence markers, and these changes can be ameliorated by altering FA composition using fat-1 gene therapy. These findings support the potential for fat-1 gene therapy to treat obesity- and/or injury-induced OA clinically.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| |
Collapse
|
7
|
Jiang BC, Ling YJ, Xu ML, Gu J, Wu XB, Sha WL, Tian T, Bai XH, Li N, Jiang CY, Chen O, Ma LJ, Zhang ZJ, Qin YB, Zhu M, Yuan HJ, Wu LJ, Ji RR, Gao YJ. Follistatin drives neuropathic pain in mice through IGF1R signaling in nociceptive neurons. Sci Transl Med 2024; 16:eadi1564. [PMID: 39413164 DOI: 10.1126/scitranslmed.adi1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor-β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor-1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yue-Juan Ling
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Tian Tian
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xue-Hui Bai
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Chang-Yu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Ouyang Chen
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yi-Bin Qin
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meixuan Zhu
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Jie Yuan
- Department of Pain Management, Nantong Hospital of Traditional Chinese Medicine, Jiangsu 226001, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| |
Collapse
|
8
|
Wu T, Hu Y, Tang LV. Gene therapy for polygenic or complex diseases. Biomark Res 2024; 12:99. [PMID: 39232780 PMCID: PMC11375922 DOI: 10.1186/s40364-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Gene therapy utilizes nucleic acid drugs to treat diseases, encompassing gene supplementation, gene replacement, gene silencing, and gene editing. It represents a distinct therapeutic approach from traditional medications and introduces novel strategies for genetic disorders. Over the past two decades, significant advancements have been made in the field of gene therapy, leading to the approval of various gene therapy drugs. Gene therapy was initially employed for treating genetic diseases and cancers, particularly monogenic conditions classified as orphan diseases due to their low prevalence rates; however, polygenic or complex diseases exhibit higher incidence rates within populations. Extensive research on the etiology of polygenic diseases has unveiled new therapeutic targets that offer fresh opportunities for their treatment. Building upon the progress achieved in gene therapy for monogenic diseases and cancers, extending its application to polygenic or complex diseases would enable targeting a broader range of patient populations. This review aims to discuss the strategies of gene therapy, methods of gene editing (mainly CRISPR-CAS9), and carriers utilized in gene therapy, and highlight the applications of gene therapy in polygenic or complex diseases focused on applications that have either entered clinical stages or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| | - Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| |
Collapse
|
9
|
Moqaddam MA, Nemati M, Dara MM, Hoteit M, Sadek Z, Ramezani A, Rand MK, Abbassi-Daloii A, Pashaei Z, Almaqhawi A, Razi O, Escobar KA, Supriya R, Saeidi A, Zouhal H. Exploring the Impact of Astaxanthin Supplementation in Conjunction with a 12-Week CrossFit Training Regimen on Selected Adipo-Myokines Levels in Obese Males. Nutrients 2024; 16:2857. [PMID: 39275173 PMCID: PMC11397083 DOI: 10.3390/nu16172857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE Obesity is associated with an exacerbated metabolic condition that is mediated through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of the present study was to explore the impact of astaxanthin supplementation in conjunction with a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and serum lipid levels in obese males. MATERIAL AND METHODS This study is a randomized control trial design; 60 obese males were randomly divided into four groups of 15, including the control group (CG), supplement group (SG), training group (TG), and combined training and supplement group (TSG). The participants were subjected to 12 weeks of astaxanthin (AST) supplementation [20 mg/d capsule, once/d] or CrossFit training or a combination of both interventions. The training regimen comprised 36 sessions of CrossFit, each lasting 60 min, conducted three times per week. The metabolic indices, body composition, anthropometrical, cardio-respiratory, and also some plasma adipo-myokine factors, including decorin (DCN), activin A, myostatin (MST), transforming growth factor (TGF)-β1, and follistatin (FST), were examined 12 and 72 h before the initiation of the main interventional protocols, and then 72 h after the final session of the training protocol. RESULTS There was no significant difference in the baseline data between the groups (p > 0.05). There were significant interactions between group x time for DCN (η2 = 0.82), activin A (η2 = 0.50), FST (η2 = 0.92), MST (η2 = 0.75), and TGFB-1 (η2 = 0.67) (p < 0.001 for all the variables). Significantly changes showed for DCN in TSG compared to TG and SG and also TG compared to SG (p = 0.0001); for activin A in SG compared to TG (p = 0.01) and TSG (p = 0.002); for FST in SG compared to TG and TSG (p = 0.0001), also in TSG compared to TG (p = 0.0001); for MST in SG, TG, and TSG compared to CG (p = 0.0001) and also in TSG compared to SG (p = 0.0001) and TG (p = 0.001); for TGFB-1 in SG, TG, and TSG compared to CG (p = 0.0001) and also TSG compared to SG (p = 0.0001) and TG (p = 0.001). CONCLUSIONS The 12-week CrossFit training concurrent with AST supplementation reduced anthropometric and metabolic factors and also serum lipid levels while producing positive changes in body composition and cardiovascular factors. Increased FST and DCN and reduced activin A, MST, and TGF-β1 were other affirmative responses to both interventions.
Collapse
Affiliation(s)
- Mohammad Ahmadi Moqaddam
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.A.M.); (M.M.D.)
| | - Morteza Nemati
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran 1571914911, Iran;
| | - Marjan Mansouri Dara
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.A.M.); (M.M.D.)
| | - Maha Hoteit
- Food Science Unit, National Council for Scientific Research of Lebanon (CNRS-L), Beirut 11-8281, Lebanon;
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon;
| | - Zahra Sadek
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon;
- Laboratory of Motor System, Handicap and Rehabilitation (MOHAR), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Akbar Ramezani
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Mahboubeh Khak Rand
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Asieh Abbassi-Daloii
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz 5166616471, Iran;
| | - Abdullah Almaqhawi
- Department of Family Medicine and Community, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 6714414971, Iran;
| | - Kurt A. Escobar
- Department of Kinesiology, California State University, Long Beach, CA 90840, USA;
| | - Rashmi Supriya
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Academy of Wellness and Human Development, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 1517566177, Iran
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)—EA 1274, Université Rennes, 35044 Rennes, France;
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
10
|
Shen HC, Lee WJ, Sun CY, Yu WK, Chen WC, Hsiao FY, Yang KY, Chen LK. Follistatin-respiratory connection predicting all-cause mortality among community-dwelling middle-to-old age individuals: Results from the I-Lan Longitudinal Study. J Nutr Health Aging 2024; 28:100285. [PMID: 38861881 DOI: 10.1016/j.jnha.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES The link between aging and pulmonary function decline is well-established, but the underlying mechanisms have yet to be fully revealed. Serum follistatin, a myokine implicated in muscle degeneration, may play a role in age-related pulmonary changes. This study aims to investigate the relationship between serum follistatin levels and pulmonary function decline in community-dwelling older adults, and evaluate their combined association with all-cause mortality. RESEARCH DESIGN AND METHODS This longitudinal cohort study utilized data from 751 participants aged ≥50 years in the I-Lan Longitudinal Aging Study between 2018-2019. Serum follistatin levels, spirometry results, demographic and clinical data were retrieved. Participants were stratified based on their follistatin levels. Survival curves and group comparisons based on follistatin levels and decline in peak expiratory flow (PEF) using Kaplan-Meier analysis and log-rank tests. Multivariate Cox proportional hazards models were further used to identify independent predictors of all-cause mortality during the 52-month follow-up. RESULTS Elevated follistatin levels significantly correlated with worse pulmonary function, particularly decreased PEF (p = 0.030). Kaplan-Meier analysis revealed the combination of elevated follistatin levels and decreased PEF was associated with increased risk of all-cause mortality (Log-rank p = 0.023). Cox proportional hazards models further identified that concurrent presence of higher follistatin levels and decreased PEF predicted higher risk of all-cause mortality (adjusted HR 3.58, 95% CI: 1.22-10.53, p = 0.020). CONCLUSION Higher serum follistatin levels correlate with decreased pulmonary function, specifically PEF decline, in community-dwelling older adults. Furthermore, the coexistence of elevated follistatin levels and decreased PEF was associated with risk of all-cause mortality. Follistatin may serve as a biomarker for pulmonary aging and related adverse outcomes.
Collapse
Affiliation(s)
- Hsiao-Chin Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Evidence-based Medicine, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ju Lee
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yilan, Taiwan
| | - Chuan-Yen Sun
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Kuang Yu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chih Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fei-Yuan Hsiao
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan; Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| |
Collapse
|
11
|
Erbakan AN, Mutlu HH, Uzunlulu M, Caştur L, Akbaş MM, Kaya FN, Erbakan M, İşman FK, Oğuz A. Follistatin as a Potential Biomarker for Identifying Metabolically Healthy and Unhealthy Obesity: A Cross-Sectional Study. J Pers Med 2024; 14:487. [PMID: 38793069 PMCID: PMC11122067 DOI: 10.3390/jpm14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolically healthy obesity (MHO) refers to obese individuals with a favorable metabolic profile, without severe metabolic abnormalities. This study aimed to investigate the potential of follistatin, a regulator of metabolic balance, as a biomarker to distinguish between metabolically healthy and unhealthy obesity. This cross-sectional study included 30 metabolically healthy and 32 metabolically unhealthy individuals with obesity. Blood samples were collected to measure the follistatin levels using an enzyme-linked immunosorbent assay (ELISA). While follistatin did not significantly differentiate between metabolically healthy (median 41.84 [IQR, 37.68 to 80.09]) and unhealthy (median 42.44 [IQR, 39.54 to 82.55]) individuals with obesity (p = 0.642), other biochemical markers, such as HDL cholesterol, triglycerides, C-peptide, and AST, showed significant differences between the two groups. Insulin was the most significant predictor of follistatin levels, with a coefficient of 0.903, followed by C-peptide, which exerted a negative influence at -0.624. Quantile regression analysis revealed nuanced associations between the follistatin levels and metabolic parameters in different quantiles. Although follistatin may not serve as a biomarker for identifying MHO and metabolically unhealthy obesity, understanding the underlying mechanisms that contribute to metabolic dysfunction could provide personalized strategies for managing obesity and preventing associated complications.
Collapse
Affiliation(s)
- Ayşe N. Erbakan
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - H. Hicran Mutlu
- Department of Family Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey;
| | - Mehmet Uzunlulu
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Lütfullah Caştur
- Department of Internal Medicine, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, 34303 Istanbul, Turkey;
| | - Muhammet Mikdat Akbaş
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Fatoş N. Kaya
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Mehmet Erbakan
- Department of Family Medicine, Health Sciences University, Kartal Dr. Lutfi Kirdar City Hospital, Kartal, 34865 Istanbul, Turkey
| | - Ferruh K. İşman
- Department of Biochemistry, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey;
| | - Aytekin Oğuz
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| |
Collapse
|
12
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
13
|
Cao M, Cui B. Clinically relevant plasma proteome for adiposity depots: evidence from systematic mendelian randomization and colocalization analyses. Cardiovasc Diabetol 2024; 23:126. [PMID: 38614964 PMCID: PMC11016216 DOI: 10.1186/s12933-024-02222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND The accumulation of visceral and ectopic fat comprise a major cause of cardiometabolic diseases. However, novel drug targets for reducing unnecessary visceral and ectopic fat are still limited. Our study aims to provide a comprehensive investigation of the causal effects of the plasma proteome on visceral and ectopic fat using Mendelian randomization (MR) approach. METHODS We performed two-sample MR analyses based on five large genome-wide association study (GWAS) summary statistics of 2656 plasma proteins, to screen for causal associations of these proteins with traits of visceral and ectopic fat in over 30,000 participants of European ancestry, as well as to assess mediation effects by risk factors of outcomes. The colocalization analysis was conducted to examine whether the identified proteins and outcomes shared casual variants. RESULTS Genetically predicted levels of 14 circulating proteins were associated with visceral and ectopic fat (P < 4.99 × 10- 5, at a Bonferroni-corrected threshold). Colocalization analysis prioritized ten protein targets that showed effect on outcomes, including FST, SIRT2, DNAJB9, IL6R, CTSA, RGMB, PNLIPRP1, FLT4, PPY and IL6ST. MR analyses revealed seven risk factors for visceral and ectopic fat (P < 0.0024). Furthermore, the associations of CTSA, DNAJB9 and IGFBP1 with primary outcomes were mediated by HDL-C and SHBG. Sensitivity analyses showed little evidence of pleiotropy. CONCLUSIONS Our study identified candidate proteins showing putative causal effects as potential therapeutic targets for visceral and ectopic fat accumulation and outlined causal pathways for further prevention of downstream cardiometabolic diseases.
Collapse
Affiliation(s)
- Min Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Cui
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Boob AG, Zhu Z, Intasian P, Jain M, Petrov V, Lane ST, Tan SI, Xun G, Zhao H. CRISPR-COPIES: an in silico platform for discovery of neutral integration sites for CRISPR/Cas-facilitated gene integration. Nucleic Acids Res 2024; 52:e30. [PMID: 38346683 PMCID: PMC11014336 DOI: 10.1093/nar/gkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 04/14/2024] Open
Abstract
The CRISPR/Cas system has emerged as a powerful tool for genome editing in metabolic engineering and human gene therapy. However, locating the optimal site on the chromosome to integrate heterologous genes using the CRISPR/Cas system remains an open question. Selecting a suitable site for gene integration involves considering multiple complex criteria, including factors related to CRISPR/Cas-mediated integration, genetic stability, and gene expression. Consequently, identifying such sites on specific or different chromosomal locations typically requires extensive characterization efforts. To address these challenges, we have developed CRISPR-COPIES, a COmputational Pipeline for the Identification of CRISPR/Cas-facilitated intEgration Sites. This tool leverages ScaNN, a state-of-the-art model on the embedding-based nearest neighbor search for fast and accurate off-target search, and can identify genome-wide intergenic sites for most bacterial and fungal genomes within minutes. As a proof of concept, we utilized CRISPR-COPIES to characterize neutral integration sites in three diverse species: Saccharomyces cerevisiae, Cupriavidus necator, and HEK293T cells. In addition, we developed a user-friendly web interface for CRISPR-COPIES (https://biofoundry.web.illinois.edu/copies/). We anticipate that CRISPR-COPIES will serve as a valuable tool for targeted DNA integration and aid in the characterization of synthetic biology toolkits, enable rapid strain construction to produce valuable biochemicals, and support human gene and cell therapy applications.
Collapse
Affiliation(s)
- Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhixin Zhu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pattarawan Intasian
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand
| | - Manan Jain
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vassily Andrew Petrov
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephan Thomas Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhua Xun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Grol MW. The evolving landscape of gene therapy strategies for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:372-384. [PMID: 38199296 DOI: 10.1016/j.joca.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES Significant advances have been made in our understanding of osteoarthritis (OA) pathogenesis; however, no disease-modifying therapies have been identified. This review will summarize the gene therapy landscape, its initial successes for OA, and possible challenges using recent studies and examples of gene therapies in clinical trials. DESIGN This narrative review has three major sections: 1) vector systems for OA gene therapy, 2) current and emerging targets for OA gene therapy, and 3) considerations and future directions. RESULTS Gene therapy is the strategy by which nucleic acids are delivered to treat and reverse disease progression. Specificity and prolonged expression of these nucleic acids are achieved by manipulating promoters, genes, and vector systems. Certain vector systems also allow for the development of combinatorial nucleic acid strategies that can be delivered in a single intraarticular injection - an approach likely required to treat the complexity of OA pathogenesis. Several viral and non-viral vector-based gene therapies are in clinical trials for OA, and many more are being evaluated in the preclinical arena. CONCLUSIONS In a post-coronavirus disease 2019 (COVID-19) era, the future of gene therapy for OA is certainly promising; however, the majority of preclinical validation continues to focus heavily on post-traumatic models and changes in only cartilage and subchondral bone. To ensure successful translation, new candidates in the preclinical arena should be examined against all joint tissues as well as pain using diverse models of injury-, obesity-, and age-induced disease. Lastly, consideration must be given to strategies for repeat administration and the cost of treatment owing to the chronic nature of OA.
Collapse
Affiliation(s)
- Matthew W Grol
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
16
|
Deng R, Zhao R, Zhang Z, Chen Y, Yang M, Lin Y, Ye J, Li N, Qin H, Yan X, Shi J, Yuan F, Song S, Xu Z, Song Y, Fu J, Xu B, Nie G, Yu JK. Chondrocyte membrane-coated nanoparticles promote drug retention and halt cartilage damage in rat and canine osteoarthritis. Sci Transl Med 2024; 16:eadh9751. [PMID: 38381849 DOI: 10.1126/scitranslmed.adh9751] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by progressive degeneration of articular cartilage. A challenge in the development of disease-modifying drugs is effective delivery to chondrocytes. The unique structure of the joint promotes rapid clearance of drugs through synovial fluid, and the dense and avascular cartilage extracellular matrix (ECM) limits drug penetration. Here, we show that poly(lactide-co-glycolic acid) nanoparticles coated in chondrocyte membranes (CM-NPs) were preferentially taken up by rat chondrocytes ex vivo compared with uncoated nanoparticles. Internalization of the CM-NPs was mediated primarily by E-cadherin, clathrin-mediated endocytosis, and micropinocytosis. These CM-NPs adhered to the cartilage ECM in rat knee joints in vivo and penetrated deeply into the cartilage matrix with a residence time of more than 34 days. Simulated synovial fluid clearance studies showed that CM-NPs loaded with a Wnt pathway inhibitor, adavivint (CM-NPs-Ada), delayed the catabolic metabolism of rat and human chondrocytes and cartilage explants under inflammatory conditions. In a surgical model of rat OA, drug-loaded CM-NPs effectively restored gait, attenuated periarticular bone remodeling, and provided chondroprotection against cartilage degeneration. OA progression was also mitigated by CM-NPs-Ada in a canine model of anterior cruciate ligament transection. These results demonstrate the feasibility of using chondrocyte membrane-coated nanoparticles to improve the pharmacokinetics and efficacy of anti-OA drugs.
Collapse
Affiliation(s)
- Ronghui Deng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zining Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Yang Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Yixuan Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Ye
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Nan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Yan
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Fuzhen Yuan
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Shitang Song
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Zijie Xu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Yifan Song
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Jiangnan Fu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Bingbing Xu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia-Kuo Yu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, P. R. China
- Orthopedic Sports Medicine Center, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, Beijing 102218, P. R. China
| |
Collapse
|
17
|
Can U, Akdu S, Bağcı Z, Buyukinan M. Investigation of cardiovascular risk parameters in adolescents with metabolic syndrome. Cardiol Young 2024; 34:308-313. [PMID: 37385726 DOI: 10.1017/s1047951123001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
BACKGROUND Metabolic syndrome leading to type 2 diabetes mellitus and cardiovascular diseases is a chronic multifactorial syndrome, associated with low-grade inflammation status. In our study, we aimed at assessing the serum levels of follistatin (FST), pregnancy-associated plasma protein-A (PAPP-A), and platelet/endothelial cell adhesion molecule-1 (PECAM-1) in adolescent patients with metabolic syndrome. METHODS This study was performed in 43 (19 males, 24 females) metabolic syndrome adolescents and 37 lean controls matched for age and sex. The serum levels of FST, PECAM-1, and PAPP-A were measured by using ELISA method. RESULTS Serum FST and PAPP-A levels in metabolic syndrome were significantly higher than those of controls (p < 0.005 and p < 0.05). However, there was no difference in serum PECAM-1 levels between metabolic syndrome and control groups (p = 0.927). There was a significant positive correlation between serum FST and triglyceride (r = 0.252; p < 0.05), and PAPP-A and weight, (r = 0.252; p < 0.05) in metabolic syndrome groups. Follistatin was determined statistically significant in both univariate (p = 0,008) and multivariate (p = 0,011) logistic regression analysis. CONCLUSIONS Our findings indicated a significant relationship between FST and PAPP-A levels and metabolic syndrome. These findings offer the possibility of using these markers in diagnosis of metabolic syndrome in adolescents as the prevention of the future complications.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Turkey
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| | - Zafer Bağcı
- Department of Pediatric, Konya City Hospital, Konya, Turkey
| | - Muammer Buyukinan
- Department of Pediatric Endocrinology, Konya City Hospital, Konya, Turkey
| |
Collapse
|
18
|
Bielka W, Przezak A, Pawlik A. Follistatin and follistatin-like 3 in metabolic disorders. Prostaglandins Other Lipid Mediat 2023; 169:106785. [PMID: 37739334 DOI: 10.1016/j.prostaglandins.2023.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Follistatin (FST) is a glycoprotein which main role is antagonizing activity of transforming growth factor β superfamily members. Folistatin-related proteins such as follistatin-like 3 (FSTL3) also reveal these properties. The exact function of them has still not been established, but it can be bound to the pathogenesis of metabolic disorders. So far, there were performed a few studies about their role in type 2 diabetes, obesity or gestational diabetes and even less in type 1 diabetes. The outcomes are contradictory and do not allow to draw exact conclusions. In this article we summarize the available information about connections between follistatin, as well as follistatin-like 3, and metabolic disorders. We also emphasize the strong need of performing further research to explain their exact role, especially in the pathogenesis of diabetes and obesity.
Collapse
Affiliation(s)
- Weronika Bielka
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Agnieszka Przezak
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.
| |
Collapse
|
19
|
Tarabeih N, Kalinkovich A, Shalata A, Higla O, Livshits G. Pro-Inflammatory Biomarkers Combined with Body Composition Display a Strong Association with Knee Osteoarthritis in a Community-Based Study. Biomolecules 2023; 13:1315. [PMID: 37759715 PMCID: PMC10527309 DOI: 10.3390/biom13091315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common progressive, age-dependent chronic degenerative joint diseases. KOA often develops as a result of a gradual articular cartilage loss caused by its wear and tear. Numerous studies suggest that the degradation of the knee joint involves inflammatory components. This process is also associated with body composition, particularly being overweight and muscle mass loss. The present study aimed to search for novel circulating KOA inflammatory biomarkers, taking into account body composition characteristics. To this aim, we recruited 98 patients diagnosed and radiologically confirmed with KOA and 519 healthy controls from the Arab community in Israel. A panel of soluble molecules, related to inflammatory, metabolic, and musculoskeletal disorders, was measured by ELISA in plasma samples, while several body composition parameters were assessed with bioimpedance analysis. Statistical analysis, including multivariable logistic regression, revealed a number of the factors significantly associated with KOA, independently of age and sex. The most significant independent associations [OR (95% CI)] were fat body mass/body weight index-1.56 (1.20-2.02), systemic immune-inflammation index-4.03 (2.23-7.27), circulating vaspin levels-1.39 (1.15-1.68), follistatin/FSTL1 ratio-1.32 (1.02-1.70), and activin A/FSTL1 ratio-1.33 (1.01-1.75). Further clinical studies are warranted to confirm the relevance of these KOA-associated biological factors. Hereafter, they could serve as reliable biomarkers for KOA in the general human population.
Collapse
Affiliation(s)
- Nader Tarabeih
- Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 32000, Israel;
| | - Orabi Higla
- Orthopedics Clinic, Clalit, Migdal HaMeah, Tel-Aviv 6203854, Israel;
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
20
|
Warmink K, Rios JL, van Valkengoed DR, Vinod P, Korthagen NM, Weinans H. Effects of different obesogenic diets on joint integrity, inflammation and intermediate monocyte levels in a rat groove model of osteoarthritis. Front Physiol 2023; 14:1211972. [PMID: 37520829 PMCID: PMC10372350 DOI: 10.3389/fphys.2023.1211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.
Collapse
Affiliation(s)
- K. Warmink
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - J. L. Rios
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - D. R. van Valkengoed
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - P. Vinod
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - N. M. Korthagen
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Equine Sciences, Utrecht University, Utrecht, Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Biomechanical Engineering, TU Delft, Delft, Netherlands
| |
Collapse
|
21
|
Huang X, Liu J, Huang W. Identification of S100A8 as a common diagnostic biomarkers and exploring potential pathogenesis for osteoarthritis and metabolic syndrome. Front Immunol 2023; 14:1185275. [PMID: 37497233 PMCID: PMC10366475 DOI: 10.3389/fimmu.2023.1185275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Background Osteoarthritis (OA) is the most frequent musculoskeletal disease and the major contributor to disability worldwide. Metabolic syndrome (MetS) has been recognized as being associated with the pathogenesis of osteoarthritis. However, the exact mechanisms and links between the two are not clear. Methods We downloaded clinical information data and gene expression profiles for OA and MetS from the database of Gene Expression Omnibus (GEO), and immune related gene (IRG) from the database of Immunology Database and Analysis Portal (IMMPORT). After screening OA-DEG and MetS-DEG, we identified the common immune hub gene by screening the overlapping genes between OA-DEG, MetS-DEG and IRG. Then we conducted single-gene analysis of S100A8, assessed the correlation of S100A8 with immune cell infiltration, and verified the diagnostic value of S100A8 in OA and MetS database respectively. Results 323 OA-DEGs,101 MetS-DEGs and an immune-related hub gene, S100A8, were identified. In single gene analysis of S100A8 in OA samples, GSEA suggested that immune-related biological processes were more significantly enriched. The results of immune cell infiltration analysis showed that the enrichment fraction of M2 macrophages was significantly higher in the high S100A8-expressing group, and the level of S100A8 expression was positively correlated with M2 macrophage infiltration. The results of the dataset validation showed that S100A8 expression levels were significantly upregulated in the OA group and performed well in the diagnosis of OA. In single gene analysis of S100A8 in MetS samples, immune cell infiltration analysis showed that monocyte infiltration was higher in the S100A8 high expression samples and that there was a positive correlation between the two. Dataset validation showed that S100A8 is of high value for the diagnosis of MetS. In the validation of the dataset for the four metabolism-related diseases (obesity, diabetes, hypertension and hyperlipidaemia), S100A8 was expressed at higher levels in the disease group and also had a higher diagnostic value for the four metabolism-related diseases. Conclusion S100A8 is a common hub gene and diagnostic biomarker for OA and MetS, and the immune regulation involved in S100A8 may play a central role in the pathogenesis of OA and MetS.
Collapse
Affiliation(s)
- Xu Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Tao R, Stöhr O, Wang C, Qiu W, Copps KD, White MF. Hepatic follistatin increases basal metabolic rate and attenuates diet-induced obesity during hepatic insulin resistance. Mol Metab 2023; 71:101703. [PMID: 36906067 PMCID: PMC10033741 DOI: 10.1016/j.molmet.2023.101703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE Body weight change and obesity follow the variance of excess energy input balanced against tightly controlled EE (energy expenditure). Since insulin resistance can reduce energy storage, we investigated whether genetic disruption of hepatic insulin signaling reduced adipose mass with increased EE. METHODS Insulin signaling was disrupted by genetic inactivation of Irs1 (Insulin receptor substrate 1) and Irs2 in hepatocytes of LDKO mice (Irs1L/L·Irs2L/L·CreAlb), creating a state of complete hepatic insulin resistance. We inactivated FoxO1 or the FoxO1-regulated hepatokine Fst (Follistatin) in the liver of LDKO mice by intercrossing LDKO mice with FoxO1L/L or FstL/L mice. We used DEXA (dual-energy X-ray absorptiometry) to assess total lean mass, fat mass and fat percentage, and metabolic cages to measure EE (energy expenditure) and estimate basal metabolic rate (BMR). High-fat diet was used to induce obesity. RESULTS Hepatic disruption of Irs1 and Irs2 (LDKO mice) attenuated HFD (high-fat diet)-induced obesity and increased whole-body EE in a FoxO1-dependent manner. Hepatic disruption of the FoxO1-regulated hepatokine Fst normalized EE in LDKO mice and restored adipose mass during HFD consumption; moreover, hepatic Fst disruption alone increased fat mass accumulation, whereas hepatic overexpression of Fst reduced HFD-induced obesity. Excess circulating Fst in overexpressing mice neutralized Mstn (Myostatin), activating mTORC1-promoted pathways of nutrient uptake and EE in skeletal muscle. Similar to Fst overexpression, direct activation of muscle mTORC1 also reduced adipose mass. CONCLUSIONS Thus, complete hepatic insulin resistance in LDKO mice fed a HFD revealed Fst-mediated communication between the liver and muscle, which might go unnoticed during ordinary hepatic insulin resistance as a mechanism to increase muscle EE and constrain obesity.
Collapse
Affiliation(s)
- Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Caixia Wang
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Wei Qiu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Uebelhoer M, Lambert C, Grisart J, Guse K, Plutizki S, Henrotin Y. Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: A scoping review. Front Med (Lausanne) 2023; 10:1148623. [PMID: 37077668 PMCID: PMC10106745 DOI: 10.3389/fmed.2023.1148623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Objective Osteoarthritis (OA) is the most common degenerative joint disease, characterized by a progressive loss of cartilage associated with synovitis and subchondral bone remodeling. There is however no treatment to cure or delay the progression of OA. The objective of this manuscript was to provide a scoping review of the preclinical and clinical studies reporting the effect of gene therapies for OA. Method This review followed the JBI methodology and was reported in accordance with the PRISMA-ScR checklist. All research studies that explore in vitro, in vivo, or ex vivo gene therapies that follow a viral or non-viral gene therapy approach were considered. Only studies published in English were included in this review. There were no limitations to their date of publication, country of origin, or setting. Relevant publications were searched in Medline ALL (Ovid), Embase (Elsevier), and Scopus (Elsevier) in March 2023. Study selection and data charting were performed by two independent reviewers. Results We found a total of 29 different targets for OA gene therapy, including studies examining interleukins, growth factors and receptors, transcription factors and other key targets. Most articles were on preclinical in vitro studies (32 articles) or in vivo animal models (39 articles), while four articles were on clinical trials related to the development of TissueGene-C (TG-C). Conclusion In the absence of any DMOAD, gene therapy could be a highly promising treatment for OA, even though further development is required to bring more targets to the clinical stage.
Collapse
Affiliation(s)
| | - Cécile Lambert
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | | | - Kilian Guse
- GeneQuine Biotherapeutics GmbH, Hamburg, Germany
| | | | - Yves Henrotin
- Artialis S.A., Liège, Belgium
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
24
|
Li ZA, Sant S, Cho SK, Goodman SB, Bunnell BA, Tuan RS, Gold MS, Lin H. Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol 2023; 41:511-527. [PMID: 35995600 PMCID: PMC9938846 DOI: 10.1016/j.tibtech.2022.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 12/30/2022]
Abstract
Disorders of the synovial joint, such as osteoarthritis (OA) and rheumatoid arthritis (RA), afflict a substantial proportion of the global population. However, current clinical management has not been focused on fully restoring the native function of joints. Organ-on-chip (OoC), also called a microphysiological system, which typically accommodates multiple human cell-derived tissues/organs under physiological culture conditions, is an emerging platform that potentially overcomes the limitations of current models in developing therapeutics. Herein, we review major steps in the generation of OoCs for studying arthritis, discuss the challenges faced when these novel platforms enter the next phase of development and application, and present the potential for OoC technology to investigate the pathogenesis of joint diseases and the development of efficacious therapies.
Collapse
Affiliation(s)
- Zhong Alan Li
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15260, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sung Kwon Cho
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| | - Stuart B Goodman
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rocky S Tuan
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15260, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
25
|
Stefan N, Schick F, Birkenfeld AL, Häring HU, White MF. The role of hepatokines in NAFLD. Cell Metab 2023; 35:236-252. [PMID: 36754018 PMCID: PMC10157895 DOI: 10.1016/j.cmet.2023.01.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is not only a consequence of insulin resistance, but it is also an important cause of insulin resistance and major non-communicable diseases (NCDs). The close relationship of NAFLD with visceral obesity obscures the role of fatty liver from visceral adiposity as the main pathomechanism of insulin resistance and NCDs. To overcome this limitation, in analogy to the concept of adipokines, in 2008 we introduced the term hepatokines to describe the role of fetuin-A in metabolism. Since then, several other hepatokines were tested for their effects on metabolism. Here we address the dysregulation of hepatokines in people with NAFLD. Then, we discuss pathophysiological mechanisms of cardiometabolic diseases specifically related to NAFLD by focusing on hepatokine-related organ crosstalk. Finally, we propose how the determination of major hepatokines and adipokines can be used for pathomechanism-based clustering of insulin resistance in NAFLD and visceral obesity to better implement precision medicine in clinical practice.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Fritz Schick
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Experimental Radiology, Department of Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To assess the present status of gene therapy for osteoarthritis (OA). RECENT FINDINGS An expanding list of cDNAs show therapeutic activity when introduced into the joints of animals with experimental models of OA. In vivo delivery with adenovirus or adeno-associated virus is most commonly used for this purpose. The list of encoded products includes cytokines, cytokine antagonists, enzymes, enzyme inhibitors, growth factors and noncoding RNA. Elements of CRISPR-Cas have also been delivered to mouse knees to ablate key genes. Several human trials have been initiated, using transgenes encoding transforming growth factor-β1, interleukin-1 receptor antagonist, interferon-β, the NKX3.2 transcription factor or variant interleukin-10. The first of these, using ex vivo delivery with allogeneic chondrocytes, gained approval in Korea which was subsequently retracted. However, it is undergoing Phase III clinical trials in the United States. The other trials are in Phase I or II. No gene therapy for OA has current marketing approval in any jurisdiction. SUMMARY Extensive preclinical data support the use of intra-articular gene therapy for treating OA. Translation is beginning to accelerate and six gene therapeutics are in clinical trials. Importantly, venture capital has begun to flow and at least seven companies are developing products. Significant progress in the future can be expected.
Collapse
|
27
|
Cui Y, Yi Q, Sun W, Huang D, Zhang H, Duan L, Shang H, Wang D, Xiong J. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease. Biofactors 2023; 49:21-31. [PMID: 32997846 DOI: 10.1002/biof.1675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a key autocrine/paracrine inhibitor of skeletal muscle growth. Recently, researchers have postulated that myostatin is a negative regulator of bone formation and metabolism. Reportedly, myostatin is highly expressed in the fracture area, affecting the endochondral ossification process during the early stages of fracture healing. Furthermore, myostatin is highly expressed in the synovium of patients with rheumatoid arthritis (RA) and is an effective therapeutic target for interfering with osteoclast formation and joint destruction in RA. Thus, myostatin is a potent anti-osteogenic factor and a direct modulator of osteoclast differentiation. Evaluation of the molecular pathway revealed that myostatin can activate SMAD and mitogen-activated protein kinase signaling pathways, inhibiting the Wnt/β-catenin pathway to synergistically regulate muscle and bone growth and metabolism. In summary, inhibition of myostatin or the myostatin signaling pathway has therapeutic potential in the treatment of orthopedic diseases. This review focused on the effects of myostatin on bone formation and metabolism and discussed the potential therapeutic effects of inhibiting myostatin and its pathways in related orthopedic diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Qian Yi
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Weichao Sun
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hui Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
- University of South China, Hengyang, Hunan, China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hongxi Shang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Jianyi Xiong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Shrestha D, Bag A, Wu R, Zhang Y, Tang X, Qi Q, Xing J, Cheng Y. Genomics and epigenetics guided identification of tissue-specific genomic safe harbors. Genome Biol 2022; 23:199. [PMID: 36131352 PMCID: PMC9490961 DOI: 10.1186/s13059-022-02770-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Genomic safe harbors are regions of the genome that can maintain transgene expression without disrupting the function of host cells. Genomic safe harbors play an increasingly important role in improving the efficiency and safety of genome engineering. However, limited safe harbors have been identified. RESULTS Here, we develop a framework to facilitate searches for genomic safe harbors by integrating information from polymorphic mobile element insertions that naturally occur in human populations, epigenomic signatures, and 3D chromatin organization. By applying our framework to polymorphic mobile element insertions identified in the 1000 Genomes project and the Genotype-Tissue Expression (GTEx) project, we identify 19 candidate safe harbors in blood cells and 5 in brain cells. For three candidate sites in blood, we demonstrate the stable expression of transgene without disrupting nearby genes in host erythroid cells. We also develop a computer program, Genomics and Epigenetic Guided Safe Harbor mapper (GEG-SH mapper), for knowledge-based tissue-specific genomic safe harbor selection. CONCLUSIONS Our study provides a new knowledge-based framework to identify tissue-specific genomic safe harbors. In combination with the fast-growing genome engineering technologies, our approach has the potential to improve the overall safety and efficiency of gene and cell-based therapy in the near future.
Collapse
Affiliation(s)
- Dewan Shrestha
- Department of Genetics, Genomics, and Informatics, College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN USA
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Aishee Bag
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Yeting Zhang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Xing Tang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Qian Qi
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
29
|
Li Z, Lin Z, Liu S, Yagi H, Zhang X, Yocum L, Romero‐Lopez M, Rhee C, Makarcyzk MJ, Yu I, Li EN, Fritch MR, Gao Q, Goh KB, O'Donnell B, Hao T, Alexander PG, Mahadik B, Fisher JP, Goodman SB, Bunnell BA, Tuan RS, Lin H. Human Mesenchymal Stem Cell-Derived Miniature Joint System for Disease Modeling and Drug Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105909. [PMID: 35436042 PMCID: PMC9313499 DOI: 10.1002/advs.202105909] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Indexed: 05/12/2023]
Abstract
Diseases of the knee joint such as osteoarthritis (OA) affect all joint elements. An in vitro human cell-derived microphysiological system capable of simulating intraarticular tissue crosstalk is desirable for studying etiologies/pathogenesis of joint diseases and testing potential therapeutics. Herein, a human mesenchymal stem cell-derived miniature joint system (miniJoint) is generated, in which engineered osteochondral complex, synovial-like fibrous tissue, and adipose tissue are integrated into a microfluidics-enabled bioreactor. This novel design facilitates different tissues communicating while still maintaining their respective phenotypes. The miniJoint exhibits physiologically relevant changes when exposed to interleukin-1β mediated inflammation, which are similar to observations in joint diseases in humans. The potential of the miniJoint in predicting in vivo efficacy of drug treatment is confirmed by testing the "therapeutic effect" of the nonsteroidal anti-inflammatory drug, naproxen, as well as four other potential disease-modifying OA drugs. The data demonstrate that the miniJoint recapitulates complex tissue interactions, thus providing a robust organ chip model for the study of joint pathology and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Zixuan Lin
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Silvia Liu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPA15261USA
| | - Haruyo Yagi
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Xiurui Zhang
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Lauren Yocum
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | | | - Claire Rhee
- Department of Orthopaedic SurgeryStanford UniversityStanfordCA94305USA
| | - Meagan J. Makarcyzk
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
| | - Ilhan Yu
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Eileen N. Li
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
| | - Madalyn R. Fritch
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Qi Gao
- Department of Orthopaedic SurgeryStanford UniversityStanfordCA94305USA
| | - Kek Boon Goh
- Institute of PhysicsUniversity of FreiburgFreiburg79104Germany
- School of EngineeringMonash University MalaysiaSelangor47500Malaysia
| | - Benjamen O'Donnell
- Center for Stem Cell Research and Regenerative MedicineTulane University School of MedicineOrleansLA70112USA
| | - Tingjun Hao
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Peter G. Alexander
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| | - Bhushan Mahadik
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - John P. Fisher
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Stuart B. Goodman
- Department of Orthopaedic SurgeryStanford UniversityStanfordCA94305USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative MedicineTulane University School of MedicineOrleansLA70112USA
- Present address:
Department of Microbiology, Immunology, and GeneticsUniversity of North Texas Health Science CenterFort WorthTX76107USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Present address:
The Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Hang Lin
- Center for Cellular and Molecular EngineeringDepartment of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPA15260USA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPA15219USA
| |
Collapse
|
30
|
Baumgartner M, Lischka J, Schanzer A, de Gier C, Walleczek NK, Greber-Platzer S, Zeyda M. Plasma Myostatin Increases with Age in Male Youth and Negatively Correlates with Vitamin D in Severe Pediatric Obesity. Nutrients 2022; 14:nu14102133. [PMID: 35631274 PMCID: PMC9144022 DOI: 10.3390/nu14102133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity already causes non-communicable diseases during childhood, but the mechanisms of disease development are insufficiently understood. Myokines such as myostatin and irisin are muscle-derived factors possibly involved in obesity-associated diseases. This explorative study aims to investigate whether myostatin and irisin are associated with metabolic parameters, including the vitamin D status in pediatric patients with severe obesity. Clinical, anthropometric and laboratory data from 108 patients with severe obesity (>97th percentile) aged between 9 and 19 years were assessed. Myostatin, its antagonist follistatin, and irisin, were measured from plasma by ELISA. Myostatin concentrations, particularly in males, positively correlated with age and pubertal stage, as well as metabolic parameters such as insulin resistance. Irisin concentrations correlated positively with HDL and negatively with LDL cholesterol values. For follistatin, the associations with age and pubertal stage were inverse. Strikingly, a negative correlation of myostatin with serum vitamin D levels was observed that remained significant after adjusting for age and pubertal stage. In conclusion, there is an independent association of low vitamin D and elevated myostatin levels. Further research may focus on investigating means to prevent increased myostatin levels in interventional studies, which might open several venues to putative options to treat and prevent obesity-associated diseases.
Collapse
|
31
|
Han BX, Yan SS, Xu Q, Ni JJ, Wei XT, Feng GJ, Zhang H, Li B, Zhang L, Pei YF. Mendelian Randomization Analysis Reveals Causal Effects of Plasma Proteome on Body Composition Traits. J Clin Endocrinol Metab 2022; 107:e2133-e2140. [PMID: 34922401 DOI: 10.1210/clinem/dgab911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Observational studies have demonstrated associations between plasma proteins and obesity, but evidence of causal relationship remains to be studied. OBJECTIVE We aimed to evaluate the causal relationship between plasma proteins and body composition. METHODS We conducted a 2-sample Mendelian randomization (MR) analysis based on the genome-wide association study (GWAS) summary statistics of 23 body composition traits and 2656 plasma proteins. We then performed hierarchical cluster analysis to evaluate the structure and pattern of the identified causal associations, and we performed gene ontology enrichment analysis to explore the functional relevance of the identified proteins. RESULTS We identified 430 putatively causal effects of 96 plasma proteins on 22 body composition traits (except obesity status) with strong MR evidence (P < 2.53 × 10 - 6, at a Bonferroni-corrected threshold). The top 3 causal associations are follistatin (FST) on trunk fat-free mass (Beta = -0.63, SE = 0.04, P = 2.00 × 10-63), insulin-like growth factor-binding protein 1 (IGFBP1) on trunk fat-free mass (Beta = -0.54, SE = 0.03, P = 1.79 × 10-57) and r-spondin-3 (RSPO3) on WHR (waist circumference/hip circumference) (Beta = 0.01, SE = 4.47 × 10-4, P = 5.45 × 10-60), respectively. Further clustering analysis and pathway analysis demonstrated that the pattern of causal effect to fat mass and fat-free mass may be different. CONCLUSION Our findings may provide evidence for causal relationships from plasma proteins to various body composition traits and provide basis for further targeted functional studies.
Collapse
Affiliation(s)
- Bai-Xue Han
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
| | - Shan-Shan Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
| | - Qian Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
| | - Jing-Jing Ni
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Xin-Tong Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
| | - Gui-Juan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Affiliated Wujiang Hospital of Nantong University; Suzhou Ninth People's Hospital, Suzhou, Jiangsu, PR China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Yu-Fang Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China
| |
Collapse
|
32
|
Yang Z, Tan Q, Zhao Z, Niu G, Li S, Li W, Song C, Leng H. Distinct pathological changes of osteochondral units in early OVX-OA involving TGF-β signaling. Front Endocrinol (Lausanne) 2022; 13:1074176. [PMID: 36589821 PMCID: PMC9797695 DOI: 10.3389/fendo.2022.1074176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Different opinions exist about the role of subchondral bone in osteoarthritis (OA), probably because subchondral bone has different effects on cartilage degeneration in OA induced by different pathologies. Animal studies to illustrate the role of subchondral bone in cartilage degeneration were mostly based on post-traumatic OA (PT-OA). Postmenopausal women experience a much higher occurrence of OA than similar-aged men. The physiological changes and pathogenesis of the osteochondral unit in ovariectomy-induced OA (OVX-OA) might be distinct from other types of OA. METHODS The osteochondral alterations of post-traumatic OA (PT-OA) and OVX-OA at week 9 after surgery were compared. Then the alterations of osteochondral units in OVX-OA rats were tracked over time for the designed groups: Sham, OVX and OVX rats treated with estrogen (OVX+E). DXA, micro-CT, and histochemical staining were performed to observe alterations in osteochondral units. RESULTS Rapid cartilage degeneration and increased bone formation were observed in PT-OA, while only mild cartilage erosion and significant bone loss were observed in OVX-OA at week 9 after surgery. Subchondral bone degradation preceded cartilage degeneration by 6 weeks in OVX-OA. TGF-β expression was downregulated in the osteochondral unit of OVX rats. Estrogen supplementation inhibited subchondral bone loss, cartilage degradation and TGF-β expression decrease. DISCUSSION This research demonstrated the distinct behaviors of the osteochondral unit and the critical role of subchondral bone in early OVX-OA compared with PT-OA. Inhibiting subchondral bone catabolism at the early stage of OVX-OA could be an effective treatment for post-menopausal OA. Based on the results, estrogen supplementation and TGF-β modulation at the early stage are both potential therapies for post-menopausal OA.
Collapse
Affiliation(s)
- Zihuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Qizhao Tan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhenda Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Guodong Niu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Siwei Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Department of Orthopedics, Ansteel Group Hospital, Anshan, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing Municipal Science & Technology Commission, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- *Correspondence: Huijie Leng,
| |
Collapse
|
33
|
Tong J, Cong L, Jia Y, He BL, Guo Y, He J, Li D, Zou B, Li J. Follistatin Alleviates Hepatic Steatosis in NAFLD via the mTOR Dependent Pathway. Diabetes Metab Syndr Obes 2022; 15:3285-3301. [PMID: 36325432 PMCID: PMC9621035 DOI: 10.2147/dmso.s380053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In this study, we aimed to investigate the effect of follistatin (FST) on hepatic steatosis in NAFLD and the underlying mechanism, which has rarely been reported before. METHODS Liver samples from NAFLD patients and normal liver samples (from liver donors) were collected to investigate hepatic FST expression in humans. Additionally, human liver cells (LO2) were treated with free fatty acid (FFA) to induce lipid accumulation. Furthermore, lentivirus with FST overexpression or knockdown vectors were used to generate stable cell lines, which were subsequently treated with FFA or FFA and rapamycin. In the animal experiments, male C57BL/6J mice were fed with a high-fat diet (HFD) to induce NAFLD, after which the adeno-associated virus (AAV) gene vectors for FST overexpression were administered. In both cell culture and mice, we evaluated morphological changes and the protein expression of sterol regulatory element-binding protein1 (SREBP1), acetyl-CoA carboxylase1 (ACC1), carbohydrate-responsive element-binding protein (ChREBP), fatty acid synthase (FASN), and Akt/mTOR signaling. The body weight and serum parameters of the mice were also measured. RESULTS Hepatic FST expression level was higher in NAFLD patients compared to normal samples. In LO2 cells, FST overexpression alleviated lipid accumulation and lipogenesis, whereas FST knockdown aggravated hepatic steatosis. FST could regulate Akt/mTOR signaling, and the mTOR inhibitor rapamycin abolished the effect of FST knockdown on hepatic de novo lipogenesis (DNL). Furthermore, FST expression was increased in HFD mice compared to the corresponding controls. FST overexpression in mice reduced body weight gain, hyperlipidemia, hepatic DNL, and suppressed Akt/mTOR signaling. CONCLUSION Hepatic FST expression increases in NAFLD and plays a protective role in hepatic steatosis. FST overexpression gene therapy alleviates hepatic steatosis via the mTOR pathway.Therefore, gene therapy for FST is a promising treatment in NAFLD.
Collapse
Affiliation(s)
- Junlu Tong
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
- Department of Central Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Li Cong
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Yingbin Jia
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Bai-Liang He
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Yifan Guo
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Decheng Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
- Correspondence: Jian Li; Baojia Zou, Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China, Tel +86-756-252-8781, Email ;
| |
Collapse
|
34
|
Orchard P, Manickam N, Ventresca C, Vadlamudi S, Varshney A, Rai V, Kaplan J, Lalancette C, Mohlke KL, Gallagher K, Burant CF, Parker SCJ. Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits. Genome Res 2021; 31:2258-2275. [PMID: 34815310 PMCID: PMC8647829 DOI: 10.1101/gr.268482.120] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.
Collapse
Affiliation(s)
- Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nandini Manickam
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christa Ventresca
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Swarooparani Vadlamudi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vivek Rai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeremy Kaplan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Claudia Lalancette
- Epigenomics Core, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Katherine Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
35
|
Xu B, Liu C, Zhang H, Zhang R, Tang M, Huang Y, Jin L, Xu L, Hu C, Jia W. Skeletal muscle-targeted delivery of Fgf6 protects mice from diet-induced obesity and insulin resistance. JCI Insight 2021; 6:e149969. [PMID: 34491915 PMCID: PMC8525645 DOI: 10.1172/jci.insight.149969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity, a major health care issue, is characterized by metabolic abnormalities in multiple tissues, including the skeletal muscle. Although dysregulation of skeletal muscle metabolism can strongly influence the homeostasis of systemic energy, the underlying mechanism remains unclear. We found promoter hypermethylation and decreased gene expression of fibroblast growth factor 6 (FGF6) in the skeletal muscle of individuals with obesity using high-throughput sequencing. Reduced binding of the cyclic AMP responsive element binding protein-1 (CREB1) to the hypermethylated cyclic AMP response element, which is a regulatory element upstream of the transcription initiation site, partially contributed to the downregulation of FGF6 in patients with obesity. Overexpression of Fgf6 in mouse skeletal muscle stimulated protein synthesis, activating the mammalian target of rapamycin pathway, and prevented the increase in weight and the development of insulin resistance in high-fat diet–fed mice. Thus, our findings highlight the role played by Fgf6 in regulating skeletal muscle hypertrophy and whole-body metabolism, indicating its potential in strategies aimed at preventing and treating metabolic diseases.
Collapse
Affiliation(s)
- Bo Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Caizhi Liu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mengyang Tang
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Yan Huang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
36
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
37
|
Li M, Tang X, You W, Wang Y, Chen Y, Liu Y, Yuan H, Gao C, Chen X, Xiao Z, Ouyang H, Pang D. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:49-62. [PMID: 34513293 PMCID: PMC8411015 DOI: 10.1016/j.omtn.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/09/2021] [Indexed: 01/27/2023]
Abstract
As a robust antagonist of myostatin (MSTN), follistatin (FST) is an important regulator of skeletal muscle development, and the delivery of FST to muscle tissue represents a potential therapeutic strategy for muscular dystrophies. The N terminus and FSI domain of FST are the functional domains for MSTN binding. Here, we aimed to achieve site-specific integration of FSI-I-I, including the signal peptide, N terminus, and three FSI domains, into the last codon of the porcine MSTN gene using a homology-mediated end joining (HMEJ)-based strategy mediated by CRISPR-Cas9. Based on somatic cell nuclear transfer (SCNT) technology, we successfully obtained FSI-I-I knockin pigs. H&E staining of longissimus dorsi and gastrocnemius cross-sections showed larger myofiber sizes in FSI-I-I knockin pigs than in controls. Moreover, the Smad and Erk pathways were inhibited, whereas the PI3k/Akt pathway was activated in FSI-I-I knockin pigs. In addition, the levels of MyoD, Myf5, and MyoG transcription were upregulated while that of MRF4 was downregulated in FSI-I-I knockin pigs. These results indicate that the FSI-I-I gene mediates skeletal muscle hypertrophy through an MSTN-related signaling pathway and the expression of myogenic regulatory factors. Overall, FSI-I-I knockin pigs with hypertrophic muscle tissue hold great promise as a therapeutic model for human muscular dystrophies.
Collapse
Affiliation(s)
- Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Wenni You
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yanbing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Ying Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xue Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Zhiwei Xiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Hongsheng Ouyang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Daxin Pang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| |
Collapse
|
38
|
Abstract
Exercise has long been known to extend health and lifespan in humans and other mammals. However, typically exercise is thought to slow the loss of function that accompanies aging. Brett et al. have now shown that exercise restores functional competency to regenerate muscle stem cells (MuSCs) in mice as well as restore a significant portion of the transcriptional signature associated with young MuSCs. The mechanism involves the likely induction of plasma-borne factors that upregulate cell cycle regulator cyclin D1, which otherwise decreases with increasing age. Cyclin D1, in turn, through its noncanonical attenuation of TGF-beta/Smad3 signaling, helps maintain the regenerative capacity of MuSCs, which is lost as TGF-beta signaling increases with age. Interestingly, elevated levels of some proinflammatory regulators including NF-κB, TNF-alpha, and interleukin 6 (IL-6) are also reduced by exercise or ectopic expression of cyclin D1. Importantly, the rejuvenation is not complete, as Notch signaling, which also decreases with age, remains at old levels and the rejuvenative effect is not permanent: wearing off in ∼2 weeks after cessation of exercise. Understanding the limitations of the rejuvenative effect of exercise on MuSCs at the molecular level, including changes in the epigenome such as altered DNA methylation age, will be critical in developing more significant rejuvenative therapies including some for aged people wherein morbidities limit exercise.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
39
|
Ozawa T, Morikawa M, Morishita Y, Ogikubo K, Itoh F, Koinuma D, Nygren PÅ, Miyazono K. Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice. iScience 2021; 24:102488. [PMID: 34113826 PMCID: PMC8170004 DOI: 10.1016/j.isci.2021.102488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Targeting the signaling pathway of growth differentiation factor 8 (GDF8), also known as myostatin, has been regarded as a promising strategy to increase muscle mass in the elderly and in patients. Accumulating evidence in animal models and clinical trials has indicated that a rational approach is to inhibit a limited number of transforming growth factor β (TGF-β) family ligands, including GDF8 and activin A, without affecting other members. Here, we focused on one of the endogenous antagonists against TGF-β family ligands, follistatin-like 3 (FSTL3), which mainly binds and neutralizes activins, GDF8, and GDF11. Although bivalent human FSTL3 Fc-fusion protein was rapidly cleared from mouse circulation similar to follistatin (FST)-Fc, monovalent FSTL3-Fc (mono-FSTL3-Fc) generated with the knobs-into-holes technology exhibited longer serum half-life. Systemic administration of mono-FSTL3-Fc in mice induced muscle fiber hypertrophy and increased muscle mass in vivo. Our results indicate that the monovalent FSTL3-based therapy overcomes the difficulties of current anti-GDF8 therapies. FSTL3-Fc has a more specific binding profile for TGF-β family ligands than ActRIIB-Fc. Bivalent two-armed FSTL3-Fc is rapidly cleared from mouse circulation. Monovalent FSTL3-Fc has longer serum half-life and causes systemic muscle hypertrophy. ActRIIB-Fc-related side effects are not detected in monovalent FSTL3-Fc-treated mice.
Collapse
Affiliation(s)
- Takayuki Ozawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuki Ogikubo
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, 106 91 Stockholm, Sweden.,Science for Life Laboratory, 171 65 Solna, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One 2021; 16:e0247039. [PMID: 33630874 PMCID: PMC7906424 DOI: 10.1371/journal.pone.0247039] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The intestinal microbiota comprises bacteria, fungi, archaea, protists, helminths and viruses that symbiotically inhabit the digestive system. To date, research has provided limited data on the possible association between an active lifestyle and a healthy composition of human microbiota. This review was aimed to summarize the results of human studies comparing the microbiome of healthy individuals with different physical activity amounts. METHODS We searched Medline/Ovid, NIH/PubMed, and Academic Search Complete between August-October 2020. Inclusion criteria comprised: (a) cross-sectional studies focused on comparing gut microbiome among subjects with different physical activity levels; (b) studies describing human gut microbiome responses to any type of exercise stimulus; (c) studies containing healthy adult women and men. We excluded studies containing diet modifications, probiotic or prebiotic consumption, as well as studies focused on diabetes, hypertension, cancer, hormonal dysfunction. Methodological quality and risk of bias for each study were assessed using the Risk Of Bias In Non-randomized Studies-of Interventions tool. The results from cross-sectional and longitudinal studies are shown independently. RESULTS A total of 17 articles were eligible for inclusion: ten cross-sectional and seven longitudinal studies. Main outcomes vary significantly according to physical activity amounts in longitudinal studies. We identified discrete changes in diversity indexes and relative abundance of certain bacteria in active people. CONCLUSION As literature in this field is rapidly growing, it is important that studies incorporate diverse methods to evaluate other aspects related to active lifestyles such as sleep and dietary patterns. Exploration of other groups such as viruses, archaea and parasites may lead to a better understanding of gut microbiota adaptation to physical activity and sports and its potentially beneficial effects on host metabolism and endurance.
Collapse
Affiliation(s)
- Viviana Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Flórez
- Grupo In-Novum Educatio, Facultad de Educación, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis Perez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
41
|
Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng Part C Methods 2021; 27:124-138. [PMID: 33403944 PMCID: PMC8098772 DOI: 10.1089/ten.tec.2020.0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Of note, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine. Impact statement At present, no disease-modifying osteoarthritis (OA) drugs (DMOADs) have been approved for widespread clinical use by regulatory bodies. The failure of developing effective DMOADs is likely owing to multiple factors, not the least of which are the intrinsic differences between the intact human knee joint and the preclinical models. This work summarizes the current OA models for the development of DMOADs, discusses the advantages/disadvantages of each, and then proposes future model development to aid in the discovery of effective and personalized DMOADs. The review also highlights the microphysiological systems, which are emerging as a new platform for drug development.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, California, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhong Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael S. Gold
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark C. Hochberg
- Department of Medicine and Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, California, USA
- Department of Bioengineering, Stanford University, California, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Mehta N, Li R, Zhang D, Soomro A, He J, Zhang I, MacDonald M, Gao B, Krepinsky JC. miR299a-5p promotes renal fibrosis by suppressing the antifibrotic actions of follistatin. Sci Rep 2021; 11:88. [PMID: 33420269 PMCID: PMC7794215 DOI: 10.1038/s41598-020-80199-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Caveolin-1 (cav-1), an integral protein of the membrane microdomains caveolae, is required for synthesis of matrix proteins by glomerular mesangial cells (MC). Previously, we demonstrated that the antifibrotic protein follistatin (FST) is transcriptionally upregulated in cav-1 knockout MC and that its administration is protective against renal fibrosis. Here, we screened cav-1 wild-type and knockout MC for FST-targeting microRNAs in order to identity novel antifibrotic therapeutic targets. We identified that miR299a-5p was significantly suppressed in cav-1 knockout MC, and this was associated with stabilization of the FST 3'UTR. Overexpression and inhibition studies confirmed the role of miR299a-5p in regulating FST expression. Furthermore, the profibrotic cytokine TGFβ1 was found to stimulate the expression of miR299a-5p and, in turn, downregulate FST. Through inhibition of FST, miR299a-5p overexpression augmented, while miR299a-5p inhibition diminished TGFβ1 profibrotic responses, whereas miR299a-5p overexpression re-enabled cav-1 knockout MC to respond to TGFβ1. In vivo, miR299a-5p was upregulated in the kidneys of mice with chronic kidney disease (CKD). miR299a-5p inhibition protected these mice against renal fibrosis and CKD severity. Our data demonstrate that miR299a-5p is an important post-transcriptional regulator of FST, with its upregulation an important pathogenic contributor to renal fibrosis. Thus, miR299a-5p inhibition offers a potential novel therapeutic approach for CKD.
Collapse
Affiliation(s)
- Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Asfia Soomro
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Juehua He
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Ivan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada.
- St. Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
43
|
Collins KH, Lenz KL, Pollitt EN, Ferguson D, Hutson I, Springer LE, Oestreich AK, Tang R, Choi YR, Meyer GA, Teitelbaum SL, Pham CTN, Harris CA, Guilak F. Adipose tissue is a critical regulator of osteoarthritis. Proc Natl Acad Sci U S A 2021; 118:e2021096118. [PMID: 33443201 PMCID: PMC7817130 DOI: 10.1073/pnas.2021096118] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Eleanor N Pollitt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Daniel Ferguson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Irina Hutson
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Luke E Springer
- Division of Rheumatology, Washington University, St. Louis, MO 63110
| | - Arin K Oestreich
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| | - Yun-Rak Choi
- Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Gretchen A Meyer
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Program in Physical Therapy, Washington University, St. Louis, MO 63110
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110
| | | | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;
- Shriners Hospitals for Children, St. Louis, MO 63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110
| |
Collapse
|
44
|
Pervin S, Reddy ST, Singh R. Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:653179. [PMID: 33897620 PMCID: PMC8062757 DOI: 10.3389/fendo.2021.653179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a global health problem and a major risk factor for several metabolic conditions including dyslipidemia, diabetes, insulin resistance and cardiovascular diseases. Obesity develops from chronic imbalance between energy intake and energy expenditure. Stimulation of cellular energy burning process has the potential to dissipate excess calories in the form of heat via the activation of uncoupling protein-1 (UCP1) in white and brown adipose tissues. Recent studies have shown that activation of transforming growth factor-β (TGF-β) signaling pathway significantly contributes to the development of obesity, and blockade or inhibition is reported to protect from obesity by promoting white adipose browning and increasing mitochondrial biogenesis. Identification of novel compounds that activate beige/brown adipose characteristics to burn surplus calories and reduce excess storage of fat are actively sought in the fight against obesity. In this review, we present recent developments in our understanding of key modulators of TGF-β signaling pathways including follistatin (FST) and myostatin (MST) in regulating adipose browning and brown adipose mass and activity. While MST is a key ligand for TGF-β family, FST can bind and regulate biological activity of several TGF-β superfamily members including activins, bone morphogenic proteins (BMP) and inhibins. Here, we review the literature supporting the critical roles for FST, MST and other proteins in modulating TGF-β signaling to influence beige and brown adipose characteristics. We further review the potential therapeutic utility of FST for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shehla Pervin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Rajan Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Endocrinology, Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Rajan Singh,
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is associated with severe joint pain, inflammation, and cartilage degeneration. Drugs injected directly into intra-articular joint space clear out rapidly providing only short-term benefit. Their transport into cartilage to reach cellular targets is hindered by the tissue's dense, negatively charged extracellular matrix. This has limited, despite strong preclinical data, the clinical translation of osteoarthritis drugs. Recent work has focused on developing intra-joint and intra-cartilage targeting drug delivery systems (DDS) to enable long-term therapeutic response, which is presented here. RECENT FINDINGS Synovial joint targeting hybrid systems utilizing combinations of hydrogels, liposomes, and particle-based carriers are in consideration for pain-inflammation relief. Cartilage penetrating DDS target intra-cartilage constituents like aggrecans, collagen II, and chondrocytes such that drugs can reach their cellular and intra-cellular targets, which can enable clinical translation of disease-modifying osteoarthritis drugs including gene therapy. SUMMARY Recent years have witnessed significant increase in both fundamental and clinical studies evaluating DDS for osteoarthritis. Steroid encapsulating polymeric microparticles for longer lasting pain relief were recently approved for clinical use. Electrically charged biomaterials for intra-cartilage targeting have shown promising disease-modifying response in preclinical models. Clinical trials evaluating safety of viral vectors are ongoing whose success can pave the way for gene therapy as osteoarthritis treatment.
Collapse
Affiliation(s)
- Shikhar Mehta
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Tengfei He
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|